
On-the-Fly Adaptive Routing in High-Radix
Hierarchical Networks

Marina Garcı́a∗, Enrique Vallejo∗, Ramón Beivide∗, Miguel Odriozola∗, Cristóbal Camarero∗,
Mateo Valero†, Germán Rodrı́guez‡, Jesús Labarta†, and Cyriel Minkenberg‡
∗ University of Cantabria, Spain. {garciamar, valleje, beivider, camareroc}@unican.es

† Universitat Politècnica de Catalunya and BSC. Barcelona, Spain. {mateo.valero, jesus.labarta}@bsc.es
‡ IBM Zurich Research Laboratory, Rüschlikon, Switzerland. {sil, rod}@zurich.ibm.com

Abstract—Dragonfly networks have been recently proposed for
the interconnection network of forthcoming exascale supercom-
puters. Relying on large-radix routers, they build a topology with
low diameter and high throughput, divided into multiple groups
of routers. While minimal routing is appropriate for uniform
traffic patterns, adversarial traffic patterns can saturate inter-
group links and degrade the obtained performance. Such traffic
patterns occur in typical communication patterns used by many
HPC applications, such as neighbor data exchanges in multi-
dimensional space decompositions. Non-minimal traffic routing
is employed to handle such cases. Adaptive policies have been
designed to select between minimal and nonminimal routing to
handle variable traffic patterns.

However, previous papers have not taken into account the
effect of saturation of intra-group (local) links. This paper studies
how local link saturation can be common in these networks, and
shows that it can largely reduce the performance. The solution
to this problem is to use nonminimal paths that avoid those
saturated local links. However, this extends the maximum path
length, and since all previous routing proposals prevent deadlock
by relying on an ascending order of virtual channels, it would
imply unaffordable cost and complexity in the network routers.

In this paper we introduce a novel routing/flow-control scheme
that decouples the routing and the deadlock avoidance mecha-
nisms. Our model does not impose any dependencies between vir-
tual channels, allowing for on-the-fly (in-transit) adaptive routing
of packets. To prevent deadlock we employ a deadlock-free escape
subnetwork based on injection restriction. Simulations show that
our model obtains lower latency, higher throughput, and faster
adaptation to transient traffic, because it dynamically exploits
a higher path diversity to avoid saturated links. Notably, our
proposal consumes traffic bursts 43% faster than previous ones.

Index Terms—adaptive routing; dragonfly;

I. INTRODUCTION

Interconnection networks constitute a key subsystem in the
architecture of supercomputers. Direct network topologies are
those that distribute routers among nodes. Technology trends
suggest the use of high-degree routers to exploit the available
pin bandwidth [1]. To this extent, two-layered hierarchical
networks, denoted as Dragonflies in [2], have been proposed.
The IBM PERCS [3] and the forthcoming machines from the
Echelon project [4] are being designed to employ a network
of this type. This paper focuses on such networks.

Dragonflies are organized as groups of routers. Links be-
tween routers can be either local or global. Routers within
a group are interconnected by means of a complete graph

global link

local link

router

node

group

Fig. 1: Sample Dragonfly topology with h=2 (p=2, a=4), 36
routers and 72 compute nodes.

using local electrical wires, using one link between any pair of
routers of the group. Groups are also interconnected by means
of a complete graph, using one global optical link between
any pair of groups. In the PERCS terminology the terms LL
and LD are used for local links and D for global links. The
main Dragonfly topological parameters, as defined in [2], are
the number of routers per group a, the number of processing
nodes per router p and the number of global links per router
h. For a well-balanced network with no oversubscription, the
equations a = 2×p = 2×h must hold, [2]. For a given h, the
maximum size network will be composed of 2h2 + 1 groups,
4h3 + 2h routers and 4h4 + 2h2 processing nodes. The total
number of ports per router is 4h − 1. Figure 1 represents an
example of a Dragonfly with h = 2. A Dragonfly network
built from routers with 64 ports (h = 16, such as the PERCS
technology [3]) scales to more than 256K processing nodes,
leading to multi-million core supercomputers.

The diameter of the Dragonfly topology is 3, so any
minimal path between two routers will employ at most 3 hops.
With this minimal routing, a packet typically first traverses
a local (l) link at the source group, then a global (g) one
to reach the destination group, and finally another local link

at the destination group (path l1 − g1 − l2). However, since
there is only one global link between any pair of groups
(each group comprising 2h2 nodes), adversarial traffic pat-
terns contending for global links can be common. In such
demanding conditions, nonminimal1 routing can be used by
randomly selecting an intermediate group to which the packet
is sent before heading to its destination, [7], [2]. Under such
nonminimal routing, a packet traverses at most 3 local links
and 2 global ones (path l1 − g1 − l2 − g2 − l3, in which
the two first hops are used to arrive at the intermediate
group). This traffic randomization balances the use of global
links reducing contention, but doubles their average utilization
halving throughput and increasing latency. Adaptive routing
mechanisms select between minimal or nonminimal for each
packet sent, depending on the conditions of the network.

In realistic scenarios, common HPC applications with sim-
ple near-neighbor communications easily lead to hot-spots in
Dragonflies. Bhatele et al. study the impact of such hotspots
using traces of real applications simulations [5]. They quantify
the large impact of such link saturation by observing that
different traces on a large simulated system are executed 1.72
to 3.06 times faster only by enabling nonminimal routing
(Table 6 and Figure 13 of their paper, DEF vs. DFI). However,
they do not consider adaptive routing mechanisms in their
study. They also explore how to mitigate these hotspots by
randomizing the task mapping mechanism.

The Dragonfly topology induces the appearance of cyclic
routing dependencies, requiring a deadlock avoidance strategy.
Former proposals for routing in Dragonflies, [2], [3], rely
on a set of virtual channels (VCs) that must be visited in
a predefined order. The number of VCs required equals the
length of the longest path: minimal routing allows for paths
of length 3, while nonminimal allows for length 5. However,
since local links are always used in odd hops (1, 3 and 5) and
global links are used in even hops (2 and 4), it is enough to
implement 3 VCs in the inputs of local links and 2 VCs in
global links. Shorter paths (e.g. l−g−g− l under nonminimal
routing) can be rearranged to employ only the implemented
VCs by skipping indexes corresponding to missing hops.

The fixed order for visiting the VCs prevents from dynami-
cally readapting traffic when changing conditions are detected,
unless additional resources are implemented: The Progressive
Adaptive Routing (PAR) mechanism introduced in [6] allows
for two local hops in the source group, but this requires
an additional VC implemented in the local links. For any
other proposed routing mechanism, the deadlock avoidance
mechanism becomes a limitation as the path to be traversed,
minimal or not, has to be decided at injection time. In any case,
none of the proposed routing mechanisms allows the routers
to misroute traffic to avoid saturated local links; although
this has been largely ignored in previous works, we will
discuss how it can be a frequent problem depending on the

1Note that different authors use the term indirect routing to mean either
nonminimal routing (e.g. Valiant) [5], [3], or adaptive routing using remote
information [2], [6]. Our proposal allows for nonminimal adaptive routing
without remote information. We omit the term indirect to avoid confusion.

workload, imposing a significant penalty on the performance
which grows with the network size.

In this paper we introduce OFAR: an On the Fly Adaptive
Routing for Dragonfly networks. OFAR is a new flow-
control/routing mechanism that decouples the way in which
virtual channels are visited from the deadlock avoidance
mechanism. This allows each router to dynamically misroute
packets depending on the observed local contention. Such a
dynamic mechanism improves performance as it simplifies
routing and allows for faster adaptation to transient traffic
over-loads. The price to be paid for such flexibility depends
on the solution employed to avoid deadlocks. In general,
deadlock is quite infrequent in high-degree networks using
adaptive routing [8]. Therefore, a very simple solution based
on a Hamiltonian ring with restricted packet injection [9] is
employed as a safe escape subnetwork [10]. Our evaluations
show that this model improves throughput and response time
under different traffic patterns, even in the most adverse cases.
The main contributions of this paper are the following:

• We identify the performance limitations of previous
proposals for routing in Dragonflies. We provide the
key insight that under certain traffic patterns it is the
saturation of local links which most limits performance
even when Valiant routing is used.

• We introduce OFAR, a novel flow-control/routing mecha-
nism. Qualitatively, OFAR improves over previous pro-
posals allowing for dynamic in-transit misrouting to
prevent excessive contention, without relying on remote
sensing of the network status.

• We evaluate our proposal using different traffic patterns
and transient loads. Quantitatively, OFAR provides low la-
tency and high throughput under different traffic patterns,
while preserving a very competitive adaptation time.
Under traffic bursts, OFAR completes traffic delivery 43
% faster than previous proposals.

We will start the paper by discussing some related prior
work. We next introduce one of the motivations of the work,
which is the saturation of local links under certain traffic
patterns. Next, we introduce our mechanism and its evaluation.

II. RELATED WORK

Significant details about the Dragonfly architecture and
routing can be found in [2], [6], [3]. As there is a single
minimum path between any pair of groups, a load-balancing
mechanism that distributes traffic along nonminimal routes is
required when managing adversarial traffic. Similar algorithms
have been also proposed to route packets non-minimally. Hot-
Potato routing [11] deflects packets to nonminimal routes
when detecting collisions for output ports. A similar misrout-
ing technique is used in the fully adaptive Chaos router, [12].

Many supercomputer networks use deadlock avoidance
mechanisms based on a structured set of virtual channels
(VCs) per router link, which is managed under a restrictive
policy. Virtual channels regulated under a dateline policy, as
proposed in [13], have been widely used for breaking cyclic
dependencies in different ring-based networks. In Dragonflies,

the mechanism used until now is also based on a restrictive use
of VCs per each link. Günther introduces in [14] the idea of
using an increasing order of buffer classes to prevent deadlock.

This strict policy of ordering virtual channels does not
allow misrouting an in-transit packet. This would require to
dynamically re-inject the packet into the first virtual channel,
V C0, potentially generating a cyclic dependency. The PAR
mechanism [6] addresses this limitation by requiring an addi-
tional VC to prevent deadlock. Any other previous proposal
requires the injection node or source router to decide whether
each packet should be misrouted or not, and to select the
intermediate destination. Multiple mechanisms dynamically
misroute or not at injection time, [2], [6], [3]. Valiant routing,
[7], always misroutes the packet to a randomly selected group.
Other mechanisms first select a random intermediate group,
and then determine whether to misroute the packet or not
based on the occupancy information of both paths: UGAL-
L, [2], relies on the occupancy of the queues at the injection
router; Piggybacking (PB, [6]) relies on remote congestion
information broadcast across the group; CRT, [6], measures
the credit round-trip time on the local channels at the injection
router. Finally, in the PERCS fabric, [3], the intermediate
group can be selected using a round-robin scheme, or it can be
specified by the programmer. While the latter is more flexible,
it adds a significant burden to the programmer, who should be
aware of the underlying topology to optimize performance.

Our proposal relies on a regulated-injection sub-network
to avoid packet deadlocks, [10]. Seminal deadlock avoidance
mechanisms relying on restricting packet injection can be
found in [15], [16]. This policy prevents deadlocks by always
keeping enough buffer space to guarantee packet movement
inside potential network cycles. Restrictive packet injection
policies do not need VCs which is appealing for its simplicity
and scalability. Nevertheless, VCs can be added for improving
performance by reducing head-of-line (HOL) blocking. The
IBM BlueGene supercomputer family uses a deadlock avoid-
ance mechanism based on restricted packet injection, [9], [17],
[18], [19]. A restricted injection Hamiltonian ring was also
proposed in [20] to tolerate failures on torus networks.

III. MOTIVATION: STUDY OF THE SATURATION OF LOCAL
LINKS

Until now, global links have been assumed as the only
potential network bottleneck which would limit performance
in a Dragonfly network [2], [3]. This is a reasonable approach,
since the saturation of global links has the largest impact on
the maximum network throughput. We will detail it next, to
be able to compare this problem with the one in local links.

A Dragonfly network is dimensioned with as many process-
ing nodes as outgoing global links, h = p. As one global hop
is required for each packet with minimal routing, this allows
for maximum performance under uniform traffic. However, in
a worst case the 2h2 nodes in one group could send traffic to
the same destination group, competing for the bandwidth of a
single global link. This would limit the maximum bandwidth
to 1/(2h2) using minimal routing. In a large network with

h = 16, this reduces throughput to less than 0.2% of
its maximum, while leaving a large fraction of the global
links underutilized. With Valiant routing, each packet will
be sent to a random intermediate group, and then minimally
to its destination. Since this implies two global jumps, on
average, global links will limit the maximum throughput to
1/2 phits/(node·cycle). Note that the initial problem is not the
scarcity of global links (since p = h), but their unbalanced
use under minimal routing, caused by the traffic pattern.

Analogously, local links also saturate when all the h com-
pute nodes attached to a router send traffic to the nodes
in a neighbor router of the same group. The single local
link between these routers can transmit 1 phit/cycle, so the
maximum traffic under minimal routing would be 1/h in this
case. For the same large network h = 16 this would limit
traffic to a 6.25% of its maximum. Again, the problem is
not a lack of local links in a group, but of their unbalanced
use. Valiant routing might rise this value to 50%, but it
unnecessarily increases the use of global channels by sending
the traffic to an intermediate group back and forth.

This effect should be, arguably, more frequent than the
saturation of global links, since applications typically exploit
the locality between neighbor processes, and those neighbor
processes are typically allocated sequentially in the same
group. Bhatele et al. study the utilization of local links for
different applications [5]. Their results (Figures 5 to 8, 11 and
12, DEF mapping) confirm that some local links support a
much larger amount of traffic than others. After our discussion,
it is now obvious why their approach of randomizing the
mapping of tasks to nodes inside a group achieves higher
performance, since it removes the bottlenecks in local links.
However, we believe that a proper solution should be applied at
the network level, since randomizing the task mapping breaks
the benefits of locality among neighbor tasks allocated in the
same router. The use of nonminimal routing in the same work
(we suspect that it is employed even for traffic internal to a
given group) also leads to balanced usage of the local links.

Nevertheless, even with a nonminimal routing mechanism,
there can be second-order congestion effects derived from the
saturation of local links. As we will show next, there is a
variable severity among different adversarial traffic patterns
that, in some cases, provokes saturation on local links.

We consider patterns in which every source node in group i
selects a destination node in group i+N , denoted as ADV+N,
with N lower than the number of groups. We assume Valiant
routing, in the general case with misrouting applied to an
intermediate group different from the source and destination
groups. In such case, up to 5 hops, l1 − g1 − l2 − g2 − l3,
are needed to get to destination. The two first hops l1 − g1
lead to the intermediate group. The intermediate local hop
l2 is only required if the source and destination groups are
not connected to the same router in the intermediate group.
As argued before, Valiant routing will limit the throughput to
0.5 phits/(node·cycle). However, for certain adversarial traffic
patterns, the local link l2 will saturate, even when this leaves
global links partially idle.

h global links h global links

Ri Ro

(a) Two routers in a group, joined with a single link.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
te

d
Lo

ad
 (

ph
its

/(
no

de
·c

yc
le

)

Offered load (phits/(node·cycle))

ADV+1
ADV+2
ADV+3
ADV+4
ADV+6
ADV+9

ADV+10
ADV+12

(b) Accepted load vs. offered load in a h = 6 dragonfly with Valiant
routing and different Adversarial Traffic Patterns

Fig. 2: Study of the throughput of adversarial traffic patterns

We consider now the adversarial traffic pattern ADV+h.
Figure 2a shows two routers Ri and Ro of a given group
Gi. Lets consider the traffic misrouted towards group Gi

which is received through the h global links entering to
Ri. All these packets will have to be forwarded through
the h subsequent global links. As global wiring is typically
consecutive (observe the topology in Figure 1), all these links
happen to be in the next router, Ro. Then, all misrouted traffic
received in Ri has to be forwarded to Ro through the single
local link connecting both routers. This link can only convey 1
phit/cycle, so even in absence of any other throughput limit in
the network, the localized saturation of certain local links will
limit throughput to 1/h phits/(node·cycle). The same happens
for any other ADV+n·h traffic pattern. When h > 2, it is
clear that some local links (and not the global ones) will
constitute the network bottleneck for this worst-case traffic.
This throughput limitation will grow with the network size
h, which is important as the presented problem could pass
unnoticed with small-size simulations.

Depending on the connection pattern chosen for the Drag-
onfly, the specific worst-case traffic pattern will vary. Never-
theless, there will always be a combination of source and des-
tination groups that will lead to severely reduced performance.
Hence, the maximum throughput for nonminimal traffic will
depend on the specific offset value between the source and the
destination groups. Figure 2b shows how throughput notably
varies depending on this offset between groups, even in a small
Dragonfly with h = 6 under Valiant routing.

The simplest approach to avoid this saturation would be
to allow for local misrouting, this is, diverting packets to a
neighbor router to avoid a saturated local link. However, this
should be allowed in any group which a packet traverses,
leading to very long paths: l − l − g − l − l − g − l − l,
or even longer if multiple nonminimal hops are allowed per
group. Using the deadlock avoidance mechanisms in previous
proposals, this would require 6 VCs in the local channels. By
contrast, the OFAR mechanism introduced next decouples the
use of VCs and the deadlock avoidance, allowing for deadlock-
free routing with a reduced amount of resources.

IV. OFAR: A NEW FLOW-CONTROL/ROUTING FOR
DRAGONFLIES

The main limitations of previous routings for Dragonflies
and the problems derived from saturated local links have been
introduce in previous sections. In this section we introduce our
mechanism OFAR, which differs with respect to previous ideas
on several key points: i) adaptive in-transit misrouting, rather
than determined at injection time; ii)random intermediate des-
tinations dynamically determined by credits of the global ports
of the current router, rather than using remote information; and
iii) the existence of a deadlock-free sub-network to guarantee
deadlock avoidance. We explore each of these issues next.

A. Dynamic misrouting in OFAR

In OFAR traffic can be sent non-minimally in each router
to avoid network congestion. This misrouting can use local or
global links of the current router. In principle, our mechanism
allows for any number of misroutings without additional cost,
but in practice it is better to set a limit. We restrict the
number of times that this misrouting can be applied to prevent
livelock: at most, one global non-minimal hop can be applied
per packet, and one non-minimal local hop can be applied per
group. We include two flags in the packet header to limit this
misrouting. Therefore, when the escape subnetwork that will
be detailed in section IV-C is not used, we limit the longest
path to 8 hops (2 global and 6 local). In practice, such long
paths hardly ever occur.

When traffic is internal to a group, only local misroute is
allowed; when traffic is external to the group, both local and
global misroutes are allowed. Global misroute always occurs
when the packet is still in its source group, otherwise the
packet would have reached the destination group and leaving it
would make no sense. Each packet in each input buffer always
has a ’minimal output’ according to its minimal output to the
destination node. Depending on the credits of the minimal
output (none at all, or below a given threshold as detailed in
Subsection IV-B) and the header flags, the control logic of
the input unit of the router can try to misroute the packet to
an output with more credits. In a group not being the source,

only local misrouting is allowed when the minimal output is
a saturated local port.

We use the following policy to determine which port to
use for misrouting in the source group. When the packet is
still in the source group, the misroute type (local or global)
will depend on the type of the input buffer that contains the
packet. Those packets in injection queues (still in their source
router)are misrouted by global channels. This saves the first
local hop when using Valiant routing. By contrast, packets
in local queues are first misrouted locally, and then globally.
Although not obvious, this prevents starvation issues when the
traffic pattern is adversarial. The explanation is the following:
When the traffic is adversarial, there will be a single global
output port in one router of the group (router Rout) which will
be saturated. All other routers will send their packets there,
so Rout will have 2h + 1 local input ports plus h injection
ports whose minimal path is the saturated global link. If all
the packets in these queues were sent non-minimally through
the remaining h−1 global queues, they would quickly saturate,
leading to starvation issues for the nodes in Rout.

Finally, in the evaluations of the next section we have
included two OFAR models. The base OFAR model is the
one described above. By contrast, the OFAR-L model does
not allow for local misroute, same as the previously proposed
routing mechanisms for the Dragonfly. This is used to dissect
the specific benefits of using local misrouting in the routing
mechanism.

B. Contention-aware misrouting in OFAR

Previous proposals select a random intermediate destination
before determining if the packet should be sent minimally
or not. By contrast, OFAR relies on the contention observed
in the minimal (or Valiant) path to allow for non-minimal
routing. We assume an input-buffered router with a separable
allocator. When a packet is in the header of an input queue,
the routing subsystem will report which is its corresponding
minimal (or Valiant) path, along with the allowed non-minimal
paths (e.g., using local or global links, since all of them
are isomorphic in the topology). Depending on the measured
network congestion, the allocator input unit can request the
minimal path or one of the non-minimal ones.

To decide if misrouting is applied, OFAR observes the
occupancy, Qmin, of the queue in the minimal path (min-
imal queue), and the occupancy, Qnon−min, in any non-
minimal output (non-minimal queue). As these queues have
different sizes for local and global links, we consider the
percentage of buffer occupancy rather than the actual occu-
pancy in phits. To determine when misrouting is allowed,
we use two thresholds: Thmin and Thnon−min. Specifically,
misrouting is allowed only when Qmin >= Thmin and
the minimal port is not available (it is already assigned to
another input or Qmin = 100%). When misrouting is allowed,
each input unit will request a random output port among
those non-minimal ports that fulfil the occupancy condition
Qnon−min <= Thnon−min. This prevents misrouting packets
to a group which is already congested. Note that always

selecting the least congested output would not be appropriate,
since multiple input ports could compete for the same output
in case of congestion.

These two threshold values can be static, for example,
Thmin = 100% and Thnon−min = 40%. In such case,
misroute only occurs when the minimal path has no credits
left, using an output with at least the 60% of its credit
count available. Alternatively, the misrouting threshold can be
variable, depending on the occupancy of the minimal queue;
for example, Thmin = 0% and Thnon−min = 0.75×Qmin. In
such model, misrouting is allowed at any time if the minimal
queue is not available (it has been assigned to another packet
although credits can remain), but only by those queues that
have less than 0.75 times the occupancy of the minimal queue.
Under benign traffic the minimal queue occupancy will be
typically similar to other queues in the router, so misrouting
should not be frequent. In contrast, when traffic is adverse, the
occupancy of the minimal queue will be much higher than in
other queues, so misrouting should be frequent.

C. Deadlock-free subnetwork in OFAR

The proposed OFAR routing can generate cyclic depen-
dencies that block the network. Our proposal relies on the
existence of a deadlock-free subnetwork added to the original
network, [10]. There are multiple alternatives for such a
subnetwork that would lead to different implementation cost
and performance. In this work, we consider one of the simplest
solutions: we use a Hamiltonian ring with bubble flow control
[9]. Packets are freely allowed to circulate in the escape ring,
as long as there is space in the next buffer for the whole
packet. However, when a packet is deflected to the escape
ring from the canonical Dragonfly network, an extra free space
for another packet is required (a bubble). In highly congested
scenarios, some packets will enter this escape ring, partially
increasing the length of their paths to destination. This escape
subnetwork can be added either physically or virtually to the
base topology. If we consider a physically added escape ring, it
requires two additional ports per router and N additional wires
on a N -router Dragonfly. Alternatively, a virtual embedded
Hamiltonian ring maintains the same topology but requiring
only an extra virtual channel in the corresponding links.

The ring is only used as the last resort to route a packet. On
each hop, only if a packet cannot advance because its minimal
path is congested, and misrouting is not possible (because
of the misroute threshold Thnon−min or the header flags),
the corresponding escape output is requested. When a packet
enters the escape ring it will try to abandon it as soon as a
minimal route is available during its advancement.

It can be argued that the limited bisection bandwidth of
the ring together with its high average distance would quickly
saturate it, leading to overall limited throughput. Nevertheless,
the main purpose of the escape network is to avoid deadlock,
not to transport traffic to its final destination. As it will be
shown, OFAR rarely uses the escape ring as deadlock is quite
infrequent in our scenario. It is known that a high routing
freedom as the one used by OFAR over large degree routers,

reduces the deadlock probability, [8]. Finally, in extremely
loaded networks there could be the possibility of packet
livelock. A packet could be inserted in the ring to prevent
deadlock, and then return to the previous router using a
minimal path. This is avoided by limiting the number of times
that a packet can abandon the escape ring.

V. METHODOLOGY

We have implemented the different routing proposals on
an in-house developed single-cycle simulator. We model an
input FIFO buffered Virtual Cut-through (VCT) router, [21].
Compared to wormhole, VCT simplifies the router architecture
by not requiring virtual channel allocators. It requires input
buffer space enough for a whole packet, but this is typically
already provided in large-scale networks because of the flow
control requirements dictated by the round-trip latency. Our
measure unit is the “phit”, the smallest physical unit of
information that is transferred in one cycle across a physical
link. In a router, one phit can be transferred through the
crossbar from the head of an input buffer to any output port
in each cycle.

The routing decision for a packet is taken when it reaches
the head of an input buffer. This selects between the preferred
minimal output or one of those non-minimal outputs allowed
by the misrouting policy and the misroute thresholds. While
the former is constant, different non-minimal routes can be
considered as the network conditions change. Then, the routing
decision is revisited every cycle as long as the packet remains
in the queue head. We use 2 VCs per global link and 3
per local link and injection queues. These are the values
required by previous mechanisms to avoid deadlock. VCs are
not required to prevent deadlock in OFAR but we use them
to reduce HOL blocking. We employ the same number of
VCs for the escape ring for regularity, although the injection
restriction already guarantees deadlock freedom. We do not
model any router speedup, since it would make the design
of the large-radix router even more complex. However, to
prevent performance loss due to output contention, we model
an iterative separable batch allocator, resembling the design
in [22], with three iterative arbitration cycles. Each arbiter
employs a least-recently served (LRS) policy. Note that these
aspects differ from previous evaluations of the Dragonfly
topology in [2], [6], so the results will not be necessarily the
same.

We modeled a maximum size Dragonfly with h = 6. Over-
all, this network contains 5,256 processing nodes, requiring
2,628 global links and 4,818 local links. It is composed of 876
routers organized in 73 groups of 12 routers, with 23 ports each
(25 with the physical escape ring model in OFAR). We use
packets of 8 phits. The default network latencies are 10 cycles
for local links and 100 cycles for global ones. Each local FIFO
can store 32 phits, and 256 phits in the case of global FIFOs,
enough for the flow control requirements dictated by round-
trip latencies. The OFAR models employ a variable misroute
threshold, Thmin = 0% and Thnon−min = 0.9 × Qmin. As
presented in Subsection IV-B, misrouting is allowed at any

time if the minimal queue is not available (it has been assigned
to another packet or credits have been exhausted), but only by
those queues that have less than 0.9 times the occupancy of
the minimal one. The selection of this policy was empirical,
by simulating the network with variable threshold factors, and
selecting a reasonable trade-off between the performance in
adversarial and uniform traffic patterns. A similar study was
performed for the threshold values in PB.

We employ synthetic traffic to evaluate performance.
Each source node generates packets according to a
Bernoulli process, with a controllable injection probability in
phits/(node·cycle). The destination node is selected depending
on the traffic model:

• Uniform (UN): The destination node is randomly selected
among all the possible destinations, including the source
group but not the source node itself.

• Adversarial+N (ADV+N): The destination node is ran-
domly selected among all nodes in the group i+N , where
i is the source group. ADV+1 causes the lower congestion
on local links, while ADV+n·h generates the maximum
one, as presented in Subsection III.

Finally, we have implemented the following routing mech-
anisms:

• Minimal (MIN): The packet traverses the minimal path
between the source and destination.

• Valiant (VAL): The packet always indirectly travels to a
randomly selected intermediate group, and then, travels
minimally to destination.

• Piggybacking (PB, [6]): The injection router selects be-
tween minimal and non-minimal paths based on remote
congestion information broadcast among all the routers
of each group.

• OFAR: The base model presented in Subsection IV.
• OFAR-L: The same model, without allowing the misroute

in local links.

VI. PERFORMANCE RESULTS

We measured the network performance in three different
scenarios: steady state, transient variations and traffic bursts.
We detail each of these cases next.

A. Steady state

On these tests we measure the average latency and through-
put over a long period, after a sufficient network warm-up.
Each point in the plots shows the measured value for a given
offered load in phits/(node·cycle).

Figure 3a shows the average latency under uniform random
traffic (UN). Using MIN as a reference, we observe that OFAR
models provide a competitive latency under low loads, but
they saturate significantly later. The latency of the adaptive
mechanism PB, by contrast, is significantly larger, due to
a higher number of misrouted packets. Figure 3b reports
throughput. The OFAR models improve over MIN and PB,
but in either case, the use of local misrouting does not make
a significant difference. As Valiant routing halves maximum

 100

 120

 140

 160

 180

 200

 220

 240

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Offered load (phits/(node*cycle))

(a) Latency.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

MIN
PB

OFAR-L
OFAR

(b) Throughput.

Fig. 3: Latency and throughput under random uniform traffic (UN).

 180

 200

 220

 240

 260

 280

 300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Offered load (phits/(node*cycle))

(a) Latency.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

VAL
PB

OFAR-L
OFAR

(b) Throughput.

Fig. 4: Latency and throughput under adversarial +2 traffic (ADV+2).

throughput achieved under UN traffic, it has been omitted in
Figure 3.

Figure 4 shows results under adversarial traffic ADV+2. We
do not show results of ADV+1 as it could be argued that the
additional ring link between the source and destination groups
favors the OFAR models. However, the results are similar to
the case ADV+1 and, as we will discuss later, the escape ring
is hardly ever used. In this traffic pattern, the reference is VAL,
which always misroutes traffic, instead of MIN, which suffers
from strong congestion caused by the saturated global links.

We can observe that the OFAR model shows very competi-
tive latency values. Regarding throughput, Figure 4b shows
that the OFAR saturates at 0.45, when comparatively, PB
saturates around 0.38. The difference comes mainly from the
better performance of in-transit adaptive routing decisions
with larger path diversity in OFAR, rather than the use of
delayed information about congestion in global queues and
the evaluation of a single nonminimal alternative in PB. Under
this traffic pattern, we can observe how the complete OFAR
model achieves better performance (especially in terms of
throughput) than the OFAR-L model, but the difference is very
low.

Finally, we evaluated network performance under the worst
traffic pattern, ADV+6. It is presented in Figure 5. In this
case, misrouted traffic can generate the largest congestion
in local links as described in Subsection III. If this is not
avoided, throughput would be limited to 1/h = 1/6 = 0, 166
phits/(node·cycle). Figure 5a shows that this occurs for VAL,
PB and OFAR-L. OFAR obtains, by far, the best result.
Throughput, reported in Figure 5b, confirms the significant
performance difference between the base and “-L” models.
The troughput of OFAR is limited to 0.36, closer to the
theoretical limit of 0.5 imposed by global channels, than the
0,166 which would be imposed by the local ones without local
misroute.

B. Transient traffic

These measures explore the response time when the traffic
pattern changes. We warm-up the network with a given traffic
pattern. Once it reaches the steady state, we change the
traffic pattern, and observe how each mechanism adapts to the
change. We measure the average latency of the packets that
are sent each cycle. This is, when a packet is received, we
account for the latency in the cycle that it was sent. We used

 180

 200

 220

 240

 260

 280

 300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Offered load (phits/(node*cycle))

(a) Latency.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

VAL
PB

OFAR-L
OFAR

(b) Throughput.

Fig. 5: Latency and throughput under adversarial +6 traffic (ADV+6).

 100

 120

 140

 160

 180

 200

 220

 240

-50 0 50 100 150 200 250 300

A
ve

ra
ge

 la
te

nc
y

cycle

(a) UN to ADV+2 traffic

 100

 120

 140

 160

 180

 200

 220

 240

-50 0 50 100 150 200 250 300

A
ve

ra
ge

 la
te

nc
y

cycle

(b) ADV+2 to UN traffic

 180

 190

 200

 210

 220

 230

 240

 250

 260

-50 0 50 100 150 200 250 300

A
ve

ra
ge

 la
te

nc
y

cycle

PB
OFAR

OFAR-L

(c) ADV+2 to ADV+6 traffic, load=0.12

Fig. 6: Latency evolution under transient traffic.

OFAR, OFAR-L and PB, in three different transient cases: UN
to ADV+2; ADV+2 to UN and ADV+2 to ADV+6 (ADV+h).
We apply a load of 0.14 phits/(node·cycle), except for the
last case (ADV2 to ADV6) which would saturate the network
using PB; we use 0.12 in that case. Figure 6 shows that for the
transition of ADV+2 to UN , all the mechanisms converge very
fast, since they suddenly find the required links un-congested.
By contrast, in the other two cases OFAR makes the transition
almost instantaneous, while PB suffers from an adaptation
period.

C. Traffic bursts

In parallel programs, communication and computation
phases are typically synchronized, so traffic bursts after barri-
ers are common. We simulate this using packet bursts. Each
node injects a fixed amount of packets (2.000) as fast as
possible, with a mixture of different traffic patterns. With
h = 6, this figure corresponds to around a million packets
received. We measure the time to consume all the packets
in the network. The destination of each packet is variable
according to a certain distribution. We have simulated UN,
ADV+2, ADV+6 and three mixes of traffic with different rates
of uniform and adversarial: In MIX1 80% of the traffic is UN,
10% is ADV+1 and 10% is ADV+6. In MIX2 the rates are

Fig. 7: Burst consumption time, normalized to PB. Lower is
better.

60-20-20 and in MIX3 they are 20-40-40.
Figure 7 shows the execution time normalized to the result

of PB on each case. The OFAR mechanisms always finish
faster. Compared to PB, the execution time of OFAR ranges
from a 43.1% to a 81.5%. On average, the time to consume
traffic for OFAR is 0.695 the time for PB, which corresponds
to a speedup of 43.8%. It is noticeable that the complete OFAR
model always finishes faster than their -L counterparts.

VII. DISCUSSION

All the previous evaluations have been performed using a
Hamiltonian physical ring and the same number of VCs as
required by previous mechanisms. In this Section we will

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Offered load (phits/(node*cycle))

(a) Latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

UN_phy
UN_emb

ADV+2_phy
ADV+2_emb
ADV+h_phy

ADV+h_emb

(b) Throughput

Fig. 8: Latency and throughput for physical and embedded ring implementations.

address issues related to cost, tuning and reliability of OFAR.

The additional cost of an OFAR implementation based on a
physical ring is easy to compute. A rough calculation shows
that the proportion of added links is in the order of 2/3h; with
h = 16, this means 4% more wires. Nevertheless, the cost of
these networks is mainly dominated by long wires. In OFAR,
2h2 + 1 are added to the 2h4 + h2 original long wires. With
h = 16, this accounts for only 0,3% more global wires. In
addition, two router ports are needed to implement the ring.

In spite of this low cost, cheaper solutions can be envisaged.
For example, instead of adding a physical Hamiltonian ring, it
can be virtually embedded on the original topology, connecting
consecutive routers. This implementation has no added cost
in terms of wires. We just use an additional virtual channel
in the links that constitute the Hamiltonian embedded ring.
Figure 8 compares the behavior of OFAR with an embedded
ring and with a physical one. As it can be seen, no significant
differences can be reported from the use of the physical or
embedded link. This is coherent with the idea that the escape
subnetwork is not used to route traffic, but only to resolve
potential deadlock situations.

The previous results have shown that, even under high
loads, throughput remains constant after saturation even with
an embedded ring. However, in our model, the capacity of
the escape network (the Hamiltonian ring) is much lower than
the capacity of the canonical network (the Dragonfly). This
might lead to network congestion if all the buffers of the
canonical network were completely full, and only the escape
ring was used to deliver packets at destination. Reaching such
condition should be very uncommon as it must be provoked
from the occurrence of multiple concurrent deadlocks which
are not alleviated in time by the escape subnetwork. As
discussed in [8], deadlock is very unfrequent when paths are
short and there is a rich routing freedom, exactly the case
of the Dragonfly. To verify if congestion could happen, we
simulated OFAR with less resources: an embedded ring, and
only 2 VCs for local links and 1 for global ones, without
any congestion management. Figure 9 records the throughput

observed under three different traffic patterns. We observe that,
in some cases, throughput significantly falls as the canonical
network gets completely congested. Note that the figure plots
the average of several simulations, so in some points we
are averaging simulations that suffered congestion with others
that did not suffer it. A proper congestion control mechanism
should be considered to guarantee that this case never happens
in practice for a given configuration of network resources.
Different congestion management alternatives for HPC can be
found in [23]. Since this is typically implemented in a different
level of the protocol hierarchy, its evaluation is left for future
work.

With respect to reliability, OFAR could block the system
with more than a single failure in its Hamiltonian ring. There
are several ways to address this issue. One would be based on
the use of several embedded Hamiltonian rings. Preliminary
studies, not presented here, show that up to h edge-disjoint
Hamiltonian rings could be embedded on this topology. This
value is bounded by the number of local links in each group
(h × (2h2 − 1)) and the number of local hops used by a
Hamiltonian path on each group (2h − 1, since there are 2h
routers). The system could maintain functionality as long as
one of the Hamiltonians had less than two failures. Other
solutions, such as an escape subnetwork with higher degree,
or a hierarchical escape network, could be explored.

VIII. CONCLUSIONS

This paper has introduced OFAR, a flow-control/routing
mechanism that addresses some of the main performance
limitations of Dragonfly topologies, namely the saturation of
local links and the poor efficiency of the misrouting decision
process in existing mechanisms. We have presented an efficient
alternative that allows for flexible on the fly misrouting of
packets. OFAR dynamically selects the misroute port based on
a dynamic misrouting threshold, rather than at injection time.
This adaptive misrouting is enabled by employing a escape
subnetwork to prevent deadlock, rather than a fixed order in
the virtual channels.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

(a) Uniform

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

(b) ADV+1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
cc

ep
te

d
lo

ad
 (

ph
its

/(
n

od
e*

cy
cl

e)
)

Offered load (phits/(node*cycle))

OFAR-L
OFAR

(c) ADV+h

Fig. 9: Congestion experienced with a reduced number of VCs: 2 VCs in local links an 1 VC in global links.

We have studied a misrouting policy for for OFAR which
balances the traffic among the global links of the group,
and obtains good values for latency, burst consumption and
response time for transient traffic. Comparatively, the local
misroute within a group has been proven as an efficient
technique to avoid hot-spots and increase throughput.

Ongoing work includes the use of congestion avoidance
mechanisms and the design of alternative router architectures
and escape subnetworks. With respect to routers, we are
dealing with links that totally avoid the use of virtual channels.
As OFAR does not rely on VCs to avoid deadlock, input
buffers with 2 or 3 read ports could provide a more scalable
and efficient design. With respect to the escape subnetwork,
embedding multi-Hamiltonian rings and exploring hierarchical
restricted injection mechanisms are being considered.

ACKNOWLEDGEMENTS

This work has been supported by the Spanish Ministerio de
Ciencia e Innovación, under project TIN2010-21291-C02-02,
The HiPEAC Network of Excelence, the Consolider Project
CSD2007-00050 “Supercomputación y e-Ciencia” and the
Spanish Ministerio de Educación, grant AP2010-4900.

REFERENCES

[1] J. Kim, W. Dally, B. Towles, and A. Gupta, “Microarchitecture of a high-
radix router,” in ACM SIGARCH Computer Architecture News, vol. 33,
no. 2. IEEE Computer Society, 2005, pp. 420–431.

[2] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture. IEEE Computer Society,
2008, pp. 77–88.

[3] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li et al., “The PERCS high-
performance interconnect,” in 2010 18th IEEE Symposium on High
Performance Interconnects. IEEE, 2010, pp. 75–82.

[4] W. Dally, “GPU computing: To exascale and beyond. Invited talk.”
Supercomputing, New Orleans., 2010.

[5] A. Bhatele, W. D. Gropp, N. Jain, and L. V. Kale, “Avoiding hot-
spots on two-level direct networks,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for, nov. 2011, pp. 1 –11.

[6] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on
large scale interconnection networks,” in International Symposium on
Computer Architecture, 2009, pp. 220–231.

[7] L. Valiant, “A scheme for fast parallel communication,” SIAM journal
on computing, vol. 11, p. 350, 1982.

[8] T. Pinkston, “Deadlock characterization and resolution in interconnec-
tion networks,” Deadlock Resolution in Computer-Integrated Systems,
pp. 445–492, 2004.

[9] C. Carrion, R. Beivide, J. Gregorio, and F. Vallejo, “A flow control
mechanism to avoid message deadlock in k-ary n-cube networks,” in
International Conference on High-Performance Computing, dec 1997,
pp. 322 –329.

[10] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole
networks,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 4, no. 12, pp. 1320 –1331, dec 1993.

[11] A. Greenberg and B. Hajek, “Deflection routing in hypercube networks,”
Communications, IEEE Transactions on, vol. 40, no. 6, pp. 1070 –1081,
jun 1992.

[12] S. Konstantinidou and L. Snyder, “The chaos router,” Computers, IEEE
Transactions on, vol. 43, no. 12, pp. 1386 –1397, dec 1994.

[13] W. J. Dally, “Virtual-channel flow control,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 3, no. 2, pp. 194 –205, mar 1992.

[14] K. Gunther, “Prevention of deadlocks in packet-switched data transport
systems,” Communications, IEEE Transactions on, vol. 29, no. 4, pp.
512 – 524, apr 1981.

[15] S. Brookes and A. Roscoe, “Deadlock analysis in networks of commu-
nicating processes,” Distributed Computing, vol. 4, no. 4, pp. 209–230,
1991.

[16] I. Cidon and Y. Ofek, “Metaring-a full-duplex ring with fairness and
spatial reuse,” Communications, IEEE Transactions on, vol. 41, no. 1,
pp. 110–120, 1993.

[17] V. Puente, C. Izu, R. Beivide, J. Gregorio, F. Vallejo, and J. Prellezo,
“The adaptive bubble router,” Journal of Parallel and Distributed
Computing, vol. 61, no. 9, pp. 1180–1208, 2001.

[18] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Hei-
delberger, S. Singh, B. Steinmacher-Burow, T. Takken, and P. Vranas,
“Design and analysis of the BlueGene/L torus interconnection network,”
IBM Research Report RC23025 (W0312-022), vol. 3, 2003.

[19] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar,
V. Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The
IBM Blue Gene/Q interconnection network and message unit,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE, 2011, pp. 1–10.

[20] V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, “Immunet: a cheap
and robust fault-tolerant packet routing mechanism,” in International
Symposium on Computer Architecture, june 2004, pp. 198 – 209.

[21] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Computer Networks (1976), vol. 3,
no. 4, pp. 267–286, 1979.

[22] P. Gupta and N. McKeown, “Designing and implementing a fast crossbar
scheduler,” Micro, IEEE, vol. 19, no. 1, pp. 20–28, 1999.

[23] P. J. Garcı́a, “Congestion management in HPC interconnection net-
works.” HPC Advisory Council European Workshop, Hamburg, 2011.

