Hybrid Transactional Memory to Accelerate Safe Lock-based
Transactions

Enrique Vallejo *

University of Cantabria, Santander, Spain
enrique@atc.unican.es

Abstract

To reduce the overhead of Software Transactional Memory (STM)
there are many recent proposals to build hybrid systems that use
architectural support either to accelerate parts of a particular STM
algorithm (Ha-TM), or to form a hybrid system allowing hardware-
transactions and software-transactions to inter-operate in the same
address space (Hy-TM).

In this paper we introduce a Hy-TM design based on multi-reader,
single-writer locking when a transaction tries to commit. This ap-
proach is the first Hy-TM to combine three desirable features: (i)
execution whether or not the architectural support is present, (ii)
execution of a single common code path, whether a transaction is
running in software or hardware, (iii) immunity, for correctly syn-
chronized programs, from the “privatization” problem. Our archi-
tectural support can be any traditional HTM supporting bounded
or unbounded-size transactions, along with an instruction to test
whether or not the current thread is running inside a hardware trans-
action. With this we carefully design the Hy-TM so that portions
of its work can be elided when running a transaction in hardware-
mode.

While not compared with the native HTM system, our simula-
tions show that, when running with HW support, the main runtime
overheads of the STM system are elided: Depending on the work-
load, the speedup with read-only transactions is up to 3.03 x in the
single-thread execution and 61 in the 32-thread case, while with
read-and-write transactions it reaches over 10 x.

1. Introduction

Transactional Memory [12] aims to provide a simple programming
interface to access shared data, avoiding some of the classical prob-
lems of shared memory concurrency. Hardware transactional mem-
ory (HTM) proposals (such as [2, 7, 22, 23]) can provide high per-
formance and ‘strong’ semantics in which conflicts are detected
between memory accesses made by transactions and memory ac-
cesses made directly. However, HTMs mainly rely on extending
the coherence protocol with conflicts detected ‘online’ between
the parties involved; this makes thread pre-emption and paging to
disk complicated or impossible. Transactions that exceed local re-
sources (cache capacity, write buffers) are either not supported, lead
to complicated hardware designs, or highly increase the possibili-
ties of high rates of false conflicts.

Software transactional memory (STM) proposals (such as [4, 6,
8, 9, 15]) allow the flexibility to explore different semantics and
the possibility of deployment on current hardware. However, pure-
software implementations suffer from high overheads. Even the

* While the author was at Microsoft Research.

Tim Harris

Microsoft Research, Cambridge, UK
tharris@microsoft.com

Adrian Cristal, Osman S. Unsal,
Mateo Valero

Barcelona Supercomputing Center

{adrian.cristal, osman.unsal,
mateo.valero}@bsc.es

simplest, blocking implementations of STM impose a significant
slowdown. In addition to these performance overheads, STMs typ-
ically provide ‘weak’ semantics in which conflicts between trans-
acted and non-transacted accesses go undetected. This leads to ex-
ample programs like the ‘privatization problem’ that we discuss
below; such programs are intuitively correctly synchronized but are
not implemented with the semantics that programmers might antic-
ipate.

The performance issues with STM have been examined in exist-
ing proposals for architectural support. One approach is hardware-
accelerated TM (Ha-TM) in which an STM algorithm uses new
hardware features to perform part of a transaction’s work [21, 25,
27]. An alternative approach is hybrid TM (Hy-TM) [3, 11] in
which the system supports the coexistence of HW and SW transac-
tions, typically by starting a transaction in HW and re-executing it
in SW if it overflows limited resources.

However, these previous approaches do not address the seman-
tic problems that come from the ‘weak’ semantics offered by STM.
The ‘privatization problem’ provides a motivating example:
// Thread 1 // Thread 2
//x initially 0 atomic{ //Tx2
atomic { //Txl if (x_shared) {

x_shared = false; X = 42; //W2

}

X ++; //WI }

In this example, x_shared is initially true, Thread 1 attempts
to mark x as no longer shared (Tx1) before accessing it directly
(W1), while Thread 2 attempts to check if x is still shared (Tx2)
before accessing it inside its transaction (W2). This program is
correctly synchronized under the ‘single lock atomicity’ model in
which atomic sections are replaced by the use of a single process-
wide lock. Programmers might therefore expect it to be correctly
synchronized using TM and to see either x = 1 or x = 43. Unfor-
tunately, as Spear et al discuss, existing STMs do not implement it
correctly [28]. In some STM designs, Tx2 may be serialized before
Tx1 but the write from W2 not yet be made back to main memory
before W1 executes (allowing x = 42). In other STMs, Tx1 may
conflict with Tx2 but Tx2 will continue running after the conflict is
detected, letting W1 and W2 race (allowing x = 0 if Tx2 is rolled
back after W1 executes).

Different systems have been proposed to overcome this and
other similar problems that impact programming complexity. The
work in [26] proposes a strongly-atomic java STM providing high
performance by extensively using whole-program analyses and JIT
optimizations to reduce the performance penalty of memory bar-
riers in non-transactional code. In [16] the semantics of atomic
blocks are defined by translating them into various lock acquire/re-

lease implementations. The “single lock™ translation is appealing
because it provides semantics that are easy to explain in terms of
existing programming language constructs and the existing Java
memory model. However, the STM-based implementation of these
single-lock semantics requires process-wide barrier operations at
various stages during a transactions execution. This introduces con-
tention between the implementations of transactions that access
disjoint data.

Spear et al identify several techniques for avoiding the priva-
tization problem: (1) Data can be statically partitioned between
transacted and non-transacted parts of the heap, with explicit mar-
shalling between them. (2) STM-aware libraries can be used for
private accesses like W1 with the overhead that that entails. (3)
Synchronization barriers can be added such that data is not used
both in private mode and in shared mode between barriers. (4) Ex-
plicit fences can be required after transactions that make parts of
the heap private. (5) Pessimistic concurrency control can be used
so that if Tx1 is serialized after Tx2 then Tx1 will not commit until
Tx2 has committed, or aborted and cleaned up. Of these techniques,
only this last one has the desirable property that it does not impact
the programming model. However, as Spear at al observe “PCC en-
tails unacceptable overhead, primarily due to the overhead of reader
locking”.

In this paper we explore the role of architectural support in
making a practical TM based on pessimistic concurrency control,
thereby avoiding the privatization problem while also avoiding the
need to develop a more complicated programming model involv-
ing barriers and fences that would not be needed under strong se-
mantics. Our basic approach is a Hy-TM design in which we com-
bine an optional, generic HTM system with a lock-based variant
of Fraser’s OSTM [6]. By structuring the HTM transactions care-
fully we allow them to interact correctly with software locks and
for multiple transactions to hold the same read-mode lock concur-
rently.

Specifically, the main contributions of the paper are:

¢ A novel approach to handle multiple-reader, single-writer locks
that allow HW transactions to elide them, while detecting con-
flicts with SW code acquiring them.

e A STM system based on the previous locks that can be accel-
erated with a bounded HTM, without the need of two different
execution paths for HW and SW code.

An evaluation of the different overhead sources of the base
STM system, and an evaluation showing and quantifying the
performance improvement obtained by HW-accelerating the
different components of the system. Specifically, we quantify
the overhead of the locking mechanism, the read-set manage-
ment and the write-set management.

An evaluation of a re-execution mechanism in HW transactions
before changing to SW ones, showing that the optimal number
of retries rises with the processor count.

The rest of the paper is organized as follows: section 2 discusses
previous work in the area. Section 3 introduces the base lock-
based STM system. Section 4 details how to leverage the locking
mechanisms to allow for HW transactions that coexist with the
previous SW ones, and how to avoid the main sources of overhead
in the STM system. Section 5 shows our experimental setup and
the performance results obtained. Section 6 discusses some specific
points of the design, and finally Section 7 concludes the paper.

2. Related work. Hybrid TM proposals

Early STM implementations aimed for providing non-blocking
progress guarantees. Ennals [5] argues that lock-based STM im-
plementations are sensible given integration with the rest of the

run-time system (to avoid, for example, a running thread spinning
waiting for a lock to be released by a pre-empted thread). Lock-
based implementations temporarily block a given resource, either
from the encounter-point [9, 16] or in the commit phase [4] to
simplify the design and provide higher performance. From these
previous works, [9] and [4] can fail in problems such as the privati-
zation one. The work of Menon el al [16] covers the problem, and
proposes several alternative semantics for STM-only safe transac-
tions. However, they rely on whole system and JIT optimizations,
and barriers on volatile accesses. Our work is orthogonal to that
one, being possible to adapt our HW acceleration proposal for their
lock-based system.

Rajwar and Goodman [24] and Martinez and Torrellas [19] pro-
posed mechanisms that allow threads to execute speculatively past
locks without stalling for lock ownership. These systems support
a traditional lock-based programming model rather than atomic
transactions.

Hardware-accelerated STMs provide a performance speedup if
the specific hardware they require is available. The work in [27]
extends a traditional HW coherence protocol and cache operations
to detect conflicts between transactions. In [25] new cache exten-
sions are included so that transactions can avoid part of their book-
keeping work. Both proposals design specific HW support for a
specific STM system.

Damron et al’s hybrid system [3] is the first to consider HW ac-
celeration by a traditional HTM system. However, their proposal
compiles each transaction’s code twice: once for HW-supported
transactions and the second for SW-supported transactions. This
system is based on hash-addressed ownership records (orecs), and
they introduce the idea of extending HW transactions to detect con-
flicts with SW ones by checking the corresponding orec status.
The improvement in PhTM [13] divides execution into different
phases to allow HW-only execution. While we take a similar ap-
proach based on HW transactions observing the locks used by SW
transactions, our proposal does not support such division. However,
our pessimistic system introduces the idea of dynamically check-
ing the HW transaction mode to require only one version of trans-
acted code and we associate locks with objects to avoid the alias-
ing problems [31] caused by hashing. Another related hybrid sys-
tem is NZTM [30], which does not require any indirection in HW-
transactions, but is not addressed to lock-based transactions, as our
proposal.

In [21] the authors propose a hybrid system based on TL2 [4].
It does not support software-only transactions. However, it does
provide strong isolation, which is impractical to offer in a software-
only scheme without whole-program analyses. As with our design,
TL2 is based in a blocking, lock-based STM system. However, our
design can still operate when hardware support is not available.

3. Overview of the base STM system

Our work is based on a lock-based variant of Fraser’s OSTM
[6]. This is an indirection-based STM in which transacted ob-
jects are represented by a header word that points to the ob-
ject’s current contents. Transactions run optimistically, building
up thread-private logs of their tentative updates to objects. They
commit by using the fair multi-reader single-writer variant of MCS
spin-locks [20] to (i) lock the objects that they have accessed, be-
fore (ii) validating that there has been no conflicting update to
any object read, and (iii) installing the tentative update to the ob-
jects being updated. Source-code to the base STM is available
at http://www.cl.cam.ac.uk/research/srg/netos/lock-free/. The API,
defined in Figure 1, is similar to other indirection-based STMs
[10, 15]. All functions take a pointer to a per-thread state structure
(ptst_t) from which per-thread memory management data struc-
tures are reached. Running transactions are represented by stm_tx

Begin transaction: stm-tx *new_stm_tx(ptst_t *ptst, stm *mem, sigjmp-buf *penv);
Commit Transaction: bool_t commit_stm_tx(ptst_t *ptst, stm_tx *t);

Validate transaction: bool_t validate_stm_tx(ptst_t *ptst, stm_tx *t);

Abort transaction: void abort_stm_tx(ptst_t *ptst, stm_tx *t);

Read STM block b: void *read_stm_blk(ptst_t *ptst, stm_tx *t, stm_blk *b);
Write STM block b: void *write_stm_blk(ptst_t *ptst, stm_tx *t, stm_blk *b);

Allocate STM block: stm_blk *new_stm_blk(ptst_t *ptst, stm *mem);
De-allocate STM block b: void free_stm_blk(ptst_t *ptst, stm *mem, stm_blk *b);

Figure 1. STM programmer interface

stm_blk

=data

reader_count data

*next_writer

XOOr

= tail

Figure 2. STM Block

transaction records. Transacted objects are represented by values
of type stm_blk.

Transaction start. Transactions start with a call to new_stm_tx ()

that prepares the current transaction logs and records a return point
(represented by a sigjmp_buf) to which to branch if the transac-
tion becomes invalid.

Accessing objects in the transaction. The structure of a trans-
actional object, stm_blk, is shown in Figure 2, where the locks
behave as defined in [20] and the three lock fields have been dis-
sected on the right. Each object must be “open” for read or write
before using it. This open action searches the read and write log,
and allocates a new entry if not found. Both read and write sets are
implemented as ordered singly-linked lists of stm_tx_entries
(depicted in Figure 3) using the next pointer. If the object is open
for read, both old and new point to the current data; otherwise,
a new data is allocated and new points to it. On each access, the
pointer new is returned. Objects are allocated and de-allocated from
per-thread free lists through new_stm_blk and free_stm_blk. As
in Fraser’s thesis, an epoch-based garbage collector is used to defer
actual de-allocation until it is safe to do so [17].

Transaction commit. On commit, the STM acquires the locks
corresponding to the objects in its log, using MRSW locks to allow
different threads to commit concurrently if their read-sets overlap.
If there are concurrent requests involving any writer, the locks use
FIFO ordering on the queue. When all of the objects in the private
log are locked, the system validates both the read and write sets. For
reads, the validation merely consists of comparing the old pointers
in the private log with the data pointers in the shared memory. Since
the old pointer is copied in the first block access and only updated
on a transaction commit, being equal to data means that no other

stm_tx_entry stm_blk
«b " |+ .daa
« old —1 L |reader_count
* new | data g +next_writer
s next K « tail

Figure 3. STM transaction entry

transaction has updated the block since the first access. In case of
any conflict, the transaction releases all of the locks and aborts.
On success, it commits the write set, updating the data pointers in
shared memory to point to the private objects in the private log.
Finally, all of the locks are released.

Transaction Abort. Ordinarily abort occurs when commit-time
validation fails. In that case, locks are released and the transac-
tion is re-executed. In addition, as with Fraser’s other OSTM de-
signs, a signal handler catches failures that may be generated by
invalid transactions. The signal handler validates the transaction. If
it is invalid, then the signal might have been generated by a race
condition, so it is ignored and the transaction is aborted using sig-
longjmp, to the restore point created in the new_stm_tx call. As
with other STM designs that allow transactions to run while in-
valid, this approach requires care from the programmer to ensure
that invalid transactions will fail ‘cleanly’. In managed languages
like Java and C# all such failures can be detected in this way.

4. Acceleration opportunities with a generic
HTM

The lock-based STM adds four main overheads when compared
with running the same transactions on a native HTM (similarly to
the analysis in [21]). First, the locking mechanism itself is not nec-
essary in a HTM system. Second, transactions need to maintain the
read-set and write-set lists. This introduces a list-search on each
object accessed, and an increase in the memory used. In HTM sys-
tems the hardware itself tracks the objects accessed in the trans-
action (with read and write bits, signatures or other mechanisms).
Third, on commit, the lists have to be traversed to lock and validate
the objects. Fourth, the indirection-based object structure makes it
necessary to copy entire objects when opening them for update,
even if only a single field will be touched. In HTM these copies are
managed implicitly and at a finer granularity.

We now consider how we can accelerate these costs by combin-
ing the STM with a generic HTM system. Our general approach is
to modify the STM new_stm_tx and commit_stm_tx functions
to start a ‘sympathetic’ hardware transaction when each transac-
tion is started. The transaction is then initially attempted in hard-
ware mode. It invokes the same STM-library operations as normal,
allowing us to avoid compiling the transaction’s implementation
twice. However, the library operations recognise opportunities to
remove operations that are redundant while the HW transaction is
active. If the HW resources are exceeded then the HW transaction
is aborted and we can fall back to SW execution.

In Section 4.1 we clarify the assumptions that we make of
the HTM and then, in Sections 4.2-4.4 we present three possible
acceleration mechanisms.

4.1 Requirements on the HTM system

We use an ordinary HTM supporting strong atomicity [1] between
transacted and non-transacted accesses. We assume that all memory
accesses are implicitly transacted when running inside a transac-
tion. In addition we assume that the ISA provides an InHWTx mech-
anism to determine whether or not execution is inside a transaction.
When making performance-related decisions we assume that per-
cache conflict detection is used and that updates are made in-place
(as with LogTM). These assumptions affect performance, not cor-
rectness.

4.2 First acceleration: avoiding locking

Our first observation is that locking is often un-needed when run-
ning a transaction in HW. When a collision with other transaction
happens:

stm_blk

+data

reader_count

writing

+next_writer

00

« tail

Figure 4. Modified STM_blk with writing field in the lock

- With other HW transaction, the underlying HTM detects the con-
flict on the conflict location, and forces one of the HW trans-
actions to abort or wait. Thus, the use of locking is unnece-
sary. Furthermore, lock acquire/release operations can intro-
duce false conflicts between pairs of HW transactions accessing
disjoint parts of the same objects.

- With a SW transaction holding a given lock when the HW trans-
action tries to acquire it (supposing the original behaiour), the
lock mechanism in the HW transaction would spin-wait until
the lock becomes free. However, HW transactions can never
spin: when the SW transaction releases the lock, the update of
the spin location would conflict with the HW transaction read
set, constituting an isolation violation, and forcing a HW abort.

However, we cannot simply remove all locking: SW-locked
objects must be respected by HW transactions, and SW transactions
must not acquire a lock if this conflicts with a HW transaction
accessing the object. Our approach is to modify the lock and unlock
operations so that HW transactions test for collisions with SW (a
SW writer in the case of a HW read_lock operation, and any
reader or writer in a HW write_lock operation). To this end,
we modify the lock structure adding a new “writing” field (as
depicted in Figure 4) which is set by SW writers when they acquire
the lock, and cleared on release. The rest of the algorithm remains
as in [20]. With this mechanism, the correct actions required by
HW and SW lock operations are defined in Table 1.

(a) Writer - writer

Writing &
reader count

Writing &
reader count
HTM triggers abort | Abort after check
on real data collisions | of Writing.
Coherence extensions | Use of the
prevent SW from | ordinary queue
modifying Writing system

(b) Writer - reader

Writing &
reader count
HTM triggers abort on | Abort after check
real data collisions of Reader count.
Coherence extensions | Use of the
prevent SW from | ordinary queue
modifying Writing system

Writing &
reader count

SW reader | original behaviour in [20], with increase of reader_count

SW writer original behaviour in [20] and set writing=true after
lock acquisition

HW reader | check writing==false and exit (no field updated);
otherwise, HW abort.

HW writer | check writing==false and reader_count==0, and exit;
otherwise, HW abort

Table 1. Locking operations

This ensures that HW transactions do not interfere with locked
elements, while eliding most of the locking work (and allowing
multiple HW transactions to “acquire” the same lock without con-
flict in read mode). Considering a direct-update, early detection
HTM system like LogTM [22](which we use in our evaluations),
the coherence extension that provide the strong atomicity of the
HTM will prevent SW transactions from acquiring a lock in a con-
flicting mode once it has been checked by a HW transaction. Table
2 shows the actions involved when the lock is held by a thread in
reader or writer mode, and a new writer arrives, which generates
a collision (the case of a thread holding the lock in writer mode
and a reader arriving is analogous). Table 3 shows the case of two
readers, in which the system allows both threads to continue. In a
system with lazy detection (like TCC [7] or Bulk [2]) the actions
would be different, but the behavior would be still correct.

To enable the different behaviour depending on the HW or SW
mode, we define a function in_HW_Tx (), that, using the inHWTx

Table 2. Lock acquiring with one or two writers involved, HW and
SW cases.

ISA instruction, returns true if the transaction is executed with HW
support, or false if it is SW-only. With it, the code for read and
write lock and unlock operations is presented in Figure 5 (omitted
original parts are those in [20]):

Read_unlock (lock, gnode) {
if (iIn_HW_Tx()) {;}
else {[..] /Original code }

Read_lock (lock, gnode) {
if (in_HW_Tx()) {
if (lock->writing)

Write_lock (lock, gnode) {
if (in_HW_Tx()) {
if (Nlock->writing)&&
(lock->read_count ==0) | }
return; //Succeed

else ABORT_HW_TX();| Write_unlock (lock, gnode) {
if (in_LHW_Tx()) { ;}
else {[..] //Original code }

return; //Succeed
else ABORT_HW_TX();
} }
else { [..] /Original code } else {[..] //Original code }

a) b) c)

Figure 5. Modified a) Read_lock, b) Write_lock and c) unlock
operations.

Of course, we must do this carefully to avoid false sharing
within the lock data structures. The problem is illustrated by con-
sidering two readers: a HW Tx checking lock.writting and a
SW Tx trying to update lock.reader_count. If both fields are
in the same cache line, the collision detection from the HTM sys-
tem will consider them to conflict. In this case it effectively pre-
vents HW and SW readers from acquiring the same lock in concur-
rently in read mode. To prevent this, we have analyzed the possible
sources of false sharing in the code and padded structures where
necessary (such as the state structures psts_t or the stm_blk
headers).

Writing Writing
No real conflict. HTM does | Proceed after check of Wrifing.
not trigger any abort
Coherence extensions allow | Use of the ordinary queue
SW to modify Reader _count | system, reader_count =2

Table 3. Lock acquiring with two readers involved, HW and SW
cases.

4.3 Second acceleration: do not maintain a read set

Our second acceleration technique comes from the fact that the ex-
plicit read-set list can be elided in HW transactions. HW transac-
tions still need to check the locks of read objects for two reasons: to
avoid reading write-locked objects and to prevent any further SW
Tx write-locking the object. Therefore, in HW transactions, instead
of building up a read-set list the read_stm_blk checks that the
lock is in the appropriate status (writing = false) and returns
the data pointer to the shared object. This prevents any further
software writer committing changes to the block before the HW
commit, because of strong atomicity.
This operation reduces the overhead for two reasons:

e The transaction log is reduced to the write set. Though a search
on each access is still needed, it is much faster.

e The same applies to the validation: the number of validation
steps is reduced to the modified objects count only.

4.4 Third acceleration: make updates in place

The idea in the previous subsection, when applied to the write set,
would prevent the object copy on access and provide updates in
place. However, in this case there is a limitation: as specified in
section 3, SW transactions rely on the update of the data pointer
to detect conflicts on the validation step. Directly accessing objects
during HW transactions without updating the data pointer (because
no new version of the object would be allocated) wouldn’t let SW
transaction detect HW updates.

To overcome this, we use the same idea as in the previous
section plus an additional version counter in the object header.
This field is set to O when the object is first instantiated (in any HW
or SW transaction) and increased on every call to write_stm_blk
by a HW transaction. Software transactions copy the value of this
word in the entry on the read and write sets and the validation
process implies checking both the data pointer and the version
field. With this optimization, HW transactions make their updates
in place, do not maintain read or write sets, and consequently avoid
any searching through these sets.

Special care is needed to handle version overflows. A simple
solution is to abort HW transactions on counter overflow, and clear
the counter on SW updates (to further increase the time between
overflows).

5. Evaluation

The proposed system has been implemented and simulated with
GEMS [18], a simulator based in the full-system simulator Simics
[14], making use of the LogTM MESI protocol. Network parame-
ters have been set to resemble those of the Sunfire E25K [29]. The
simulator was modified to restart a transaction in SW mode after
a fixed number of HW attempts The number of threads on each
simulation always equals the number of processors.

We extended the STM implementation to use the LogTM ISA,
modifying only the STM library and not the test harness calling it.
The library was also modified so that HW transactions never call
the memory allocation and free functions in the GC commented in
Section 3; instead, the HW transaction is aborted if a local pool
of pre-allocated chunks is exhausted. There are three reasons to do
this: It prevents some limitations on the base simulator, although
the HTM simulates unbounded transactions there are various low
level processor operations (such as TLB misses) which cannot oc-
cur transactionally; this action prevents congestion problems in the
GC, and eventually, the OS, when a HW transaction modifies some
global structure; finally, it models a HTM system more restricted
than the original, unbounded, LogTM model.

We simulated four versions of our design:

e The original, software only, STM system. (sw).

e The version eliding the locks, but maintaining both read and
write sets (rw).

e The version that avoids entries in the read set (noread).

e The version without read or write sets (nowrite).

5.1 Evaluation benchmarks

We used the two existing microbenchmarks from Fraser’s thesis
work: a red-black tree and a skip-list, with sizes specified by a
key k, similarly to other works in the area [4, 6]. Each thread
executes read transactions that search and read a given key, or
write transactions that add (update) or remove the given key, with a
certain probability p. The update and remove operations may need
to rebalance the tree or correct the links in the skip list, introducing
some contention between operations on different keys. In every
case the root of the tree or list is always part of the read set of
the transactions. After a sufficient warm-up period, we measure the
number of simulated cycles per transaction, averaged across nine
simulation runs and executed for a period long enough to converge
to a fixed value. The performance will be the inverse of this value,
and in most cases, our results are shown normalized against the
single-processor, SW-only result.

5.2 Performance results

Our first test shows the performance improvement with a single-
processor, reflecting the sequential work removed by the HW-
support. Table 4 shows these values for different data structure
sizes, using workloads with read-only transactions (p = 0%) and
for p = 10%.

RBp =0 RBp=10% Skipp =0 Skipp = 10%
Key k 8 | 11 | 15| 8 | 11 | 15| 8 | 11 | 15 | 8 | 11 | 15
sW 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
™w 145 | 143 | 141 | 142 | 143 | 1.41 | 132 | 133 | 132 | 1.31 | 1.33 | 1.31
norcad | 2.53 | 2.74 | 2.76 | 2.38 | 2.68 | 2.69 | 2.10 | 2.47 | 2.75 | 2.04 | 2.41 | 2.70
nowrite | 2.70 | 2.93 | 2.90 | 2.67 | 2.90 | 2.86 | 2.30 | 2.73 | 3.03 | 2.31 | 2.69 | 3.02

Table 4. Single processor performance

The elided steps constitute a substantial part of the execution
time, given that up to 3.03x speedup is obtained only from them
being removed. We also observe that with larger problem sizes, the
improvement is higher than with small sizes: the memory usage is
also lower (no need for read or write sets) so the number of cache
misses, which increases with the problem size, is reduced.

Figure 6 shows the multi-processor performance obtained with
read-only transactions in the RB tree for key sizes 8 and 15. As
in the table, the figures are normalized to the performance of
the single-processor, base STM system. Note that, considering
those initial single-processor values for each curve, there is no
super-lineal speedup in the plots in Figure 6(a), though the overall
speedup exceeds the processor count.

The small workload shows a linear speedup in all the HW-
accelerated cases. The baseline offers low performance and poor
scalability, but the lock elision (rw) removes this, leading to a
performance increase of 33.04 x (in the 32p case). The noread line
shows that avoiding the read-set entries (and the associated search)
leads to a 57.19x speedup from the base system. Finally, avoiding
the read and write set copies gives further improvements, largely
through the simplifications made to the commit processing; even
in the case of read-only transactions there is an overall 61.81x
speedup (in the 32p case). The graph below is similar, but shows
how the cache limits reached for the larger workload reduce the
scalability of the system presented. The low scalability of the base
system can be explained by profiling the sw and nowrite cases in
Figure 7(a).

RB - Size 2°- Speedup over the base 1p case
90

80 | =o=sw-only /
w
70 7 == noread
60 ——| =®=nowrite
o /
> 50
T
[
2 40
a
30
20
10
o —e
0 5 10 15 20 25 30
Proc. count
(a) Key 8
. 15
RB - Size 2 - Speedup over the SW-only 1p case
45
20 —&—sw-only _u
w
35
—&— noread
30 —&— nowrite
-8
3 25
°
@
a 20
w
15
10
5
0 re——— +
0 5 10 15 20 25 30
Proc. count
(b) Key 15

Figure 6. Performance of the RB with key sizes 8 and 15.

The first point to note is that the commit phase from the sw
design is almost removed in the nowrite approach: the validation
and update steps are unnecessary. Also, this commit phase in sw
grows with the number of processors: this comes from the cycles
spent manipulating read-set locks. As seen in Figure 7(b)), this time
grows, as expected, with the number of processors due to the queue
operations on the locks and contention on the reader_count field
- especially toward the root of the shared structure. In the case of
nowrite, the lock action is reduced to a simple check.

Figure 8 shows the performance obtained with a skip-list under
low (a, kK = 15 and p = 10%) and high contention (b, & = 8
and p = 10%). The large workload with low contention suffers
a small performance decrease from the read-only case (similar to
Figure 6(b) but it still scales well, reaching 10.81x speedup in the
32p case against the base SW case. The performance from noread
to nowrite is quite different in this case, where the write set is
not empty. With high contention (Figure 8(b)) the performance
degrades as the number of processors increases. This degradation
comes from the higher proportion of slower, SW transactions, due
to the HW transactions abort rate increasing (as shown in Figure
9(a)). Though the actual HW abort rate is not very high, the fact
that LogTM makes processors wait rather than abort on conflicts
makes these figures quite significant for the overall performance.
The graph shows how the lines tend to the base sw-line as the abort
rate increases.

An improvement for this case might be to re-execute transac-
tions in HW mode some number of times (as suggested in [3]).
We evaluated the performance of this, varying the maximum re-
execution-count, simulating the nowrite case from Figure 8(b).
Figure 10 shows the performance results for different retry counts,
normalized to the case of no retrying (No retries, which corre-
sponds with nowrite in Figure 8(b)). As seen, the performance
is generally improved in the congested area, up to a maximum of
33% in the 32p case. However, the optimal value for retries is low

7000 15,030, 21.854

SW- other

a it — — f—
OSWTXRead Bk

@HW - other

& HW commit
©@HW TXRead Blk
mTx Begin —
wNon-TXops

5000

4000

3000

2000

1000

|
e [

nowrite
nowrite

(a) Cycle dissection
800 1868 1992,

700 || OSWread lock eycles
W HW read lock cycles]

600 E—

500 f—

400 —

300 f—

200

100 f—

o
sweonty | |

nowrite

sw-only
nowrite
sw-only
nowrite
sw-only
nowrite
sw-only
nowrite
sw-only
nowrite

32

1 2 4 8 16

(b) Lock cycles

Figure 7. Read-only transactions cycle dissection and cycles spent
locking and unlocking.

(2 to 4, darker bars) with a low number of processors (4 to 8), and
increases (5 to 10, lighter bars) with a higher processor count (16
to 32). We observed a similar behaviour in rw and noread. This
suggests that a fixed re-execution policy is not ideal. This result is
understood by considering that, with high thread counts, the col-
lisions are coming from different HW transactions, while in other
cases they come from different sources, such as collisions with SW
transactions, or resource exhaustion. We might therefore consider
further architectural extensions to reflect the reasons for HW trans-
actions aborting.

6. Discussion

In this section we discuss some points of our design:

e Use of MRSW queue-based locks in the STM: The use of these
locks in an STM is unusual: they introduce the need of updat-
ing a field (Lock.reader_count) even for read blocks on soft-
ware transactions, and this might generate a performance loss
due to contention in the lock variable. Figure 11 shows the per-
formance impact of these locks: we simulated the skip list-2%
with a read-only workload and the locks removed (no_locks).
Performance results are better than the HW-accelerated version
that merely avoids the locks (in this case there are no locks at
all) but worse than our optimized nowrite proposal, that is not
limited to read-only transactions. The high contention in the ac-
quisition and releasing of the read locks (especially close to the
tree root) generates a significant overhead, as previously pre-
sented in Figure 7(b).

The use of MRSW locking is motivated by the programming
model: they allow us to implement the examples like the *priva-
tization problem’ from the introduction while retaining a simple

Speedup over the SW-only 1p case

40.00

—&—sw-only

35.00 /.
w
3000 - —*—noread

—i— nowrite

25.00

20.00

Speedup

15.00

10.00

[5 10 15 20 25 30
Proc. count

(a) Low contention

Skip-list - 2% Speedup over the SW-only 1p case

——sw-only
w

—#&— noread

—— nowrite

Speedup

100 '\o/_‘/’_——__‘

0 5 10 15 20 25 30
Proc. count

(b) High contention

Figure 8. Performance under low and high contention, p = 10%.

programming model and the ability to operate on existing ma-
chines without hardware support. Although the worst-case cost
of locking is worse than other STM designs (such as Fraser’s
lock-free variant of OSTM), the presence of the HTM acceler-
ation introduced in this paper allows short-running transactions
to execute in hardware mode (without needing to acquire these
locks), while long-running transactions spend proportionately
more of their time executing (rather than committing) and so
the locking costs incurred are less significant.

Starvation of software transactions: An open question is whether
SW transactions might suffer from starvation when they have
constant collisions with HW transactions. If the HTM system
resembles LogTM (as in our simulation) this might happen,
given that the coherence extensions would make a SW trans-
action stop while there is a collision with any running HW
transaction. In our experiments, software transactions in the
32p highly contended case presented in Figure 8(b) would run
on average 400 to 500 times slower than HW-accelerated ones,
mainly due to this temporary starvation. On the other hand,
in a system with lazy detection (such as TCC [7]), the result
would be the opposite: any SW update of a memory location
generating a collision would abort remote HW transactions.
Eventually, this might be considered as an issue in HTM sys-
tems, but our assumption of a generic HTM system prevents us
from considering it in this work.

7. Conclusion

This paper has introduced a new lock management system, so that
locks used by the STM implementation can be easily avoided in
atomic blocks, in which they are unnecessary. Based on this lock

Hardware TX abort rate - skip-list - 2

14

Osw-anl
12 M

Orw
10

W noread s

[| Mnowrite

1 2 4 B 18 32

(a) HW aborts

Software TX abort rate - skip-list - 2

35
Osw-only
30 — —
Orw
25 77| mnoread [—
20 | W nowrite
®
15 B
10
5 I_l—-_ —’_i
] . T T =
1 2 4 8 16 32

(b) SW aborts

Figure 9. Transactions aborted in hardware and software modes,
p=10%.

mechanism, we have presented a Software Transactional Memory
system that can be accelerated in presence of any traditional HTM
system, but still works safely without it.

Evaluations show that the base system is limited by the semi-
visibility of readers, but the HW-acceleration removes this limita-
tion, and provided optimizations remove the main overheads of the
STM system. On our benchmarks, we have seen that the optimal
number of HW retries after an abort is not very high, and increases
with the number of processors. This point might be interesting for
future HTM systems, to implement variable number of retries on
their control interface, and then “fall back to software”, to simplify
their design.

Finally, the congestion control between HW and SW transac-
tions has appeared as an important point of the design. While our
proposal always gives priority to HW transactions (in a LogTM-
like environment), it seems interesting that the system can control
the priorities of different threads in the system to prevent starva-

Multiple HW retries - nowrite

W No retries
13 |1 retry

B2 refries |
@3 retries
1.2 +—— @5 retries
17 retries
110 retries

Speedup vs nowrite 0

09

08

1 2 4 8
Proc. count

Figure 10. Mutiple HW retries of aborted transactions

RB - Size 2°- Speedup over the base 1p case
45

40 == sw-only
35 w
== no locks /A
30 | == nowrite
25 /
20
15
10
5 -
0 = * +
0 2 4 6 8 10 12 14 16

Proc. count

Figure 11. Study of the locking overhead - read only

tion, for example by imposing some restriction on HW-accelerated
transactions.

Acknowledgments

This work is supported by the cooperation agreement between the
Barcelona Supercomputing Center National Supercomputer Fa-
cility and Microsoft Research, by the Ministry of Science and
Technology of Spain and the European Union (FEDER funds)
under contracts TIN2004-07440-C02-01, TIN2007-60625 and
TIN2007-6802-C02-01, and by the European Network of Excel-
lence on High-Performance Embedded Architecture and Compila-
tion (HiPEAC). The authors would like to thank the valuable com-
ments received from Satnam Singh and the anonymous reviewers.

References

[1] Colin Blundell, E Christopher Lewis and Milo M. K. Martin. Subtleties
of Transactional Memory Atomicity Semantics. [EEE Computer
Architecture Letters, 5(2), July 2006.

[2] Luis Ceze, James Tuck, Calin Cascaval and Josep Torrellas. Bulk
Disambiguation of Speculative Threads in Multiprocessors. In the
Proceedings of the 33rd Intl. Symposium on Computer Architecture
(ISCA), June 2006.

[3] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco,
Mark Moir and Daniel Nussbaum. Hybrid transactional memory. 12th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, Oct. 2006.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In the
Proceedings of the 20th Intl. Symposium on Distributed Computing
(DISC), Stockholm, Sweden, Sept. 2006.

[5] Robert Ennals Software Transactional Memory Should Not Be
Obstruction-Free. Intel Research Cambridge Technical Report. IRC-
TR-06-052.

[6] Keir Fraser and Tim Harris. Concurrent programming without locks.
ACM Transactions on Computer Systems, Vol 25, Issue 2, May 2007

[7] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John
D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis and Kunle Olukotun. Transactional Memory Coherence
and Consistency. In the Proceedings of the 31st Intl. Symposium on
Computer Architecture (ISCA), Munich, Germany, June 2004.

[8] T. Harris and K. Fraser. Language Support for Lightweight Trans-
actions. In the 18th Conf. on Object-oriented Programming, Systems,
Languages, and Apps. (OOPSLA), Anaheim, CA, 2003.

[9] T. Harris, Mark Plesko, Avraham Shinnar and David Tarditi. Opti-
mizing Memory Transactions. In the Proceedings of the Conference on
Programming Language Design and Implementation (PLDI), Ottawa,
Canada, June 2006.

[10] M. Herlihy and J.E.B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In the 20th Intl. Symposium on
Computer Architecture (ISCA), May 1993.

[11] Sanjeev Kumar, Michael Chu, Christopher J. Hughes and Partha
Kundu. and Anthony Nguyen Hybrid Transactional Memory. In the
11th Symposium on Principles and Practice of Parallel Programming
(PPoPP), New York, NY, Mar. 2006.

[12] J. Larus and R. Rajwar. Transactional Memory. Morgan Claypool
Synthesis Series, 2007.

[13] Yossi Lev, Mark Moir and Dan Nussbaum. PhTM: Phased Transac-
tional Memory. Workshop on Transactional Computing (TRANSACT),
2007.

[14] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas
Moestedt and Bengt Werner. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):50-58, February 2002.

[15] V. J. Marathe, M. F. Spear, A. Acharya, D. Eisenstat, W. N. S. Tii
and M. L. Scott. Lowering the Overhead of Nonblocking Software
Transactional Memory. In the Proceedings of the 1st Workshop
on Languages, Compilers, and Hardware Support for Transactional
Computing, Ottawa, Canada, June 2006.

[16] Vijay Menon et al. Towards a Lock-based Semantics for Java
STM. University of Washington Technical Report: UW-CSE-07-11-
01. November 2007.

[17] M. M. Michael. Hazard pointers: safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems.
Vol. 15, No. 6, pp 491- 504, June 2004.

[18] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael
R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D.
Hill, and David A. Wood. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. Computer Architecture
News (CAN), Sept. 2005

[19] J.E. Martinez and J. Torrellas, Speculative synchronization: applying
thread-level speculation to explicitly parallel applications, Proc. 10th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), San Jose, California, Oct. 2002.

[20] J. M. Mellor-Crummey and M. L. Scott. Scalable reader-writer
synchronization for shared-memory multiprocessors. Proceedings of the
3rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 1991, Williamsburg, Virginia, United States

[21] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen
McDonald, Nathan Bronson, Jared Casper, Christos Kozyrakis and
Kunle Olukotun. An Effective Hybrid Transactional Memory System
with Strong Isolation Guarantees. In 34th International Symposium on
Computer Architecture. San Diego, June 2007.

[22] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D.
Hill and David A. Wood. LogTM: Log-Based Transactional Memory.
In the Proceedings of the 12th Intl. Conference on High-Performance
Computer Architecture (HPCA), Austin, TX, Feb. 2006.

[23] R. Rajwar, Maurice Herlihy and Konrad Lai. Virtualizing Transac-
tional Memory. In the Proceedings of the 32nd International. Symposium
on Computer Architecture (ISCA), Madison, WI, June 2005.

[24] R. Rajwar and J. R. Goodman. Speculative Lock Elision: enabling
highly concurrent multithreaded execution. In Proc. Of the 34th Intl.
Symposium on Microarchitecture, Austin, Texas, 2001.

[25] Bratin Saha, Ali-Reza Adl-Tabatabai and Quinn Jacobson. Architec-
tural Support for Software Transactional Memory. In the Proceedings of
the 39th Intl. Symposium on Microarchitecture (MICRO), Orlando, FL,
Dec. 2006.

[26] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steve
Balensiefer, Dan Grossman, Richard Hudson, Katherine F. Moore
and Bratin Saha. Enforcing isolation and ordering in STM. In the
Proceedings of the 2007 ACM SIGPLAN conference on Programming
language design and implementation (PLDI’07). San Diego, California,
2007.

[27] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra
Marathe, Sandhya Dwarkadas and Michael L. Scott. An Integrated
Hardware-Software Approach to Flexible Transactional Memory. Proc.
of the 34th International Symposium on Computer Architecture (ISCA),
June 2007.

[28] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro and Michael
L. Scott. Privatization Techniques for Software Transactional Memory.
UR CSD;TR915. Rochester University, Feb. 2007.

[29] Sun Microsystems. Sun Fire E25K/E20K Systems Overview. Techni-
cal Report 817-4136-12, 2005.

[30] Fuad Tabba and Cong Wang and James R. Goodman and Mark
Moir. NZTM: Nonblocking, Zero-Indirection Transactional Memory.
Workshop on Transactional Computing (TRANSACT), 2007.

[31] C. Zilles and R. Rajwar. Transactional Memory and the Birthday
Paradox. In the 19th annual ACM symposium on Parallel algorithms
and architectures (SPAA). June 2007.

