BOOK
Numerical
Methods for Special Functions
A. Gil, J. Segura, N.M. Temme
SIAM (2007)
functions.unican.es
Book chapters
Special
functions: Computation. A. Gil, J. Segura,
N. M. Temme.
In Encyclopaedia of Applied and Computational Mathematics, edited by Björn Engquist. Springer 2016.
Special functions. J. Segura.
In Walter Gautschi. Selected Works with Commentaries, Volume 1. Editors: Claude Brezinski, Ahmed Sameh. Springer 2014.
Basic methods for computing special functions. A. Gil, J. Segura,
N. M. Temme.
In Recent
Advances in Computational and Applied Mathematics,
edited by T.E Simos, Springer 2011. doi: 10.1007/978-90-481-9981-5
PAPERS
117. A numerical algorithm for the computation of the noncentral beta
distribution function. V. Egorova, A. Gil, J. Segura, N. M.
Temme. Numer. Algorithms (2024) doi: 10.1007/s11075-024-01931-8
116. Computation of parabolic cylinder functions having complex argument. T. M. Dunster, A. Gil, J. Segura. Appl. Numer. Math. 197 (2024) 230-242 doi: 10.1016/j.apnum.2023.11.017
115. Computation of the regularized incomplete Beta function. V. Egorova, A. Gil, J. Segura, N. M. Temme. Dolomites Research Notes on Approximation 16(3) (2023) 10-16 doi: 10.14658/PUPJ-DRNA-2023-3-3
114. New asymptotic representations of the noncentral t-distribution. A. Gil, J. Segura, N. M. Temme. Stud. Appl. Math. 151 (2023) 857-882 arxiv doi: 10.1111/sapm.12609
113. Computation of the confluent hypergeometric
function U(a,b,x) and its derivative for positive arguments. A. Gil, D.
Ruiz-Antolín, J. Segura, N. M. Temme. Numer. Algorithms 94 (2023) 669-679 doi: 10.1007/s11075-023-01515-y
112. Evaluation of the generalized Fermi-Dirac
integral and its derivatives for moderate/large values of the
parameters. A. Gil, A. Odrzywolek, J. Segura, N. M. Temme. Comput. Phys. Commun. 283 (2023) 108563 doi: 10.1016/j.cpc.2022.108563
111. Simple bounds with best possible accuracy for ratios of modified Bessel functions. J. Segura. J. Math. Anal. Appl. 526(1) (2023) 127211 arxiv doi: 10.1016/j.jmaa.2023.127211
110. Complete asymptotic expansions for the relativistic Fermi-Dirac integral. A. Gil, J. Segura, N. M. Temme. Appl. Math. Comput. 412 (2022) 126618 arxiv doi: 10.1016/j.amc.2021.126618
109. A new asymptotic representation and inversion method for the Student's t distribution. A. Gil, J. Segura, N. M. Temme. Integr. Transf. Spec. F. 33(8) (2022) 597-608 arxiv doi: 10.1080/10652469.2021.2007906
108. Monotonicity properties for ratios and products of modified Bessel functions and sharp trigonometric bounds. J. Segura. Results Math.76 (2021) 221 arxiv doi: 10.1007/s00025-021-01531-1
107. Sharp error bounds for turning point expansions. T. M. Dunster, A. Gil, J. Segura. J. Classical Anal. 18(1) (2021) 49-81 arxiv doi: 10.7153/jca-2021-18-05
106. Uniform (very) sharp bounds for ratios of Parabolic Cylinder functions. J. Segura. Stud. Appl. Math. 147 (2021) 816-833 arxiv doi: 10.1111/sapm.12401
105. Fast and reliable high accuracy computation of Gauss–Jacobi quadrature. A. Gil, J. Segura, M. M. Temme. Numer. Algorithms 87 (2021) 1391-1419 arxiv doi: 10.1007/s11075-020-01012-6
104. Simplified error bounds for turning point expansions. T. M. Dunster, A. Gil, J. Segura. Anal. Appl. 19(4) (2021) 647-678. arxiv doi: 10.1142/S0219530520500104
103. Asymptotic expansions of Jacobi polynomials and of the
nodes and weights of Gauss-Jacobi quadrature for large degree and
parameters in terms of elementary functions. A. Gil, J. Segura, N. M. Temme. J. Math. Anal. Appl. 494(2) (2021) 124642. arxiv doi: 10.1016/j.jmaa.2020.124642
102. Asymptotic inversion of the binomial and negative binomial cumulative distribution functions. A. Gil, J. Segura, N. M. Temme. Electron.
Trans. Numer. Anal. 52 (2020) 270-280. arxiv d
oi::10.1553/etna_vol52s270
101. Numerical evaluation of Airy-type integrals arising in uniform asymptotic expansions. A. Gil, J. Segura, N. M. Temme. J. Comput. Appl. Math 371 (2020) 112717. arxiv doi: 10.1016/j.cam.2020.112717
100. Asymptotic computation of classical orthogonal polynomials. A. Gil, J. Segura, N. M. Temm. Orthogonal Polynomials: Current Trends and Applications, pp. 125-236. SEMA/SEMAI. Springer Series, vol 22. arxiv doi: 10.1007/978-3-030-56190-1_8
99. Fast, reliable and
unrestricted iterative computation of Gauss--Hermite and
Gauss--Laguerre quadratures. A. Gil, J. Segura, N. M. Temme. Numer. Math. 143(3) (2019) 649-682 arxiv doi: 10.1007/s00211-019-01066-2 Click here for an online only-read version
98. On the computation and inversion of the cumulative noncentral beta distribution. A. Gil, J. Segura, N. M. Temme. Appl. Math. Comput. 361 (2019) 74-86 arxiv doi: 10.1016/j.amc.2019.05.014
97. Non-iterative computation of Gauss-Jacobi quadrature. A. Gil, J. Segura, N. M. Temme. SIAM J. Sci. Comput. 41(1) (2019) A668-A693. arxiv doi: 10.1137/18M1179006
96. Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre quadratures. A. Gil, J. Segura, N. M. Temme. Stud. Appl. Math.,140(3) (2018) 298-332 arxiv doi: 10.1111/sapm.12201 Click here for an online only-read version
95.
Uniform asymptotic expansions for Laguerre polynomials and related
confluent hypergeometric functions. T. M. Dunster, A. Gil, J. Segura. Adv. Comput. Math., 44(5) (2018) 1441-1474 arxiv doi: 10.1007/s10444-018-9589-5 Click here for an online only-read version
94. Expansions of Jacobi polynomials for large values of beta and of their zeros. A. Gil, J. Segura, N. M. Temme. SIGMA 14 (2018) 73 (9 pages). arxiv doi: 10.3842/SIGMA.2018.073
93. Modeling the influence of co-localized intracelullar calcium
stores on the secretory response of bovine chromaffin cells.
G. J. Felix-Martinez, A. Gil, J. Segura, J. Villanueva, L. M.
Gutierrez. Comp. Bio. Med. (2018), doi: 10.1016/j.compbiomed.2018.06.032
92. A New Fortran 90 Program to Compute Regular and
Irregular Associated Legendre Functions (new version announcement). B. I. Schneider, J. Segura, A.
Gil, X. Guan, K. Bartschat. Comput.
Phys. Commun. 225 (2018) 192-193.
doi: 10.1016/j.cpc.2017.12.013
91. Conical:
an extended module for computing a numerically satisfactory pair of
solutions of the differential equation for conical functions. T. M. Dunster, A. Gil, J. Segura, N. M. Temme. Comput. Phys. Commun. 217 (2017) 193-197 arxiv doi: 10.1016/j.cpc.2017.04.007
90. Computation of asymptotic expansions of turning point
problems via Cauchy's integral formula: Bessel functions. T. M. Dunster, A. Gil, J. Segura. Constr. Approx. 46(3) (2017) 645-675. arxiv doi: 10.1007/s00365-017-9372-8 Click here for an online only-read version
89. Efficient computation of Laguerre polynomials. A. Gil, J. Segura, N. M. Temme. Comput. Phys. Commun. 210 (2017) 124-131. arxiv doi: 10.1016/j.cpc.2016.09.002
88. The Schwarzian-Newton method for solving nonlinear equations, with applications. J. Segura. Math. Comput. 86(304) (2017) 865-879. arxiv doi: 10.1090/mcom/3119
87. Efficient algorithms for the inversion of the cumulative central beta distribution. A. Gil, J. Segura, N.M. Temme. Numer. Algorithms. 74(1) (2017) 77-91. arxiv doi: 10.1007/s11075-016-0139-2
86.
Computation of the incomplete gamma function for negative values of the
argument. A. Gil, D. Ruiz-Antolín, J. Segura, N. M. Temme. ACM Trans. Math. Softw. 43(3) (2016), article 26. arxiv doi: 10.1145/2972951
85. A new type of sharp bounds for ratios of modified Bessel functions. D. Ruiz-Antolín, J. Segura. J. Math. Anal. Appl. 443 (2016) 1232-1246. arxiv doi: 10.1016/j.jmaa.2016.06.011
84. Sharp bounds for cumulative distribution functions. J. Segura. J. Math. Anal. Appl. 436 (2016) 748-763 arxiv doi: 10.1016/j.jmaa.2015.12.024 (erratum)
83. Computing the Kummer function U(a,b,z) for small values of the arguments. A. Gil, J. Segura, N.M. Temme. Appl. Math. Comput. 271 (2015) 532-539. arxiv doi: 10.1016/j.amc.2015.09.047
82. GammaCHI: a package for the inversion and computation of
the gamma and chi-square cumulative distribution functions (central and noncentral). A. Gil, J. Segura, N.M. Temme. Comput. Phys. Commun. 191(2015) 132-139. arxiv doi: 10.1016/j.cpc.2015.01.004
81. Computation of a numerically satisfactory pair of solutions
of the differential
equation for conical functions of
non-negative integer orders. T.M. Dunster, A. Gil, J. Segura, N.M. Temme. Numer. Algorithms 68 (2015) 497–509. arxiv doi: 10.1007/s11075-014-9857-5
80. Monotonicity properties and bounds for the chi-square and gamma distributions. J. Segura. Appl. Math. Comput. 246 (2014) 399-415. arxiv doi: 10.1016/j.amc.2014.08.034 (erratum)
79. The asymptotic and numerical inversion of the Marcum Q-function. A. Gil, J. Segura, N.M. Temme. Stud. Appl. Math. 133(2) (2014) 257-278 . arxiv doi: 10.1111/sapm.12050
78. On the complex zeros of Airy and Bessel functions and those of their derivatives. A. Gil, J. Segura. Anal. Appl. 12(5) (2014) 573-561. arxiv doi: 10.1142/S0219530514500341
77. A theoretical study of factors influencing
calcium-secretion
coupling in a presynaptic active zone model. A.
Gil, V. González-
Vélez, J. Segura and L.M. Gutiérrez. Math. Biosci. Eng. 11(5) (2014) 1027-1043. doi: 10.3934/mbe.2014.11.1027
76. Algorithm 939: Computation of the Marcum Q-function. A. Gil, J. Segura, N. M. Temme. ACM Trans. Math. Softw. 40(3) (2014), article 20. arxiv doi: 10.1145/2591004
75. Recent software developments for special functions in the Santander-Amsterdam project. A. Gil, J. Segura, N. M. Temme. Sci. Comput. Program. 90A (2014) 42-54 arxiv doi: 10.1016/j.scico.2013.11.004
74. Some analytical and numerical consequences of Sturm theorems. J. Segura. Adv. Dyn. Syst. Appl. 8(2) (2013) 327-347. Article. Proceedings of ICDDESF'12, Patras (Greece)
73. Computing the complex zeros of special functions. J. Segura. Numer. Math. 124 (4) (2013) 723-752 doi: 10. 1007/s00211-013-0528-6 (errata)
72. On bounds for monotonic first order differential systems and the Liouville-Green aproximation. J. Segura. J. Approx. Theory, 170 (2013) 107-115. doi: 10.1016/j.jat.2012.07.003
71. Neurites emission in chromaffin cells: study of the influence
of the cytoskeletal structure on calcium dynamics and secretion
A. Gil, C. Torregrosa-Hetland, V. González-Velez, J. Villanueva, V.
Garcia, J. Segura, L. M. Gutierrez. Frontiers in life science (2013), doi: 10.1080/21553769.745452
70. Efficient and accurate algorithms for the computation and inversion of the incomplete gamma function ratios. A. Gil, J. Segura, N.M. Temme. SIAM J. Sci. Comput. 34 (6) (2012) A2965-A2981. arxiv doi: 10.1137/120872553
69. Exocytotic Dynamics in Human Chromaffin cells:
Experiments and modeling. A. Albillos, A. Gil, V. Gonzlez-Vélez,
A. Pérez-Álvarez, A. Hernández-Vivanco, J.C. Caba-González, J.
Segura. J. Comput. Neurosci, 34(1) (2012) 27-37. doi: 10.1007/s10827-012-0404-x
68. Computing the real zeros of cylinder functions and the roots of the equation . A. Gil, J. Segura. Comput Math. Appl. 64(1) (2012) 11-21. doi: 10.1016/j.camwa.2012.02.032
67. On bounds for solutions of monotonic first order difference-differential systems. J. Segura. J. Ineq. Appl. 2012:65 (2012). doi: 10.1186/1029-242X-2012-65. A version with a far much better format than the published version (full of missprints made by the editorial) HERE
66. An improved algorithm and a Fortran 90 module for computing the
conical function. A. Gil, J. Segura, N. M. Temme. Comput. Phys. Commun. 183(3) (2012) 794-799. doi: 10.1016/j.cpc.2011.11.025
65 Parabolic
cylinder function W(a,x) and its derivative (algorithm). A. Gil, J.
Segura, N.M. Temme. ACM Trans.
Math. Soft. 38(1) (2011), article 6 (6 pages). doi: 10.1145/2049662.2049668
64.
Bounds for ratios of modified Bessel functions and associated
Turán-type inequalities. J. Segura. J.
Math.
Anal. Appl. 374
(2011) 516-528. doi: 10.1016/j.jmaa.2010.09.030 Note
63.
Fast and accurate computation of the Weber parabolic cylinder function
W(a,x). A. Gil, J. Segura & N. M. Temme. IMA J. Numer. Anal 31(3)
(2011) 1194-1216
doi: 10.1093/imanum/drq012
62. The F-actin cortical network is a major factor influencing
the
organization of the secretory machinery in chromaffin cells. C.
Torregrosa-Hetland, D. Giner, I. Lopez-Font, J. Villanueva, A. Nadal,
I. Quesada, S. Viniegra, A. Gil, V. Gonzalez-Velez, J. Segura and L.M.
Gutierrez. J. Cell Sci.
124 (2011) 727-734 doi:10.1242/jcs.078600
61. Reliable computation of the zeros of solutions of
second order linear ODEs using a fourth order method. J.
Segura. SIAM
J. Numer. Anal 48 (2010) 452-469. doi: 10.1137/090747762
60. A New Fortran 90 Program to Compute Regular and
Irregular Associated Legendre Functions. B. I. Schneider, J. Segura, A.
Gil, X. Guan, K. Bartschat. Comput.
Phys. Commun.
181 (2010) 2091-2097.
doi: 10.1016/j.cpc.2010.08.038
59. Computational properties of
three-term recurrence relations for Kummer functions. A. Deaño, J.
Segura & N.M. Temme. J.
Comput. Appl. Math. 233 (6) (2010) 1505-1510. doi: j.cam.2008.03.051
58. The Asymptotic Inversion of Certain Cumulative Distribution
Functions. A. Gil, J. Segura & N. M. Temme.
Mathematics in Industry,
15 (2010), 117-222.
doi: 10.1007/978-3-642-12110-4_11
57.
Association
of SNAREs and calcium channels with the borders of cytoskeletal cages
organizes the secretory machinery in chromaffin cells.
C.
Torregrosa-Hetland, J. Villanueva, I. Lopez, V. Garcia, A. Gil, V.
Gonzalez-Velez, J. Segura, S. Viniegra & L.M.
Gutierrez. Cell. Mol.
Neurobiol 30(8) (2010) 1315-1319. doi: 10.1007/s10571-010-9565-1
56. The organization of the secretory machinery in chromaffin cells as
a major factor to model exocytosis. J. Villanueva, C. J.
Torregrosa-Hetland, A. Gil, V. González-Velez, J. Segura, S. Viniegra,
L. M.Gutiérrez. HSFP
J. 4 (2010) 85-92.
html
pdf
55. Interdisciplinary approaches to calcium dynamics and
secretory processes in cells. A. Gil, J. Segura. HSFP J. 4
(2010) 41-42. html
pdf
54. Computing the conical function. A. Gil, J. Segura & N.M.
Temme. SIAM J. Sci.
Comput. 31 (2009) 1716-1741. doi: 10.1137/070712006
53. Numerically satisfactory solutions of Kummer recurrence relations.
J. Segura, N. M. Temme. Numer.
Math. 111(1) (2008) 109-119. doi: 10.1007/s00211-008-0175-5
52. Interlacing of the zeros of contiguous hypergeometric functions. J.
Segura. Numer.
Algorithms 49 (2008) 387-407. doi:
10.1007/s11075-008-9211-x
51. Identifying minimal and dominant solutions for Kummer recursions.
A. Deaño, J. Segura, N.M. Temme. Math. Comput.
77 (2008)
2277-2293. doi: 10.1090/S0025-5718-08-02122-4
50. Global Sturm inequalities for the real zeros of the solutions of
the Gauss hypergeometric differential equation .
A. Deaño, J. Segura. J.
Approx. Theory 148 (2007)
92-110. doi: 10.1016/j.jat.2007.02.005
49. Transitory minimal solutions of hypergeometric recursions
and pseudoconvergence of associated continued fractions.
A. Deaño, J. Segura. Math. Comput.
76
(2007) 879-901. doi:
10.1090/S0025-5718-07-01934-5
48. Numerically satisfactory solutions of
hypergeometric recursions. A. Gil, J. Segura & N.M. Temme.
Math. Comput.
76 (2007) 1449-1468 doi:
10.1090/S0025-5718-07-01918-7
47. Software for
simulating calcium-triggered exocytotic processes. G. Carrera, A. Gil,
J. Segura, B. Soria.
Am. J. Physiol.- Cell Physiol.
292 (2007) C749-C755 html
pdf
46. Computation of the real zeros of
the Kummer function M(a,c,x). A. Deaño, A. Gil, J. Segura. Lect.
Notes Comput. Sci. 4151 (2006) 296-307. doi: 10.1007/11832225_30
45. Computing the
Real Parabolic Cylinder Functions U(a,x), V(a,x). A. Gil , J. Segura
& N.M. Temme. ACM
Trans. Math. Softw. 32(1)
(2006) 70-101 doi: 10.1145/1132973.1132977
44. Algorithm 850:Real Parabolic Cylinder Functions
U(a,x), V(a,x). A. Gil, J. Segura & N.M. Temme. ACM Trans. Math. Softw.
32(1) (2006) 102-112 doi:
10.1145/1132973.1132978
43. The ABC of hyper recursions. A. Gil, J. Segura & N.M. Temme. J. Comput. Appl.
Math. 190 (2006) 270-286 doi:
10.1016/j.cam.2005.01.041
42. Calcium
3D: A visual software package for the simulation of calcium buffered
diffusion in neuroendocrine cells. G. Carrera, A. Gil & J.
Segura.
Comput.
Meth. Prog. Bio. 80 (2005) 173-180 doi: 10.1016/j.cmpb.2005.07.003
41. New
inequalities from classical Sturm theorems. A. Deaño, A. Gil &
J.
Segura. J. Approx.
Theory 131 (2004) 208-230 doi: 10.1016/j.jat.2004.09.006 (errata)
40. Computing Solutions of
the Modified Bessel Differential Equation for Imaginary Orders and
Positive Arguments. A. Gil, J. Segura & N.M. Temme. ACM Trans.
Math. Softw. 30 (2004) 145-158 doi: 10.1145/992200.992203
39. Algorithm 831: Modified Bessel
Functions of Imaginary Orders and Positive Argument. A. Gil, J. Segura
& N.M. Temme. ACM
Trans. Math. Softw. 30 (2004) 159-164 doi: 10.1145/992200.992204
38.
Integral Representations for Computing Real Parabolic
Cylinder
Functions. A. Gil, J. Segura & N.M. Temme. Numer. Math. 98
(2004) 105-134 doi:
10.1007/s00211-004-0517-x
37. Computing the real zeros of hypergeometric
functions. A. Gil, W. Koepf, J. Segura. Numer. Algorithms
36 (2004)
105-134 doi: 10.1023/B:NUMA.0000033128.64649.7a
36. Computing Special Functions by Using Quadrature Rules.
A. Gil, J. Segura & N.M. Temme. Numer. Algorithms
33 (2003)
265-275 doi: 10.1023/A:1025524324969
35. Computing the zeros and turning points of solutions of
second order homogeneous linear ODEs. A. Gil & J. Segura SIAM J.
Numer. Anal. 41(3) (2003) 827-855. doi: 10.1137/S0036142901392754
jstor
34. On a conjecture regarding the
extrema of Bessel functions and its generalization. J. Segura. J. Math.
Anal. Appl. 280 (2003) 54-62 doi: 10.1016/S0022-247X(03)00015-5
33. A combined symbolic and numerical
algorithm for the computation of the zeros of special functions. A. Gil
& J. Segura. J.
Symbol. Comp. 35(5) (2003) 465-485. doi: 10.1016/S0747-7171(03)00013-0
32. Computation
of the modifed Bessel function of the third kind of imaginary
orders: uniform Airy-type asymptotic expansion. A. Gil, J. Segura
&
N.M. Temme. J.
Comput. Appl. Math. 153 (2003) 225-234 doi: 10.1016/S0377-0427(02)00608-8
31. On the zeros
and turning points of special functions. J. Segura. J. Comput. Appl.
Math. 153 (2003) 433-440. doi: 10.1016/S0377-0427(02)00614-3
(See correction note at the bottom
of the second page in
10.1007/s11075-008-9211-x )
30. On the zeros of the Scorer
functions. A. Gil, J. Segura & N.M. Temme. J. Approx. Theory
120
(2003) 253-266. doi:
10.1016/S0021-9045(02)00022-9
29. Algorithm 822: GIZ,HIZ: two Fortran 77 routines for the
computation of complex
Scorer functions. A. Gil, J. Segura & N.M. Temme. ACM Trans. Math.
Soft. 28(4) (2002) 436.447. doi: 10.1145/592843.592847
28. Algorithm 819: AIZ,BIZ: two Fortran 77 routines for the computation
of complex
Airy functions. A. Gil, J. Segura & N.M. Temme. ACM Trans. Math.
Soft. 28(3) (2002) 325-336. doi: 10.1145/569147.569150
27. The zeros of special functions from a
fixed point method. J. Segura. SIAM
J. Numer. Anal. 40 (2002) 114-133
doi: 10.1137/S0036142901387385
jstor
26. Computing complex Airy functions by Numerical Quadrature. A. Gil,
J. Segura
& N.M. Temme. Numer.
Algorithms 30 (2002) 11-23 doi: 10.1023/A:1015636825525
25. Evaluation
of the modified Bessel function of the third kind for imaginary orders.
A. Gil, J. Segura & N. M. Temme. J. Comput.
Phys. 175 (2002) 398-411 doi:
10.1006/jcph.2001.6894
(see also corrections in 10.1145/992200.992203)
24. Bounds on differences of adjacent zeros
of Bessel functions and iterative relations between consecutive zeros.
Javier Segura. Math. Comput.
70 (2001), 1205-1220
doi: 10.1090/S0025-5718-00-01243-6
pdf
23. On non-oscillating integrals for computing inhomogeneous Airy
functions. A. Gil, J. Segura & N. M. Temme. Math. Comput.
70, 235 (2001) 1183-1194. doi:
10.1090/S0025-5718-00-01268-0
pdf
22. DTORH3 2.0: A new version of a computer
program for the evaluation of toroidal harmonics. A. Gil and J. Segura.
Comput. Phys. Commun.
139(2) (2001) 186-191. doi:
10.1016/S0010-4655(01)00188-6
21. CA3D: A Monte Carlo code to simulate
3D buffered diffusion of ions in sub-membrane domains. Amparo Gil and
Javier Segura. Comput.
Phys. Commun. 136 (3) (2001) 269-293 doi: 10.1016/S0010-4655(01)00144-8
20.
Computing toroidal functions for wide ranges of the parameters. A. Gil,
J. Segura and N. M. Temme. J. Comput.
Phys. 161 (1) (2000) 204-217. doi: 10.1006/jcph.2000.6498
19. Evaluation of Toroidal Harmonics. J. Segura & A. Gil. Comput. Phys. Commun.
124 (2000) 104-122. doi:
10.1016/S0010-4655(99)00428-2
18. Modeling study of exocytosis in neuroendocrine cells: inflluence of
the geometrical parameters. Javier Segura, Amparo Gil
& Bernat Soria. Biophys.
J. 79 (4) (2000) 1771-1786. doi:
10.1016/S0006-3495(00)76429-0
pdf
17. Engineering pancreatic islets. B. Soria, E. Andreu, G. Berna, E.
Fuentes, A. Gil, E. Montanya, A. Nadal, T. Leon-Quinto, C. Ripoll, E.
Roche, F.A. Reig, J.V. Sanchez-Andres & J. Segura. Pflugers Archiv. Eur. J.
Physiol. 404 (2000) 1-18. doi: 10.1007/s004240000251
16. Monte Carlo simulation of 3-D buffered Ca2+ diffusion in
neuroendocrine cells. Amparo Gil, Javier Segura,
José A.G. Pertusa & Bernat Soria. Biophys. J. 78
(1) (2000) 13-33. doi: 10.1016/S0006-3495(00)76569-6
pdf
15. A potential test of the CP properties and Majorana nature of
neutrinos. S. Pastor, J. Segura, V.B. Semikoz, J.W.F. Valle. Nucl. Phys. B
566 (2000) 92-102. doi:
10.1016/S0920-5632(00)00695-2
14. Evaluation of associated Legendre functions off the cut and
parabolic cylinder functions. Javier Segura & Amparo
Gil. Electron.
Trans. Numer. Anal. 9 (1999) 137-146 abstract
pdf
13. ELF and GNOME: two tiny codes to evaluate the real zeros of the
Bessel functions of the first kind for real orders. J. Segura &
A. Gil. Comput.
Phys. Commun. 117 (1999) 250-262. doi: 10.1016/S0010-4655(98)00193-3
12. Neutrino magnetic moments and low energy solar neutrino-electron
scattering experiments. S. Pastor, J. Segura, V.B. Semikoz, J.W.F.
Valle. Phys. Rev.
D 59 (1999) 013004, 1-7. doi: 10.1103/PhysRevD.59.013004
11. A global Newton method for the zeros of cylinder functions. Javier
Segura. Numer.
Algorithms 18 (1998) 259-276. doi: 10.1023/A:1019125616736
10. Parabolic Cylinder Functions of integer and half-integer orders for
non-negative arguments. J. Segura & A. Gil. Comput. Phys. Commun.
115 (1998) 69-86. doi:
10.1016/S0010-4655(98)00097-6
9. A code to evaluate prolate and oblate spheroidal harmonics. A. Gil
& J. Segura. Comput.
Phys. Commun. 108 (1998) 267-278. doi: 10.1016/S0010-4655(97)00126-4
pdf
8. Neutrino oscillation and magnetic moment from neutrino-electron
elastic scattering. J. Segura. Eur. Phys. J. C
5 (1998) 2, 269-274. doi:
10.1007/s100529800849
7. Evaluation of Legendre Functions of argument greater than one. A.
Gil & J. Segura. Comput.
Phys. Commun. 105 (1997) 273-283. doi: 10.1016/S0010-4655(97)00076-3
6. A code to evaluate modified Bessel functions based on the continued
fraction method. J. Segura, P. Fernández de Córdoba, Yu. L. Ratis. Comput. Phys. Commun.
105 (1997) 263-272. doi:
10.1016/S0010-4655(97)00069-6
5. Dynamical zeros in neutrino-electron elastic scattering at leading
order. J. Segura, J. Bernabéu, F.J. Botella & J.A. Peñarrocha. Phys. Rev. D
49 (1994) 1633-1636. doi:
10.1103/PhysRevD.49.1633
4. Neutrino magnetic moment and the process νe → νeγ.
J. Bernabéu, S.M. Bilenky, F.J. Botella & J. Segura. Nucl. Phys. B
426 (1994) 434-456. doi:
10.1016/0550-3213(94)90319-0
3. A novel kind of neutrino oscillation experiment. J. Segura, J.
Bernabéu, F.J. Botella & J.A. Peñarrocha. Phys. Lett. B
335 (1994) 93-98. doi:
10.1016/0370-2693(94)91563-6
2. Neutrino mass and magnetic moment from neutrino-electron elastic
scattering. J. Bernabéu, S.M. Bilenky, F.J. Botella, J. A. Peñarrocha
& J. Segura. ICHEP
1994: 957-960. Institute of Physics Publishing arxviv
1. Nuclear tests for the strange charge form factor of the nucleon. J.
Bernabéu, S.M. Bilenky, J. Segura & S.K. Singh. Phys. Lett. B
282 (1992) 177-184. doi:
10.1016/0370-2693(92)90498-S
Bibliometric information
Some TALKS