Teorema trabajo y energía

(204)\[\begin{split}W&=\int_{\vec{r}_0}^{\vec{r}_f}\vec{F}d\vec{r}=\int_{\vec{r}_0}^{\vec{r}_f}m\frac{d\vec{v}}{dt}d\vec{r} \underset{d\vec{r}=\vec{v}dt}{=}\int_{\vec{r}_0}^{\vec{r}_f}m\frac{d\vec{v}}{dt}\vec{v}dt\\ &\underset{dv^2=2\vec{v}\frac{d\vec{v}}{dt}dt}{=}\frac{1}{2}m\int_{\vec{v}_0}^{\vec{v}_f}{dv^2} =\frac{1}{2}mv_f^2-\frac{1}{2}mv_0^2\end{split}\]
(204)\[W=\frac{1}{2}mv_f^2-\frac{1}{2}mv_0^2\]

Magnitudes escalares

I am writing an equation inline \(x=-i\hbar\psi=\hat{h}\psi\).

If the equation is by itself,

(205)\[-i\hbar\psi=\hat{h}\psi\]

I am going to add a figure

2_mecanica/trabajo_energia/../img/logo/logo_fisica.png

Fig. 105 Here is my figure caption!

:::{admonition,warning} This is also Markdown This text is standard Markdown :::

:::{admonition,note} This is also Markdown This text is standard Markdown :::

:::{admonition,tip} This is also Markdown This text is standard Markdown :::

Magnitudes vectoriales

There are many ways to write content in Jupyter Book. This short section covers a few tips for how to do so.

I am going to cite a reference [HdHPK14]

Now I am going to cite section escalares Sec. Magnitudes escalares

The Schrödinger equation is Eq. (195)

I am citing the figure: Fig. 102

Unidades

Problemas y ejemplos resueltos

  • This is the text of a problem

I can start solving like this

(206)\[x=-2\pi\]

Some text needs to go between sidebars

(207)\[y=-log(e)\]

And at the end

  • This is the text of another problem

Bibliografía