Fuerzas y rotación

../../_images/momangular.png

Fig. 93 Illustration of the angular momentum of a particle as it rotates with a fixed angular velocity.

(178)\[\vec{l}=\vec{r}\times\vec{p}\]
(178)\[\vec{l}=\vec{r}\timesm\vec{v}=m(\vec{r}\times \vec{v})=m\vert\vec{r}\vert^2\vec{\omega}\]
(179)\[\begin{split}\vec{\tau}=\frac{d\vec{L}}{dt}&=\frac{d\vec{r}}{dt}\times \vec{p} + \vec{r}\times \frac{d\vec{p}}{dt}\\ &=0 + \vec{r}\times \frac{d\vec{p}}{dt}\\ &=\vec{r}\times \vec{F}\end{split}\]

Momento angular

Momento fuerza

Magnitudes escalares

I am writing an equation inline \(x=-i\hbar\psi=\hat{h}\psi\).

If the equation is by itself,

(180)\[-i\hbar\psi=\hat{h}\psi\]

I am going to add a figure

2_mecanica/dinamica/../img/logo/logo_fisica.png

Fig. 94 Here is my figure caption!

:::{admonition,warning} This is also Markdown This text is standard Markdown :::

:::{admonition,note} This is also Markdown This text is standard Markdown :::

:::{admonition,tip} This is also Markdown This text is standard Markdown :::

Magnitudes vectoriales

There are many ways to write content in Jupyter Book. This short section covers a few tips for how to do so.

I am going to cite a reference [HdHPK14]

Now I am going to cite section escalares Sec. Magnitudes escalares

The Schrödinger equation is Eq. (195)

I am citing the figure: Fig. 102

Unidades

Problemas y ejemplos resueltos

  • This is the text of a problem

I can start solving like this

(181)\[x=-2\pi\]

Some text needs to go between sidebars

(182)\[y=-log(e)\]

And at the end

  • This is the text of another problem

Bibliografía