Implicaciones de la simetría#
(175)#\[\left[\hat{H},\hat{O}\right]=0\]
Hamiltoniano molecula y cristalino#
(176)#\[\hat{H}(\vec{r},\vec{R})=\hat{T}(\vec{r})+\hat{V}_{ee}(\vec{r})+\hat{V}_{en}(\vec{r},\vec{R})+V_{nn}(\vec{R})\]
(177)#\[\hat{O}\hat{H}_{el}(\vec{R})=\hat{H}_{el}(\vec{R}^\prime)=\hat{H}_{el}(\vec{R})\]
Grupo de las operaciones de simetría#
Operaciones conjugadas y clases#
(178)#\[R_3 R_2 R_3^{-1} = R_1\]
Ejemplo: Amoníaco
Clases
Leyes de conservación#
(179)#\[ \frac{d\left\langle\hat{O}\right\rangle}{dt} = \frac{1}{i\hbar} \left\langle \left[\hat{H}_{el},\hat{O}\right] \right \rangle\]
(180)#\[ \frac{d\left\langle\hat{O}\right\rangle}{dt} = 0\]
(181)#\[ \theta \longrightarrow \theta + \Delta \theta \frac{\partial}{\partial \theta} +...\]
(182)#\[ \frac{\partial }{\partial \theta} H_{el} = 0 \longrightarrow [H_{el},\frac{\partial }{\partial \theta}]=0\]
(183)#\[[H_{el},\frac{\partial }{\partial \theta}]\Psi =
H_{el}\frac{\partial }{\partial\theta}\Psi - \frac{\partial }{\partial\theta} (H_{el}\Psi) =
H_{el}\frac{\partial }{\partial\theta}\Psi - \frac{\partial H_{el}}{\partial\theta} \Psi - H_{el} \frac{\partial \Psi}{\partial\theta} =
0\]
Conservación del momento angular#
(184)#\[l_{z}=-i\hbar\frac{\partial}{\partial \theta}\]