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Abstract

Many special functions are solutions of first order linear systems y′n(x) =

an(x)yn(x) + dn(x)yn−1(x), y
′
n−1(x) = bn(x)yn−1(x) + en(x)yn(x). We ob-

tain bounds for the ratios yn(x)/yn−1(x) and the logarithmic derivatives

of yn(x) for solutions of monotonic systems satisfying certain initial condi-

tions. For the case dn(x)en(x) > 0, sequences of upper and lower bounds

can be obtained by iterating the recurrence relation; for minimal solutions

of the recurrence these are convergent sequences. The bounds are related to

the Liouville-Green approximation for the associated second order ODEs as

well as to the asymptotic behavior of the associated three-term recurrence

relation as n → +∞; the bounds are sharp both as a function of n and

x. Many special functions are amenable to this analysis, and we give sev-

eral examples of application: modified Bessel functions, parabolic cylinder

functions, Legendre functions of imaginary variable and Laguerre functions.

New Turán-type inequalities are established from the function ratio bounds.

Bounds for monotonic systems with dn(x)en(x) < 0 are also given, in par-

ticular for Hermite and Laguerre polynomials of real positive variable; in

that case the bounds can be used for bounding the monotonic region (and

then the extreme zeros).

Keywords: Monotonic difference-differential systems, Riccati equation,
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Three-term recurrence relation, Special function bounds, Turán-type in-

equalities, zeros of orthogonal polynomials

MSC 2000: 33CXX, 26D20, 34C11, 34C10, 39A06

—————————————————————————–

1 Introduction

Many special functions, and in particular functions of hypergeometric type,

satisfy first order differential systems of the form

y′n(x) = an(x)yn(x) + dn(x)yn−1(x),

y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x).
(1)

For the particular case of modified Bessel functions sharp bounds for

function ratios yn(x)/yn−1(x) and logarithmic derivatives y′n(x)/yn(x), as

well as Turán-type inequalities were recently obtained in [1]; the key ingre-

dient in the analysis was the study of the qualitative behavior of the solutions

of the Riccati equation satisfied by hn(x) = yn(x)/yn−1(x), together with

the application of the three-term recurrence relation.

In this paper, the ideas in [1] are generalized and applied to a much

broader set of functions. We analyze the qualitative behavior of the Riccati

equation associated to the ratio hn(x) = yn(x)/yn−1(x),

h′n(x) = dn(x)− (bn(x)− an(x))hn(x)− en(x)hn(x)
2, (2)

in the general case in which the quadratic equation

en(x)λn(x)
2 + (bn(x)− an(x))λn(x)− dn(x) = 0 (3)

has two distinct real roots λ±
n (x). This case corresponds to monotonic sys-

tems, with solutions which have one zero at most. As we will see, if the

functions λ±
n (x) are monotonic, they are bounds for the ratios hn(x) satis-

fying certain initial value conditions.
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The methods can be applied to many special functions, modified Bessel

functions, parabolic cylinder functions, Legendre and Laguerre functions

among them. Ratios of Bessel functions appear in a great number of appli-

cations, particularly as parameters of certain probability distributions (see,

for instance, the examples mentioned in [1]). Parabolic cylinder ratios ap-

pear in the study of Ornstein-Uhlenbeck processes (see, for instance [2]), and

other special function ratios (Whittaker, Legendre, Gauss hypergeometric

functions) play similar roles as well [3, 4, 5]. In all these applications, a com-

mon characteristic is that the functions are real and the variables lie inside

a monotonic region (region free of zeros). These are precisely the conditions

under which our techniques can be applied.

In addition to direct applications in several areas, particularly in statis-

tics and stochastic processes, the bounds on function ratios have implica-

tions in the construction of numerical algorithms. These techniques provide

bounds for the region of computable parameters of a given function within

the overflow and underflow limitations, and they also provide bounds for

the condition numbers of the functions (see section 4.1.2 for the case of

Parabolic Cylinder Functions). Additionally, as discussed for the particular

case of modified Bessel functions [1], the bounds are useful for accelerating

the convergence of certain continued fraction representations which are used

in numerical algorithms; for instance, the algorithms in [6, 7] could be im-

proved by using the bounds of sections 4.1.2 and 4.1.3 for accelerating the

convergence.

We obtain upper and lower bounds for function ratios and logarithmic

derivatives of the solutions of systems (1) with dn(x)en(x) > 0. The bounds

are accurate for large values of the variable x and the parameter n. This

is a consequence of the connection between the bounds, the Liouville-Green

approximation for the associated second order ODE and the asymptotic

behavior of the associated three-term recurrence relation. We also give two

examples of applications of the methods for the case dn(x)en(x) < 0 (section
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4.2) and use these results for bounding function ratios for Laguerre and

Hermite polynomials in the real axis (but outside the oscillatory region).

These bounds can be used for bounding the oscillatory region and, therefore,

for bounding the extreme zeros.

The structure of the paper is as follows. In section 2 we analyze the

conditions which guarantee that the roots of (3) are bounds for the ratios

yn(x)/yn−1(x). The dependence on n is analyzed in section 3. The use of

the three-term recurrence relation allows us to obtain sequences of upper

and lower bounds in the case dn(x)en(x) > 0; Turán-type inequalities are

also established, as well as bounds on the logarithmic derivatives. In section

4 the techniques are applied to parabolic cylinder, Legendre and Laguerre

functions. Examples for the cases dn(x)en(x) > 0 and dn(x)en(x) < 0 are

provided.

2 Qualitative behavior of Riccati equations

We consider first order differential systems (1) with differentiable coeffi-

cients, for which the ratio hn(x) = yn(x)/yn−1(x) satisfies the Riccati equa-

tion

h′(x) = d(x) − (b(x) − a(x))h(x) − e(x)h(x)2. (4)

The label n, which is common for h and the coefficients a, b, d and e, has

been dropped in (4) for simplicity. The analysis in this section is valid for

any system, depending or not on a parameter n. The explicit dependence

on n will be recovered in the next section.

We have h′(x) = 0 when h(x) = λ±(x) with

λ±(x) = sign(e(x))R(x)
[

−η(x)±
√

η(x)2 + s
]

,

R(x) =

√

∣

∣

∣

∣

d(x)
e(x)

∣

∣

∣

∣

, η(x) =
b(x)− a(x)

2
√

|d(x)e(x)|
, s = sign(d(x)e(x)),

(5)

We consider the case with real roots λ±(x). Two distinct situations may

occur: either d(x)e(x) > 0, or d(x)e(x) < 0 but |η(x)| > 1.
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The condition d(x)e(x) > 0 generally holds in the whole maximal interval

of continuity of the functions because the coefficients d(x) and e(x) do not

change sign under very general conditions (see, for instance, [8, lemma 2.1]1).

Contrarily, when d(x)e(x) < 0 the condition |η(x)| > 1 may hold only for a

limited range of the variable x. In the first case (d(x)e(x) > 0) h(x) may

have one zero or one singularity, but not both ([8, lemma 2.4]), while in

the second h(x) may have both a zero and a singularity ([9, Theorem 2.1]).

We analyze the case d(x)e(x) > 0, assuming that no change of sign of h(x)

occurs. For the case d(x)e(x) < 0, as the examples in section 4.2 will show,

similar arguments can be applied.

In the sequel, we consider d(x)e(x) > 0. Without loss of generality, we

take d(x) > 0, e(x) > 0 and then λ+(x) > 0 and λ−(x) < 0; if d(x) < 0,

e(x) < 0 we can consider the replacement y → −y or w → −w. In the next

results, (a, b) is an interval where h(x) and the coefficients of the system are

differentiable; a or b could be +∞ or −∞. Depending on the value of h(x) at

a+ or b− different bounds can be established. First we consider h(a+) > 0.

We enunciate three results and give a common proof.

Lemma 1. If h(a+) > 0 then h(x) > 0 in (a, b)

Theorem 1. If h(a+) > 0, λ+(x) is monotonic and h′(a+)λ+′(a+) > 0 then

(h(x) − λ+(x))λ+′(x) < 0 in (a, b).

Theorem 2. If h(a+) > 0, λ+(x) is monotonic and h′(a+)λ+′(a+) < 0

then either h(x) reaches one relative extremum at xe ∈ (a, b) (a minimum if

λ+′(x) > 0 and a maximum if λ+′(x) < 0) or (h(x) − λ+(x))λ
+′(x) > 0 in

(a, b).

Proof. If h(a+) > 0, then h(x) can not change sign continuously: it can not

become zero because h′(x) > 0 if 0 ≤ h(x) < λ+(x). On the other hand,

it can not change sign discontinuously; for this, starting with h(a+) > 0,

1All that is required is that the system is satisfied by two independent sets of functions
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a value x∞ ∈ (a, b) should exist such that h(x−∞) = +∞ but this is not

possible because h′(x) < 0 if h(x) > λ+(x).

Now, we consider that λ+(x) is monotonic. We take the case λ+′(x) > 0;

the case λ+′(x) < 0 is analogous.

Assume first that h′(a+) > 0; using (4) this means that 0 < h(a+) <

λ+(a+). And then, necessarily h(x) < λ+(x) in (a, b). Indeed, because

λ+(x) is monotonically increasing and the graph of h(x) is below the graph

of λ+(x) close to x = a, the graph of h(x) may touch the graph of λ+(x)

at x = xe only if the first one has a larger slope at xe, that is, if h′(xe) >

λ+′(xe) > 0; but if h(xe) = λ+(xe) then h′(xe) = 0.

Assume now that h′(a+) < 0. The graph of h(x) lies above the graph of

λ+(x) close to x = a and there are two possibilities: either it remains above

λ+(x) in all the interval or there is a point xe ∈ (a, b) where h(xe) = λ+(xe)

and h′(xe) = 0. The graph of h(x) crosses the graph of λ+(x), which is

an increasing function, and h′(x) > 0 for all x > xe. Therefore there is a

minimum at xe.

Figure 1 illustrates the situations described in Theorems 1 and 2.
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Figure 1: The characteristic root λ+(x) divides the plane in two regions: h′(x) > 0 if

0 < h(x) < λ+(x) and h′(x) < 0 if h(x) > λ+(x). The graph of h1(x) corresponds to
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the situation described in Theorem 1 while h2(x) corresponds to Theorem 2 when an

extremum is reached.

If, differently from theorems 1 and 2, we have h(a+) < 0 then h(x) may

change sign once. But if it does not change sign and h(b−) < 0 we are in

the previous situation. Indeed, with the change of variable x → −x and the

change of function w(x) → −w(x), we have that the new ratio of functions

h̃(x) = −y(−x)/w(−x) is such that h̃(α+) > 0 and the previous results hold

in the interval [α, β] = [−b,−a]. Then, we can write a common result for

both cases. We only give the result corresponding to Theorem 1.

Theorem 3. Let h(x) be a solution of (4) with continuous coefficients and

d(x) > 0, e(x) > 0. Suppose that either h(a+) > 0 or that h(b−) < 0 and

take s = +, c = a+ in the first case and s = −, c = b− in the second. Then,

h(x) does not change sign in (a, b), and if the characteristic root λs(x) is

monotonic and λs′(c)h′(c) > 0 then

(|h(x)| − |λs(x)|) dλ
s

dx
< 0 ∀x ∈ (a, b)

Remark 1. The condition λs′(c)h′(c) > 0 is equivalent to

(|h(c)| − |λs(c)|) dλ
s

dx
(c) < 0

3 Bounds for first order DDEs

Now, consider a first order difference-differential equation (1) and assume it

holds for n ≥ n0 and that it is possible to make the shift n → n + 1 in (1).

In this case the solutions of (1) are also solutions of a three-term recurrence

relation

en+1yn+1(x) + (bn+1(x)− an(x))yn(x)− dnyn−1(x) = 0. (6)

As in the previous section, we assume dn(x)en(x) > 0.

Let λ̄±
n be the roots of the algebraic equation

en+1λ̄
2
n + (bn+1 − an)λ̄n − dn = 0, (7)
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that is:

λ̄±
n = RnEn(−η̄n ±

√

1 + η̄2n),

Rn =
√

dn/en, En =
√

en/en+1, η̄n = (bn+1 − an)/(2
√

dnen+1)
(8)

If limn→+∞ η̄n 6= 0 then limn→+∞ |λ̄+
n /λ̄

−
n | 6= 1, and if the coefficients

are of algebraic growth as a function of n, Perron-Kreuser theorem (see [10,

Thm 4.5]) states that independent pairs of solutions {y(1)k , y
(2)
k } exist such

that

lim
n→+∞

1

λ̄+
n

y(1)n

y
(1)
n−1

= 1, lim
n→+∞

1

λ̄−

n

y(2)n

y
(2)
n−1

= 1. (9)

If η̄n > 0 the minimal solution is y
(1)
n and y

(2)
n is dominant, and therefore

limn→+∞ y
(1)
n /y

(2)
n = 0 . If ηn < 0 the roles are reversed. In both cases we

have, for sufficiently large n, y
(1)
n+1y

(1)
n > 0 and y

(2)
n+1y

(2)
n < 0.

Remark 2. The minimal solution satisfies η̄nyn/yn−1 > 0 for large n, while

the dominant solutions are such that η̄nyn/yn−1 < 0 for large n.

Notice that the roots (8) are closely related to the characteristic roots

of the Riccati equation (5):

λ±

n (x) =

√

dn(x)

en(x)
(−ηn(x)±

√

1 + ηn(x)2), ηn(x) =
bn(x)− an(x)

2
√

dn(x)en(x)
. (10)

As we have shown in the previous section, when λ±
n (x) are monotonic they

provide bounds for some solutions. On the other hand, if limn→+∞ λ̄±
n /λ

±
n =

1 the function ratios have these bounds as limits. This explains why the

bounds (10) tend to be sharper as n becomes larger. Because of this, we

refer to these bounds as Perron-Kreuser bounds.

In section 3.2 we will obtain additional upper and lower sharp bounds

starting from the bounds of Theorem 1 and using the three-term recurrence.

Before this, it is important to stress that for the Perron-Kreuser bounds

to hold, it is crucial that the characteristic roots are monotonic as a function

of x. This, however, is a quite general situation, as we next see.
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3.1 Monotonicity of the characteristic roots

The next result relates the monotonicity properties of the characteristic

roots with the monotonicity properties as a function of n.

Theorem 4. Let yk(x), k = n, n − 1, be solutions of second order ODEs

y′′k(x)+Bk(x)y
′

k(x)+Ak(x)yk(x) = 0, with Ak(x), Bk(x) continuous in (a, b)

and Bn(x) = Bn−1(x). Assume that yn(x) and yn−1(x) satisfy a system (1)

with dn(x)en(x) > 0 and differentiable coefficients. Then, en(x)/dn(x) is

constant as a function of x, and if An(x) 6= An−1(x) the characteristic roots

λ±
n (x) (10) are monotonic in (a, b). Furthermore, dλ±

n (x)/dx has the same

sign as An−1(x)−An(x) and −η′n(x).

Proof. Differentiating the first equation of the system (1) and eliminating

yn−1 and proceeding similarly with the second equation we have

y′′k(x) +Bk(x)y
′

k(x) +Ak(x)yk(x) = 0, k = n, n− 1, (11)

with coefficients satisfying:

Bn(x)−Bn−1(x) =
e′n(x)
en(x)

− d′n(x)
dn(x)

,

An(x)−An−1(x) = b′n(x)− a′n(x)− bn(x)
e′n(x)
en(x)

+ an(x)
d′n(x)
dn(x)

(12)

Now, because we are assuming that Bn(x) = Bn−1(x) the first equation im-

plies that dn(x)/en(x) does not depend on x. Therefore, from the expression

of the characteristic roots (8) we see that dλ±
n (x)/dx has the same sign as

−η′n(x). All that remains to be proved is that An(x) − An−1(x) has the

same sign as η′n(x). But considering the second equation of (12) and using

that d′n(x)/dn(x) = e′n(x)/en(x) one readily sees that An(x) − An−1(x) =

2
√

dn(x)en(x)η
′
n(x), which proves the theorem.

Remark 3. If en(x)dn(x) < 0 and ηn(x)
2 > 1, it is also true that both roots

are monotonic if Bn(x) = Bn−1(x) and An(x) 6= An−1(x), but λ
+
n (x)λ

−
n (x) >

0 and λ+′
n (x)λ−′

n (x) < 0 in this case.
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The case described in Theorem 4 is, for instance, the situation for Bessel

functions, parabolic cylinder functions and the classical orthogonal polyno-

mials when n is the degree of the polynomials.

3.2 Perron-Kreuser bounds

In the following, we assume that ηn(x), η̄n(x), dn(x), en(x) and hn(x) =

yn(x)/yn−1(x) do not change sign for large enough n (say n ≥ n0). Notice

that the sign condition for hn(x) is satisfied for large enough n when Perron-

Kreuser theorem holds. An immediate application of Theorem 3 gives:

Theorem 5 (First Perron-Kreuser bound). Let dn(x) > 0, en(x) > 0 and

hn(x) = yn(x)/yn−1(x) with constant sign for n ≥ n0 and for any x ∈ (a, b).

Let s = sign(hn(x)) and λs
n(x) as in Eq. (10). Then, if hn(a

+) > 0 and

h′n(a
+)λs′

n (a
+) > 0 or hn(b

−) > 0 and h′n(b
−)λs′

n (b
−) > 0 the following holds

in (a, b):

(|hn(x)| − F s
n(x))λ

s′
n (x) < 0, n ≥ n0 (13)

F s
n(x) = Rn(x)(−sηn(x) +

√

1 + ηn(x)2) =
Rn(x)

sηn(x) +
√

1 + ηn(x)2
(14)

Further bounds can be obtained by iteration of (6), which we write:

yn(x)

yn−1(x)
= dn

(

bn+1 − an + en+1
yn+1(x)

yn(x)

)−1

. (15)

For minimal solutions we have that η̄n(x)yn(x)/yn−1(x) > 0 for large n.

By substituting in the previous equation yn+1(x)/yn(x) by a lower (upper)

bound we get an upper (lower) bound for yn(x)/yn−1(x). The process can

be iterated to produce sequences of lower and upper bounds. We only give

the first iteration.

Theorem 6 (Second Perron-Kreuser bound for minimal solutions). Under

the conditions of Theorem 5 and if sη̄n > 0, s = sign(hn) then

(

|hn(x)| − Ss+
n

)

λs′
n (x) > 0, n ≥ n0 (16)
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where

Ss+
n =

DnEnRn

s(2Dnη̄n − ηn+1) +
√

1 + η2n+1

(17)

Dn =
√

dn/dn+1; En, Rn and η̄n given by (8) and ηn by (10).

The second superscript of the notation Ss+
n stands for the sign of η̄nyn/yn−1.

Notice that theorem 6 may be true for n = n0− 1 too, because Theorem

5 is used in the proof with the shift n → n+ 1.

The similarity of the second expression of (14) with (17) indicates that for

coefficients of algebraic growth we will generally have limn→+∞ F s
n/S

s+
n = 1.

Further iterations are possible and this gives a convergent sequence of

upper and lower bounds under the conditions of Theorem 5 and 6 and pro-

vided that Perron-Kreuser theorem holds (which implies that the recurrence

admits a minimal solutions). We don’t prove this result, but the convergence

of the sequence of bounds for the minimal solution follows immediately by

using the same arguments considered in [1] for the case of Modified Bessel

functions of the first kind.

We can also obtain additional bounds for dominant solutions by writing

yn(z)

yn−1(x)
= −bn − an−1

en
+

dn−1

en

yn−2(z)

yn−1(z)
(18)

Differently from the case of minimal solutions, the sequence of bounds is not

a convergent sequence. We give an explicit formula for the first iteration:

Theorem 7 (Second Perron-Kreuser bound for dominant solutions). Under

the conditions of Theorem 5 and if sη̄n−1 < 0, s = sign(hn),

(|hn(x)| − Ss−
n )λs′

n (x) > 0, n ≥ n0 + 1 (19)

where

Ss−
n = Dn−1En−1Rn

(

−s(2E−1
n−1η̄n−1 − ηn−1) +

√

1 + η2n−1

)

(20)
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Notice that the previous theorem can only be guaranteed to be true for

n = n0+1, because Theorem 5 is used in the proof with the shift n → n−1.

The similarity of the first expression in (14) with (20) is clear. For

coefficients of algebraic growth we will generally have limn→+∞ F s
n/S

s−
n = 1.

3.3 Turán-type inequalities

Turán-type properties for special functions have received a considerable at-

tention in recent years; just to cite five different groups of researchers, we

mention [11, 12, 13, 14, 1] (see also references cited therein). Turán-type

inequalities can be obtained from the bounds on function ratios.

Indeed, because upper and lower bounds are available for |yn/yn−1| both
when yn is a minimal or a dominant solution (Theorems 5, 6 and 7), upper

and lower bounds for |yn/yn−1||yn/yn+1| become available. The modulus

can be skipped if yn/yn−1 does not change sign (as assumed earlier). With

this:

ln ≤ Ln(x) <
yn(x)

yn+1(x)

yn(x)

yn−1(x)
< Un(x) ≤ un, (21)

where ln = minx{Ln(x)} and un = maxx{Un(x)}. Many new Turán-type

inequalities are found in section 4 by using this simple idea.

3.4 Bounds of Liouville-Green type

Using the difference-differential system (1) and the Perron-Kreuser bounds,

bounds on the logarithmic derivatives can be established. We give the

bounds obtained from the first Perron-Kreuser bound.

Theorem 8. Under the hypothesis of Theorem 5 and if dλs
n/dx > 0 (s =

sign(yn(x)/yn−1(x))):

s
y′n−1(x)

yn−1(x)
< s

an(x) + bn(x)

2
+
√

dn(x)en(x)
√

1 + ηn(x)2 < s
y′n(x)

yn(x)
(22)

If dλs
n/dx < 0 the inequalities are reversed

12



Two consequences follow. First, we observe that the ratios y′k(x)/yk(x)

are monotonic as a function of the discrete variable k. Second, because we

are assuming that the shift n → n+1 is possible, we have both an upper and

a lower bound for y′n/yn. Upper and lower bounds could also be obtained

by considering both the first and second Perron-Kreuser bounds.

In the examples we will see that these bounds, after integrating the

logarithmic derivative, are related to the Liouville-Green approximation

for solutions of second order ODEs. In fact, using this analysis and by

Liouville-transforming the first order system associated to the ODE y′′(x)+

A(x)y(x) = 0, conditions can be established under which the LG approxi-

mation for the solutions the ODE y′′(x)+A(x)y(x) = 0 are bounds for some

of the solutions. We leave this analysis for a future paper.

4 Applications

We give a number of examples of application of the techniques described in

the paper. We focus on the case dn(x)en(x) > 0, but examples of application

for monotonic systems with dn(x)en(x) < 0 are also given.

4.1 Cases with dn(x)en(x) > 0

We analyze three families of functions, which have as particular cases some

classical orthogonal polynomials outside the interval of orthogonality. In all

cases Theorem 4 holds, with the exception of Laguerre functions of negative

argument. In this case Theorem 4 can not be applied but the character-

istic roots are still monotonic and the same analysis is therefore possible.

Some monotonicity properties for the determinants of some of the functions

analyzed were considered in [15].
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4.1.1 Modified Bessel functions

These are solutions of x2y′′ + xy′ − (x2 + ν2)y = 0. This was the case

considered in detail in [1], and most of the results obtained in that paper

are direct consequences of the more general results of the present one.

4.1.2 Parabolic cylinder functions

The parabolic cylinder function U(n, x) is a solution of the differential equa-

tion y′′(x) − (x2/4 + n)y(x) = 0, with coefficient A(x) = −(x2/4 + n) de-

pending monotonically on the parameter n (Theorem 4 holds).

Considering the DDE satisfied by U(n, x) [16, 12.8.2-3] and defining

yn(x) = eiπnU(n, x) 2 we have:

y′n(x) =
x
2 yn(x) + yn−1(x),

y′n−1(x) = −x
2 yn−1(x) + (n − 1/2)yn(x).

(23)

where n will be real and positive. For this system

ηn(x) = − x

2
√

n− 1/2
, η̄n(x) = ηn+1(x), λ

±

n (x) =
−2

x∓
√

4n − 2 + x2
(24)

From [16, 12.9.1] we have hn(+∞) = 0− and h′n(+∞) = 0+ and because

λ−
n (+∞) = 0+ then theorem 3 holds, as well as theorems 5 and 6. Therefore

Theorem 9. For n > 1/2 and x ≥ 0 the following holds

2

x+
√

4n + 2 + x2
<

U(n, x)

U(n− 1, x)
<

2

x+
√

4n− 2 + x2
(25)

The lower bound also holds if n ∈ (−1/2, 1/2) and it turns to an equality

if n = −1/2.

The lower bound is obtained from the upper bound and the application

of the three-term recurrence relation: if Bm(n, x) is a positive upper (lower)

bound for U(n, x)/U(n − 1, x), x > 0, then

Bm+1(n, x) = 1/(x + (n+ 1/2)Bm(n+ 1, x)) (26)

2It is not important that the new functions are complex, because we are dealing with

ratios; an alternative definition could be yn(x) = (−1)⌊n⌋U(n, x).
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is a lower (upper) bound for the same ratio. The process can be continued

as m → +∞ and the sequence is convergent (because U(n, x) is minimal).

Now, consider yn(x) = U(n,−x), which is also solution of (23). Using

the values of U(n, 0) and U ′(n, 0) [16, 12.2.6-7] it is easy to prove that

hn(0
+) > 0, h′n(0

+) > 0, n > 1/2, x ≥ 0 and then h′n(0
+)dλ+

n (0
+)/dx > 0

and Theorem 1 holds. The corresponding Perron-Kreuser bounds (theorems

5 and 7), give:

Theorem 10. For n > 3/2 and x ≥ 0 the following holds

x+
√

4n− 6 + x2

2n − 1
<

U(n,−x)

U(n− 1,−x)
<

x+
√

4n− 2 + x2

2n− 1
(27)

The upper bound is also valid if n ∈ (1/2, 3/2).

The upper bound in (25) has the same expression as (27) but with x in

replaced by −x. Therefore:

Remark 4. Theorems 9 and 10 hold for all real x, but for x < 0 the lower

bound of Theorem 9 only holds for all x < 0 if n > 1/2. The lower bounds

are sharper when x > 0.

The following Turán-type inequalities are obtained from Theorems 9 and

10:

Theorem 11. Let F (x) = U(n, x)2/(U(n− 1, x)U(n+1, x)). Then, for all

real x:

√

n− 3/2

n+ 1/2
<

n− 1/2

n+ 1/2
F (x) < 1 < F (x) <

√

n+ 3/2

n− 1/2
(28)

The first inequality holds for n > 3/2 and the rest for n > 1/2. For x < 0

the third inequality also holds if n ∈ (−1/2, 1/2).

Finally, considering Theorem 8 and writing together the results for U(n, x)

and U(n,−x) we have the next result.
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Theorem 12. For all real x and n ≥ 1/2 the following holds:

−
√

x2/4 + n+ 1/2 <
U ′(n, x)

U(n, x)
< −

√

x2/4 + n− 1/2 (29)

The left inequality also holds for n > −1/2.

These type of bounds are useful for studying the attainable accuracy of

methods for computing the functions. In [17], the following estimation for

large x and/or n was considered for the condition number with respect to

x:

Cx(U(a, x)) =
∣

∣xU ′(a, x)/U(a, x)
∣

∣ ∼ x
√

x2/4 + a, (30)

and similarly for V (a, x). The bounds (29) prove that this a good estimation

because it lies between the upper and lower bounds. From the previous

discussion on the V (a, x) function, one can prove that similar bounds are

valid for moderate x (x > 1 is enough); we consider later this function.

Integrating (29) we have

Fn+1/2(x)/Fn+1/2(y) <
U(n, y)
U(n, x)

< Fn−1/2(x)/Fn−1/2(y),

Fα(x) = exp
(

x
2

√

x2/4 + α
)(

x+ 2
√

x2/4 + α
)α (31)

and, in particular,

Fn+1/2(x) <
U(a, x)

U(a, 0)
< Fn−1/2(x) (32)

where

Fα(x) = exp



−x

2

√

x2

4
+ α









x

2
√
α
+

√

x2

4α
+ 1





−α

(33)

The bounds (32) are useful for obtaining the range of parameters for

which function values are computable within the arithmetic capabilities of

a computer (overflow and underflow limits). These results confirms the

estimations based on the Liouville-Green approximation used in [18].
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◦ Iterated coerror functions and Mill’s ratio: In particular, consider-

ing Theorem 9 and the relation of parabolic cylinder functions U(n+1/2, x)

with the iterated coerror functions inerfc(x) [16, 12.7.7], n ∈ N, the following

follows:

Mn+1(x) <
inerfc(x)

in−1erfc(x)
< Mn(x), n = 1, 2, ... ;Mn(x) = (x+

√

2n+ x2)−1.

(34)

These inequalities appear in [19].

Theorem 9 also gives bounds on Mill’s ratio (n = 1/2). From the lower

bound in Theorem (9) and the upper bound obtained by iterating with (26)

we have

Theorem 13. Let r(x) = ex
2/2
∫ +∞

x e−t2/2dt, then

2

x+
√

x2 + 4
< r(x) <

4

3x+
√

x2 + 8
(35)

The lower bound was obtained in [20] and the upper bound in [21]. In

our case, these results follow from a more general result. See also [22] for an

alternative proof.

Further iterations (see (26)) give additional sharper bounds:

Theorem 14.

R2k+1 < r(x) < R2k(x) (36)

Rn(x) =
1

x+

1

x+

2

x+
. . .

n

Tn(x)
, Tn = (x+

√

4n+ x2)/2 (37)

where, as usual we denote 1
a+

1
b+ . . . = 1/(a+ 1/(b+ . . .))

◦ Hermite polynomials of imaginary variable A similar analysis to

that for U(n,−x) can be carried for the PCF V (n, x). Indeed, yn(x) =

V (n, x)/Γ(n + 1/2) is a solution of (23) and hn(x) = yn(x)/yn−1(x) is such

that hn(0
+) > 0. Two situations take place depending on the values of n.

First, if n ∈ (2k − 1, 2k), k ∈ N, then h′n(0
+) > 0 and the upper bound

of Theorem 10 holds for all x > 0 while the lower bound will hold for

17



n ∈ (2k, 2k + 1). Contrarily, if n ∈ (2k, 2k + 1) then h′n(0
+) < 0, while

hn(+∞) > 0, and the upper bound only holds for large enough x; a similar

situation occurs with the lower bound when n ∈ (2k − 1, 2k).

We only consider the first case. Using the relation of V (n + 1/2, x),

n ∈ N, with Hermite polynomials [16, 12.7.3] we get:

Theorem 15.

V (n, x)

V (n− 1, x)
<

x+
√

4n− 2 + x2

2
, x > 0, n ∈ (2k − 1, 2k), k ∈ N (38)

x+
√

4n− 6 + x2

2
<

V (n, x)

V (n− 1, x)
, x > 0, n ∈ (2k, 2k + 1), k ∈ N (39)

−i
H2k+1(ix)

H2k(ix)
< x+

√

4k + 2 + x2, x > 0, k = 0, 1, 2 . . . (40)

i
H2k−1(ix)

H2k(ix)
< (x+

√

4k − 2 + x2)−1, x > 0, k ∈ N (41)

H2k(ix)
2

H2k−1(ix)H2k+1(ix)
>

√

k − 1/2

k + 1/2
, k ∈ N, x ∈ R. (42)

Hermite polynomials of imaginary argument were also considered in

[15]. The well-known Turán-type inequality for Hermite polynomials [23]

Hn(x)
2−Hn−1(x)Hn+1(x) > 0, x ∈ R, does not hold on the imaginary axis,

but a similar property Hn(ix)
2 −

√

(n− 1)/(n + 1)Hn−1(ix)Hn+1(ix) > 0

holds true for all x > 0 if n is even.

4.1.3 Oblate Legendre functions

These are Legendre functions of imaginary argument, which are functions

appearing in the solution of Dirichlet problems in oblate spheroidal coordi-

nates [6]. Denoting

pn(x) = e−inπ/2Pm
n (ix) (43)

and using the differential relations [16, 14.10.4-5] we have

p′n(x) =
1

1 + x2
{nxpν(x) + (n+m)pν−1(x)}

p′n−1(x) =
1

1 + x2
{−nxpν−1(x) + (n−m)pν(x)}

(44)
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and qn(x) = Qm
n (ix), Qm

n being the second kind Legendre function, satisfies

the same system. We consider n > m and x > 0. This is again an example

for which Theorem 4 holds. The roles played in this case by the functions

Qm
n (ix) and Pm

n (ix) are very similar to the roles of U(n, x) and V (n, x) in

the previous section. We omit details and only summarize the main results.

Theorem 16. The following holds for x > 0 and real n > m > 0

0 < i
Qm

n (ix)

Qm
n−1(ix)

<
n+m

n



x+

√

1 + x2 − m2

n2





−1

<

√

n+m

n−m
(45)

i
Qm

n (ix)

Qm
n−1(ix)

>
n+m

nx+ (n+ 1)

√

1 + x2 − m2

(n+ 1)2

(46)

1 <
n+m+ 1

n+m

Qm
n (ix)

Qm
n−1(ix)Q

m
n+1(ix)

<

√

(n+ 2)2 −m2

n2 −m2 (47)

Theorem 17. The following holds for x > 0 and integer n,m, n > m:

0 < −i
Pm
n (ix)

Pm
n−1(ix)

<
n

n−m



x+

√

1 + x2 − m2

n2



 , n−m odd (48)

1

n−m

[

nx+ (n− 1)

√

1 + x2 − m2

(n− 1)2

]

< −i
Pm
n (ix)

Pm
n−1(ix)

, n−m even

(49)
Pm
n (ix)2

Pm
n−1(ix)P

m
n+1(ix)

< 1 +
1

n−m
, n−m odd (50)

For m = 0 we have Legendre polynomials. If n is odd, we have Pn(ix)
2 <

0 and therefore Pn(ix)
2 − (1 + 1/n)Pn−1(ix)Pn+1(ix) > 0. It appears, as

numerical experiments show, that in this case the same Turán inequality

that holds in the real interval (−1, 1) [24] also holds in the imaginary axis

if n is odd: Pn(ix)
2 − Pn−1(ix)Pn+1(ix) > 0; the same is not true if m 6= 0.
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4.1.4 Laguerre functions of negative argument

Next we consider an example for which Theorem 4 can not be applied but

the analysis is possible because the characteristic roots are monotonic.

Consider the Laguerre functions yν,α(x) = Lα
ν (−x), x > 0. Using well

known recurrences and differentiation formulas, we have

y′ν+1,α−1(x) = yν,α(x)

xy′ν,α(x) = −(α+ x)yν,α(x) + (ν + 1)yν+1,α−1

(51)

and

(ν + 1)yν+1,α−1(x) = (α+ x)yν,α(x) + xyν−1,α+1 (52)

Considering [25, Theorem 2] it follows that yν,α is a dominant solution of

the recurrence (52) in the direction of increasing ν (and decreasing α).

With h(x) = yν,α(x)/yν+1,α−1(x), the positive characteristic root λ+(x)

of the associated Riccati equation turns out to be increasing if ν > −1 and

α > 0. On the other hand, it is easy to check that for these values h(0+) > 0

and h′(0+) > 0. Theorem 1 holds and λ+(x) is a bound:

Theorem 18. For any α > 0, ν > −1 and x > 0 the following holds

0 <
Lα−1
ν+1 (−x)

Lα
ν (−x)

<
α+ x+

√

(α+ x)2 + 4(ν + 1)x

2(ν + 1)
(53)

On the other hand, from the recurrence (52) we have

Lα
ν (−x)

Lα−1
ν+1 (−x)

=

(

α+ x

ν + 1
+

x

ν + 1

Lα+1
ν−1 (−x)

Lα
ν (−x)

)−1

(54)

and from this we obtain the second Perron-Kreuser bound:

Theorem 19. For any α > −1, ν > 0 and x > 0 the following holds

Lα−1
ν+1(−x)

Lα
ν (−x)

>
α+ x− 1 +

√

(α+ x+ 1)2 + 4νx

2(ν + 1)
(55)

And from these bounds we get the following Turán-type inequalities:

20



Theorem 20. For any ν ≥ 0 and α ≥ 0, x > 0 the following holds:

ν

ν + 1

α

α+ 1
<

Lα−1
ν+1 (−x)

Lα
ν (−x)

Lα+1
ν−1 (−x)

Lα
ν (−x)

<
ν

ν + 1
(56)

A second independent solution of (51) which is a minimal solution of

(52) as ν → +∞ follows from [25, Theorem 2]. Bounds can be also obtained

for this solution. We omit the details.

Other bounds and inequalities can be obtained using other recursions

or using relations between contiguous functions. For example, using [16,

18.9.13], we have:
Lα−1
ν+1(x)

Lα
ν (x)

= 1 +
Lα
ν+1(x)

Lα
ν (x)

(57)

and upper and lower bounds for Lα
n(−x)/Lα

n−1(−x) follow from the previous

results. As a consequence of this new bounds, one can prove the following

Theorem 21.

ν

ν + 1
<

Lα
ν−1(−x)

Lα
ν (−x)

Lα
ν+1(−x)

Lα
ν (−x)

<
ν

ν + 1

ν + α+ 1

ν + α− 1
(58)

where the first inequality holds for ν > 0, α > −1 and the second for ν > 0,

ν + α > 1.

For positive x, it is known that Lα
n−1(x)L

α
n+1(x)/L

α
n(x)

2 < 1 [23]. For

negative argument we have an upper bound greater that 1, which suggests

that the Turán-type inequality for positive x does not hold for negative x,

as numerical experiments show.

4.2 Two examples with dn(x)en(x) < 0

The DDEs corresponding to a pair {pn(x), pn−1(x)} of classical orthogonal

polynomials satisfy dn(x)en(x) < 0 in their interval of orthogonality because

this is a necessary condition for oscillation [8, Lemma 2.4]. However, for

values of the variable for which the polynomials are free of zeros, one can

expect that ηn(x)
2 > 1 and that the DDE becomes monotonic (ηn(x)

2 < 1
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is also a necessary condition for oscillation [9, Thm. 2.1]). This is the case

of Laguerre and Hermite polynomials for large enough x > 0. We consider

these two examples.

4.2.1 Hermite polynomials

Hermite polynomials satisfy

H ′
n(x) = 2nHn−1(x),

H ′
n−1(x) = 2xHn−1 −Hn(x)

(59)

We have ηn(x) = x/
√
2n and ηn(x) > 1 if x >

√
2n (monotonic case). The

characteristic roots are both of them positive

λ±

n (x) = x±
√

x2 − 2n. (60)

Defining hn(x) = Hn(x)/Hn−1(x) we have that hn(+∞) = +∞ and

h′n(+∞) > 0 because the coefficient of degree n of Hn(x) is positive. Then

hn(x) > λ+
n (x) for enough x > 0 because h′n(x) > 0 only if hn(x) < λ−

n (x) or

hn(x) > λ+
n (x), but hn(+∞) > λ−

n (+∞) = 0+, and therefore hn(x) > λ+
n (x)

for large x. And because λ+′
n (x) > 0 if x >

√
2n, then, necessarily:

hn(x) =
Hn(x)

Hn−1(x)
> x+

√

x2 − 2n, x ≥
√
2n. (61)

We can iterate the recurrence relation. Contrary to the case en(x)dn(x) > 0,

we will not obtain sequences of lower and upper bounds, but only lower

bounds. Writing

hn+1(x) = 2x− 2n/hn(x) (62)

and using (61) we get a lower bound for hn+1(x). We shift the parameter n

and get

hn(x) > x+
√

x2 − 2(n − 1), x ≥
√

2(n − 1). (63)

This improves Eq. (61) and enlarges the range of validity of the bound with

respect to x, but reduces the range of validity with respect to n (n ≥ 2).
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The next iteration gives a bound for n ≥ 3:

hn(x) > F (n, x), x ≥
√

2(n− 2)

F (n, x) = (n− 2)−1[(n − 3)x+ (n− 1)
√

x2 − 2(n− 2)]
(64)

Because the largest zero of Hn(x) is larger than that of Hn−1(x), Eq.

(64) implies that the largest zero of Hn(x) is smaller than
√

2(n − 2), n ≥ 3.

We consider just one more iteration and get

hn(x) ≥ 2x− 2(n − 1)/F (n − 1, x) = G(n, x), x >
√

2(n − 3) (65)

and if G(n,
√

2(n− 3)) > 0 then G(n, x) > 0 if x >
√

2(n− 3), and the

largest zero will be smaller than
√

2(n − 3); this condition is met if n ≥ 7.

A sharper bound has recently appeared in the literature [26] valid for all n.

However, the result is sharper than previous results, like for instance those

in [27], which is interesting given the simplicity of the analysis. This reflects

the fact that the bounds on function ratios (our main topic) are sharp.

4.2.2 Laguerre polynomials

We give some results for Laguerre polynomials omitting details. Defining

hαn(x) = −Lα
n(x)/L

α
n−1(x), we have hαn(+∞) = +∞ and hα′n (+∞) = +∞

and, proceeding similarly as before:

2nhαn(x) > x− (2n + α) +
√

(x− 2n− α)2 − 4n(n+ α),

x ≥ 2n+ α+ 2
√

n(n+ α)
(66)

and after the first iteration of the recurrence we have:

2nhαn(x) > f(x), x ≥ 2n∗ + α+ 2
√

n∗(n∗ + α), n∗ = n− 1,

f(x) = x− (2n + α) +
√

(x− 2n∗ − α)2 − 4n∗(n∗ + α).
(67)

This proves that the largest zero of Lα
n(x) is smaller than x∗ = 2n +

α − 2 +
√

(n− 1)(n − 1 + α), provided that f(x∗) > 0, which is true if

α > (n − 1)−1 − (n − 1), n ≥ 2; notice that values α < −1 are allowed for
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large enough n. The bound in [28] is slightly sharper, and is improved in

[26].

Further iterations are possible, but not so easy to analyze. The next

iteration will give a bound

2nhαn(x) > g(x), x ≥ 2(n− 2) + α+ 2
√

(n− 2)(n − 2 + α) = x∗ (68)

x∗ is an upper bound for the largest zero provided that g(x∗) > 0. This

condition is met for a larger range of values of α as n becomes larger. For

n ≥ 10, this holds for any α > −1. The bound (68) is of more limited

validity in terms of n but numerical experiments show that it is sharper

than the bound in [26] for α ≤ 12

We expect that lower bounds for the smallest zero can be also obtained

with a similar analysis.

The main message, as before, is that the bounds on function ratios are

sharp for large x because they give the correct asymptotic behavior as x →
+∞, but also for moderate x given the sharpness of the bounds on the

largest zero.
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