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Abstract

Many parallel computers use Tori interconnection net-
works. Machines from Cray, HP and IBM, among oth-
ers, exploit these topologies. In order to maintain full net-
work symmetry, 2D and 3D Tori (k-ary 2-cubes and k-ary
3-cubes) must have the same number of nodes (k) per di-
mension resulting in square or cubic topologies. Never-
theless, for practical reasons, computer engineers have de-
signed and built 2D and 3D Tori having a different number
of nodes per dimension. These mixed-radix topologies are
not edge-symmetric which translates into poor performance
provoked by an unbalanced use of the network links.

In this paper, we propose and analyze twisted 2D and
3D Tori which remove the network bottlenecks present in
mixed-radix standard Tori. These new topologies recover
edge-symmetry and, consequently, balance the utilization
of their links. We describe the distance-related parame-
ters of these twisted networks and use simulation to asses
their performance under synthetic loads. The obtained re-
sults show noticeable and consistent performance gains (up
to a 88% increase in accepted load). In addition, we pro-
pose scalable and practicable packet routing and folding
techniques for these interconnection subsystems. The com-
plexity of the resulting architectural solutions is similar to
the one exhibited by traditional routing and folding mecha-
nisms employed in standard Tori. This fact together with the
performance improvements obtained could justify the use of
these twisted topologies in the future.
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1. Introduction

Multiple parallel computers using different direct inter-
connection networks have been designed in last decades.
Mesh, Torus and Hypercube have been the most popular
topologies. Nowadays, Hypercubes seem to decline in fa-
vor of lower degree networks such as two-dimensional and
three-dimensional Tori and Meshes. Different machines,
such as the Alpha 21364-based HP GS1280 [10] and the
Cray X1E vector computer [9], have used 2D Tori. Others,
such as the Cray T3D and T3E [19], which preceded the
Cray XT3 [8], have used 3D Tori. The IBM BlueGene is a
notable example of a massively parallel computer that joins
26 × 25 × 25 nodes in a mixed-radix 3D Torus [1], .

Typically, a 2D Torus arranges its N nodes in a square
Mesh with

√
N nodes on each side and adding 2

√
N

wraparound links. Above, more or less, a thousand nodes
it has been shown that parallel computers should use 3D
topologies, being a cubic 3D Torus of side 3

√
N the most

desirable solutions [2].
Each dimension of a Torus network may have a differ-

ent number of nodes, leading to rectangular and prismatic
topologies for two and three dimensions respectively. These
topologies are denoted in [11] as mixed-radix networks.
Mixed-radix Tori are often built for practical reasons of
packaging and modularity. For example, the HP GS1280
[10] employs a 2D rectangular network and the IBM Blue-
Gene a 3D prismatic one [1]. However, mixed-radix Tori
have two important drawbacks: first, they are no longer
edge-symmetric and second, the distance-related network
parameters (diameter and average distance) are quite far
from the optimum values of square and cubic topologies.
The edge asymmetry introduces load imbalance in these
networks, and for many traffic patterns the load on the
longer dimensions is larger than the load on the shorter ones



[11]. In addition, maximum and average packet delays are
relatively long as they depend on the poor values of diame-
ter and average distance exhibited by these networks.

In this paper, we propose and analyze alternative mixed-
radix 2D and 3D Torus topologies that avoid the two above
mentioned problems by adequately twisting the wraparound
links of one or two network dimensions. As we will see,
the performance exhibited by these twisted Tori is notably
higher than the one obtained when using their standard
mixed-radix counterparts.

In general, a twist can be applied to the wraparound links
of any rectangular or prismatic Tori with aspect ratios k : 1
(the longest dimension has k times the number of nodes of
the shortest one) or k : j : 1, for any k ≥ j ≥ 1. How-
ever, it is clear that as the aspect ratio increases, the links in
the longest dimensions become a more severe bottleneck.
In this work, we will focus just on networks with 2 : 1
and 2 : 1 : 1 aspect ratios. These ratios have been previ-
ously used by manufacturers [10, 7], allowing the number
of nodes to be a power of two, which is sometimes a de-
sired property. Even more, these ratios represent the sim-
plest way to upgrade a square or cubic network, doubling
their number of nodes by only rearranging some peripheral
links. Anyway, the methodology we present here is appli-
cable to any rectangular or prismatic network independently
of the selected aspect ratio.

The main contributions of this research are:

• The proposal of twisted 2D and 3D Tori as alternative
topologies to mitigate the performance flaws on exist-
ing rectangular and prismatic Tori.

• A detailed analysis of their topological properties.

• A novel and simple routing mechanism for the pro-
posed topologies.

• A performance evaluation, both theoretical and by
means of network simulations, showing performance
increases up to 88%.

• A novel layout for the proposed networks that keeps
link length under a bounded value, eliminating long
peripheral wires and facilitating their implementation.

The rest of this paper is organized as follows. Section
2 considers related work. Section 3 is devoted to analyze
2D rectangular twisted Tori providing their distance-related
properties and a minimal adaptive routing. In Section 4
we study 3D twisted Tori. Section 5 describes the simula-
tion tools employed in our experiments and provides perfor-
mance data for rectangular and prismatic networks. Section
6 deals with network folding and wireability and, finally,
Section 7 concludes the paper summarizing the main find-
ings of this research.

2. Related Work

The idea of twisting 2D square Tori in one of its two
dimensions for obtaining architectural benefits is not new.
A twist of 1 in the wraparound links of dimension X was
employed in the Illiac IV in order to provide a Hamilto-
nian ring embedded on its topology which facilitated con-
trol operations. Doubly twisted Tori were introduced by
Sequin at [18] looking for optimal mappings of binary trees
onto a processor array. Other square meshes with twisted
wraparound links were proposed in [5] to reduce maximum
and average distance among their nodes.

Notwithstanding, including a twist in a square Torus
gives little improvement in packet throughput and delay.
Just a 4% gain in average distance can be obtained [5]. In
addition, the natural symmetry of the network dimensions
is broken when introducing the twist. Other options such
as including two twists, one per dimension, is an interesting
solution for pursuing better performance. However, it has
collateral drawbacks, such as a higher asymmetry and lack
of optimal adaptive routing algorithms.

Although rectangular Tori have worse relative perfor-
mance than square ones, engineers have built them to satisfy
node count limits and other practical reasons. In addition,
as stated before, they are very easy to build by joining two
square Tori. Some parallel machines have used a rectangu-
lar Torus for their interconnection network [10]. Notable
supercomputer architectures using prismatic 3D Torus are
the IBM BlueGene [1] and the Cray XT3 [8].

Not too much work has been done in order to improve the
performance of rectangular Tori by twisting one of its two
dimensions. The results introduced in [5] appear to be the
first attempt in this direction. Similar topologies were used
in [21] as a component of hierarchical networks denoted as
Recursive Diagonal Tori. The work in [10] also empirically
considers the use of a twist in 2D rectangular Tori. The
study of 3D prismatic networks is an important extension
of the 2D case. Up to our knowledge, no significative work
has been published for optimizing network performance in
prismatic 3D Tori by twisting one or two of the network
dimensions.

3. Bi-dimensional Networks

In this Section we study Rectangular Twisted Tori (RTT)
as an alternative to the standard 2 : 1 Rectangular Tori (RT).
Figures 1(b) and 1(a) present examples of both networks.
Note that RTT is obtained from RT by adding a twist of a
columns to the vertical wraparound links. RTTs as the one
depicted in Figure 1(b) has been previously considered in
[10, 21]. Nevertheless, the topological properties of these
networks were not studied and no practicable routing algo-
rithm neither implementability issues were considered for



(a) Rectangular Torus.

(b) Rectangular Twisted Torus.

Figure 1. RT and RTT of size 8× 4 (a = 4).

them.

The first issue in the analysis of RTTs is why a twist of
a columns in the vertical dimension of a 2a× a rectangular
network is the most attractive option. This question can be
answered both empirically and theoretically.

From an empirical point of view, just a look to Figure 2
justifies that a twist of a columns in the vertical dimension
is the most adequate choice. In this Figure, we report the
average distance obtained with different twists for a 32×16
network (a = 16). It is clear that a twist equal to a leads to
the minimum average distance and, as we will see later, it
provides edge-symmetry, which positively affects network
performance.

From a theoretical point of view, it can be proved that
this choice minimizes the diameter and average distance

Figure 2. Average distance for different twist
values in a 32× 16 network.

among all the possible twists in Rectangular Tori (RT) of
size 2a× a. However, the proof of these statements is quite
laborious and does not contribute to a better understanding
of the work presented here. For that reason, we have omit-
ted such proofs. Nevertheless, the interested reader could
deduce these assertions from the results presented in [14].
In the next Subsection, we present a more digestive analysis
of the distance properties of RTTs based on the topological
properties of their underlying rings.

3.1. Rectangular Twisted Tori

A standard RT of size 2a×a, as the one depicted in Fig-
ure 1(a), can be visualized as a composition of two sets of
orthogonal rings of sizes 2a and a. Node labels correspond
to pairs (x, y) indicating column and row. Nodes with the
same x or the same y component belong to the same vertical
or horizontal ring, respectively.

The diameter of a network, k, is the length of the longest
minimum path. The average distance, k, is the average
length of all minimum paths from one node to any other
different one. We also consider k̃, which represents the dis-
tance averaged among all of the nodes, including the source
itself. Note that, in a network with N nodes, k̄ = k̃ · N

N−1 .
In order to study the distance properties of rectangular Tori,
we first consider such properties in a ring.

Remark 1 The distance parameters k and k̃ of a ring of n
nodes are:

k =
n

2
; k̃ =

n

4
.

Note that in all of the calculations we consider n to be even;
having n odd would only slightly modify the resulting val-
ues.

Remark 2 The diameter k and average distance k of a RT
of 2a× a nodes are:

k =
2a

2
+

a

2
=

3
2
· a ; k̄ =

(
2a

4
+

a

4

)
· 2a2

2a2 − 1
≈ 3

4
· a

It is interesting to note that in this 2 : 1 Tori under uni-
form traffic the average number of hops on X will be twice
as those on Y , so that if every X link is 100% busy, Y links
will be at most 50% busy. Then, the maximum average link
utilization will be 75%.

Next, we focus our attention on studying the distance
properties of 2a × a RTT networks as the one depicted in
Figure 1(b). To obtain closed formulae for the diameter and
average distance of the network, we describe its distance
distribution Ωa(d), that is, the number of nodes at distance
d from node (0, 0). As these networks are node symmetric
all the nodes see the same distance distribution.



Proposition 3 The distance distribution of a RTT with 2a×
a nodes is:

Ωa(0) = 1; Ωa(d) = 4d, if 0 < d < a; Ωa(a) = 2a− 1.

This proposition is a direct consequence of the results
introduced in [14], where the distance distribution of a gen-
eral family of networks denoted as Gaussian graphs is pre-
sented. From this distance distribution we can easily obtain
the following result:

Corollary 4 The diameter k and the average distance k̄ of
a RTT with 2a× a nodes are:

k = a ; k̄ =
∑a

i=1 i · Ωa(i)
2a · a− 1

=
4a2 − 1

3(2a2 − 1)
a ≈ 2

3
· a.

Thus, just adding a twist to 2a links in a RT produces a
significant reduction of the diameter and average distance.
More in detail, diameter is reduced in 33.3% and average
distance in 11.1%. Furthermore, a very important property
is regained in the RTT: the symmetry in dimensions X and
Y . As we will see in Section 5, the use of this twist removes
the network bottleneck in the longer dimension. This means
that under uniform traffic, both X and Y links can be fully
utilized (100%), leading to a 33.3% increase in link utiliza-
tion with respect to RT.

3.2. Routing in Rectangular Twisted Tori

Now, we introduce a routing algorithm which computes
the shortest path between any pair of nodes by applying
simple operations on their coordinates. Although we re-
strict our routing to 2a× a node networks, a generalization
for other rectangular Tori can be straightforwardly obtained.

A routing record, (∆X, ∆Y ), heading the packet will
be generated by the source network interface. ∆X rep-
resents the number of links that the packet must traverse
along the axis of the first coordinate and ∆Y the number
of links along the second coordinate’s axis. Their signs in-
dicate E/W and N/S directions. Routers will process the
header information in the same way as in a Torus, decre-
menting the corresponding field header before sending the
packet to the selected neighbor. A packet with ∆X = 0
and ∆Y = 0, will have reached its destination and will be
delivered. There are multiple implementations for generat-
ing routing records in RTT but we present in Algorithm 1
the mechanism that has lower temporal complexity. We will
employ in our experiments an optimal fully adaptive routing
mechanism built on this basis.

The correctness of this routing mechanism is proved with
a geometrical approach. This kind of regular graphs can be
fully represented by plane tessellations [20]. The graph is
characterized by a tile of area 2a2 that tessellates the plane.
Each tile is defined by its origin node (left-lower corner

input : a: Parameter of the 2a× a RTT.
(sx, sy): Source node.
(dx, dy): Destination node.

output: (∆X, ∆Y ): routing record
begin

DO IN PARALLEL:
begin{

∆x0 := dx − sx;
∆y0 := dy − sy;

{
∆x1 := dx − sx − a;
∆y1 := dy − sy − a;{

∆x2 := dx − sx + a;
∆y2 := dy − sy − a;

{
∆x3 := dx − sx + 2a;
∆y3 := dy − sy;{

∆x4 := dx − sx − 2a;
∆y4 := dy − sy;

{
∆x5 := dx − sx + a;
∆y5 := dy − sy + a;{

∆x6 := dx − sx − a;
∆y6 := dy − sy + a;

end
(∆X, ∆Y ) := (∆xi, ∆yi) such that |∆xi|+ |∆yi| is
minimum;

end
Algorithm 1: Routing Record Generator for RTT.

nodes highlighted in each rectangle of Figure 3 for a RTT of
8 × 4 nodes). Nodes in the same position of different tiles
represent the same node of the network. As the diameter
of the network is a, any node reaches any other destination
with no more than a jumps.

The shadowed areas of Figure 3 show the possible
destinations for two given source nodes, (0, 2) and
(7, 3). Obviously, minimum paths from any node in the
original tile will never go further than a jumps out of
the tile, as shown in the figure with the black border
that comprises the original tile and the six immediate
neighbors. The next part of the proof is to show in terms
of a that the eight segments of this border only com-
prise the seven tiles whose left-lower corners are the nodes
{(0, 0), (a, a), (−a, a), (−2a, 0), (2a, 0), (−a,−a), (a,−a)}.
This implies that the minimal path within any pair of nodes
can be found in that tile set. Details are omitted for their
obviousness and for the sake of simplicity.

Our routing algorithm computes all the possible paths
from a source node to the copy of the destination node in
each one of the 7 possible tiles. After computing these
paths’ lengths in parallel, the algorithm returns the routing
record having minimal length.

4. Three-dimensional Networks

The resource unbalance exhibited by mixed-radix 2D
networks also happens in non-cubic 3D Tori, or Prismatic
Tori (PT). In this section we focus our attention on building
3D networks derived from RTTs. We present two different
approaches. The simplest one considers networks built with
just one twist by piling up a RTTs. We have denoted such
a network as Prismatic Twisted Torus (PTT). Next, we con-
sider the network with twists on both Y and Z peripheral



Figure 3. Possible Paths Departing from a 8×
4 RTT.

links, leading to a Prismatic Doubly Twisted Torus (PDTT).
As we want to compare PT against PTT and PDTT let us

consider first its distance-related parameters. The following
result is direct as the PT is the product of three rings:

Proposition 5 The diameter k and average distance k̄ of a
3D PT of size 2a× a× a are:

k = a +
a

2
+

a

2
= 2a ; k̄ =

(
2a

4
+

a

4
+

a

4

)
2a3

2a3 − 1
≈ a

Also, note that, same as in RT, when the X links in PT
are fully utilized, links in Y and Z can be at most 50% used
under uniform traffic, leading to a global link utilization of
66.7% [6].

A PTT is composed of a RTTs of size 2a × a on the
XY planes, with links in Z forming rings. In Figure 4(a)
we can see a PTT network of 8× 4× 4 nodes, where most
links in the Z dimension have been omitted for the sake of
clarity. The expressions for the distance-related parameters
of a PTT are:

Proposition 6 The diameter k and average distance k̄ of a
PTT of size 2a× a× a are:

k =
3
2
· a ; k̄ ≈ 2a

3
+

a

4
=

11
12

· a

This result is direct if we see the PTT as a RTT in the
XY plane and a ring of a nodes in the Z dimension. From a
topological point of view, the PTT provides an improvement
of approximately 25% in diameter and 8.33% in average
distance, and provides symmetry in X, Y , allowing the full
use of these links under uniform traffic and providing an
increase of 25% in link utilization. A routing algorithm for
PTTs is very simple as we can independently compute the

(a) PTT of 8× 4× 4 nodes.

(b) PDTT of 8× 4× 4 Nodes.

Figure 4. 3D Prismatic Twisted Tori and Dou-
bly Twisted Tori.

routing record in the XY plane as proposed in Subsection
3.2, and in the ring of the Z dimension.

PDTT is built by applying a twist to both Y and Z pe-
ripheral links over the X dimension. Thus, this network
consists in building RTTs in the XY and XZ planes. This
makes the network fully symmetric on X, Y and Z, leading
to an increase of up to 50% in global link utilization with re-
spect to PT. Figure 4(b) shows horizontal and vertical cuts
of a PDTT. Expressions for the distance-related parameters
and the routing record generator for PDTTs can be derived
analogously as in RTT. We omit details for simplicity.

Proposition 7 The diameter k and average distance k̄ of a
PDTT sized 2a× a× a are:

k =
3
2
· a ; k̄ ≈ 7

8
· a

5. Performance Evaluation

We describe in this Section the behavior of these mixed-
radix networks under the effect of different synthetic loads.



As a first approach, we have used uniform synthetic loads
to better understand the advantages of the proposed topolo-
gies. Uniform traffic is useful for detecting network bot-
tlenecks as it reflects the topological properties of the net-
work under study. Afterwards, we have completed this
study using different permutations and adverse traffic pat-
terns. Synthetic loads capture the representative aspects of
application-driven workloads and are easier to design and
manipulate. Furthermore, we do not use traces or real traf-
fic as it becomes unpracticable with large network sizes. In
contrast with uniform traffic, other loads are sensitive to the
order in which nodes are labeled as packet destinations are
selected depending on their label. After evaluating differ-
ent mappings, we found that the best results are obtained if
the nodes are labeled following the shortest dimensions first
(i.e., node label increases along a column in RT or RTT, or
in Y ZX order in 3D networks). In order to make a fair
comparison, we have used these mappings on our simulated
experiments.

Network evaluations is performed using FSIN, a detailed
network simulator developed in the UPV/EHU [17]. It can
manage 1D, 2D and 3D routers. The router model is similar
to the one implemented in the IBM BlueGene/L. Switching
strategy is Virtual Cut-through [12]. Packet routing is fully
adaptive and deadlock is avoided by means of Bubble flow
control [16]. Packets are always 16 phits long (A phit is
the amount of data bits that can be transmitted in parallel
through a network link). The inter-injection interval at each
node is random, chosen in such a way that injection can be
modulated in terms of phits/cycle/node.

Performance data is shown in accepted load vs. provided
load (throughput). Provided load is an input parameter,
measured in phits/cycle/node. Accepted load is a measured
value that indicates how many phits/cycle/node the network
has been able to consume successfully. When the network
is not saturated, both values are almost identical. However,
when some of the routers (or all of them) saturate, actual
throughput may be much smaller than applied load. In fact,
under uniform traffic the theoretical limit of throughput is
fixed by the network bisection bandwidth [11]. For a Torus
with bidirectional links, this limit is 8/n, where n is the
number of nodes in the longest dimension. We also provide
latency data in the form of plots of average packet delay vs.
provided load. We measure the number of cycles between
the instant a packet is injected (stored in the input buffer
of the source router) until it is consumed at its destination
node.

We have evaluated the performance of both RT and RTT
with 128 (16× 8), 512 (32× 16) and 2048 (64× 32) nodes.
With 3D topologies, we have made a comparison of PT,
PTT and PDTT of 1024 (16× 8× 8), 8192 (32× 16× 16)
and 65536 (64× 32× 32) nodes.

The first set of experiments compare the results of 2D

(a) Throughput

(b) Latency

Figure 5. Throughput and delay for 32× 16 RT
and RTT under uniform traffic (UN).

networks, RT and RTT. We just show the case of the 32×16
network as all the remaining figures are equivalent. Figure
5(a) shows throughput for these topologies under uniform
traffic. RTT arrives at saturation with a higher applied load
and, therefore, the accepted load is significantly higher. As
we introduced in Section 3, there are two factors behind this
performance increase. On the one hand, the balance in the
use of X and Y channels can contribute on a factor of 1.33.
Figure 5 shows the link utilization for both RT and RTT on
saturation. The bars on the left clearly show the limited use
of Y channels on RT, while the bars on the right show their
balanced use on RTT. On the other hand, the average dis-
tance is reduced in a factor of 1.11. This directly affects the
base latency, which can be observed in Figure 5(b). Over-
all, there is a theoretical factor of 1.111 × 1.333 = 1.481
improvement in throughput, which is reflected in the Fig-
ure 5(a). This plot presents a throughput increase of 57% in
saturation. Note that the result is slightly over the expected
value because RT presents a throughput drop after reaching
saturation. The speedup over the highest measured value is
46.4%.

However, this improvement under uniform traffic would
be useless if the network performed poorly under other traf-
fic patterns. Figures 8 show the network throughput for dif-
ferent random (hot-region [6]) and some permutation pat-
terns (bit-complement, bit-reversal and perfect shuffle [11]).
It can be observed that in all cases the RTT provides a sig-
nificative improvement with respect to RT, ranging from



Figure 6. Link utilization for 32 × 16 RT and
RTT in saturation.

Figure 7. Time to complete 5 shots in an op-
timal RTT of 32× 16 nodes

24.3% (Bit-complement) to 51.4% (Hot-Region).
Next, we have estimated the reduction in execution time

of programs running on these topologies using the synthetic
traffic patterns previously introduced. This differs from la-
tency data in that it analyzes the time to finish 5 “shots”
of an application. Obviously, shorter times imply a higher
network performance. The results are shown in Figure 5.
We have obtained an average improvement of 29.8%, which
demonstrates the great interest of this topology in front of
the Rectangular Torus.

In the case of the 3D network, we have followed the same
set of experiments with networks sized 64× 32× 32. Note
that these values correspond to the size of the Torus network
of the largest configuration of the BlueGene [7]. Figure 9
compares PT, PTT and PDTT in terms of throughput and
latency under uniform traffic. The figures for other sizes are
equivalent.

The theoretical analysis of these topologies predicted an
increase in throughput in a factor of 1.0833× 1.25 = 1.354
in PTT and 1.143× 1.50 = 1.714 in PDTT, both due to the
reduction in average distance and the more balanced use of
resources. Figure 9(a) shows that the maximum through-
put is reached with higher applied load in PTT than in PT,
and even higher in PDTT. The increases for the maximum
injected load are respectively 33.3% and 59.8% compared
with PT. However, note that these values are measured un-
der heavy saturation, and the network performance decays
after reaching maximum throughput, specially in networks

(a) Bit-Complement (BC) and Hot-Region (HR)

(b) Bit-Reversal (BR) and Perfect Shuffle (PS)

Figure 8. Throughput for different traffic pat-
terns for 32× 16 RT and RTT.

(a) Throughput

(b) Latency

Figure 9. Throughput and Delay, 64 × 32 × 32
PT, PTT and PDTT, uniform traffic.

with large rings [15]. The increase of the values measured
on the highest point on each curve are 49.9% and 74.9%.
We must also consider that many times these large 3D ma-



Figure 10. Link utilization for 64 × 32 × 32 PT,
PTT and PDTT in saturation.

chines are partitioned for different jobs. Though in these
cases the improvement would not be so large, performance
would still increase. For example, it is clear that consid-
ering the different 2a × a planes as the different partitions
leads to an increase equal to that of RTT over RT.

Figure 10 shows the channel use under uniform traffic
for these topologies. As in the 2D case, PT presents a bot-
tleneck in X , as packets have to travel twice as many hops
as in the other dimensions. In PTT the utilization of Y is
similar to X , but Z still remains under-used. Finally, PDTT
presents a balanced utilization of all dimensions, which ex-
plains the performance increase.

At last, Figure 11 shows throughput data for the same
traffic permutations as in the 2D case. PTT always out-
performs PT, with a speedup from 37.1% (in bit-reversal)
to 53.2% (in perfect shuffle). PDTT improvements over PT
are higher, from 59.7% (in bit-reversal) to 88.7% (in perfect
shuffle).

6. Wiring RTT, PTT and PDTT Networks

The notable performance gains exhibited by twisted rect-
angular and prismatic Tori compared with their standard
Tori comes from a rearranging of the peripheral links.
Hence, we have to consider the consequences derived from
this rearrangement on the layout of the resulting network.

6.1. Bounded Link Length Layout for 2D
RTT

In square Tori, the length of the wraparound links grows
with the network size. While internal links are supposed to
have unitary length, wraparound links grow as

√
N . As a

consequence, real implementations could be negatively af-
fected by this unbalance. The folded Torus is a good so-
lution to equalize all the network links by increasing the
individual wire length to 2 [11]. This idea is based on ap-

(a) Perfect Shuffle (PS) & Bit-Reversal (BR)

(b) Bit-Complement (BC) & Hot-Region (HR)

Figure 11. Throughput for different traffic pat-
terns, 64× 32× 32 networks.

plying certain shuffle transformations to rows and columns
that interleaves the nodes. Two different shuffle transfor-
mations can be considered. Given a row (or column) of n
nodes (0, . . . , n−1), the following transformations map ev-
ery node location (x, y) onto a different one (x′, y) on the
same row (or column) (only row shuffle is shown):

• Shuffle A:
x′ = 2x if x < n/2.
x′ = 2n− 2x− 1 if x ≥ n/2.
• Shuffle B:
x′ = 2x + 1 if x < n/2.
x′ = 2n− 2x− 2 if x ≥ n/2.

Analogously to the folded Torus, we propose a new fold-
ing for RTT, denoted as Trellis Folded RTT, that generates a
layout in which link lengths are equalized and bounded by√

5. The whole process is detailed in Algorithm 2. Figure
12 shows a Trellis Folded layout of an 8×4 RTT. Note that,
as in the Folded Torus, two planes are enough to lay all links
without cutting each other.

This technique can be also applied in “block mode”. As
an example, consider a 32× 16 RTT where each 4× 4 sub-
mesh is a single block. This network can be represented as
the basic 8× 4 RTT in Figure 1(b), but each node becomes
in a 4 × 4 sub-mesh and each link becomes in a group of 4
parallel links joining two such sub-meshes. After applying
Algorithm 2 to the basic 8 × 4 network, the 32 × 16 block
folded layout is obtained by simply substituting each node



Data: a
Step 1, Initial layout: Arrange the 2a2 nodes in a rows
(0, . . . , a− 1) and 2a columns (0, . . . , 2a− 1).
Step 2, Row rotation: For each row i, rotate the row i positions to
the right.
Step 3, Column rotation: For each column i, rotate the column⌊

i+1
2

⌋
positions down.

Step 4, Column shuffle: Apply an A shuffle to even rows and a B
shuffle to odd ones.
Step 5, Row shuffle: Shuffle all rows according to shuffle A.

Algorithm 2: Trellis Folding Mapping Algorithm.

Figure 12. 8× 4 Trellis Folded RTT.

by the 4×4 sub-mesh, and each link by the four correspond-
ing parallel links. In general, this method can be applied to
any block size.

6.2. Layouts and Cabinet Distributions for
3D PTT and PDTT

3D networks for large parallel systems are usually dis-
tributed among several cabinets. We take, as an example,
the system layout of the larger configuration of the Blue-
gene/L (64×32×32 nodes) [7]. The system is organized as
8×8 cabinets of 1024 nodes each. Dimension Z evolves in-
side every pair of cabinets as every cabinet has an 8×8×16
node configuration. Cabinets have been connected in pairs
so that every pair shares X and Y dimension while Z grows
inside it. These pairs of cabinets are laid on a rectangular
array, with a standard folding applied on rows and columns
to equalize cable lengths.

Now we deal with a folded layout for PTT. Considering
that a close group of cabinets comprises the whole Z di-
mension for the nodes (x, y) within it, we can obviate such
a dimension. Consequently, the folding problem is reduced
to the previous bi-dimensional RTT case. Considering the
network and cabinet sizes stated above and 8 × 8 blocks,
each pair of cabinets would correspond with a node in a
regular 8× 4 RTT. Thus, the Trellis Folding can be directly
applied. Figure 13(a) shows the resulting layout. Labels
on cabinets mean x, y, z coordinates of each first node in
the block. Note that only links between cabinets have to be
modified, preserving the internal cabinet connectivity.

A PDTT is built by twisting both Y and Z dimensions.

(a) Trellis Folded PTT cabinet distribution.

(b) Folded PDTT cabinet distribution.

Figure 13. Cabinet Distribution, 3D Networks.

In this case, the dimension Z cannot be comprised inside a
group of cabinets that share the same (x, y) nodes. Instead,
dimension Z is spread between two groups of cabinets cor-
responding to different (x, y) nodes. Continuing with the
previous example, Z should connect two pairs of cabinets.
In this case, we cannot apply the previous Trellis Folding, as
it places these pairs of cabinets in opposite locations. How-



ever, another folding technique based in [13] can be applied,
which roughly corresponds to applying a shuffle once on Y
and twice on X . The resulting layout leaves such pairs of
cabinets together, as shown in Figure 13(b) (most links are
omitted for the sake of clarity), but increases the maximum
link length to 4. Note that, as before, only links between
cabinets have to be reconnected.

7. Conclusions

There are several commercial parallel computers that use
rectangular or prismatic Tori as topologies for their inter-
connection networks. We have evidenced severe commu-
nication bottlenecks in such networks that negatively affect
their performance. Basically, performance degradation is
provoked by the asymmetry induced in a network that has
dimensions of different size.

In this paper, we have proposed and analyzed Twisted
Torus networks that remove these bottlenecks by equaliz-
ing the length of the paths traversed by packets on each di-
mension. We have evaluated the performance of Twisted
Tori both theoretically and by means of simulation. The
node model employed in our experiments incorporates all
the architectural features of current packet routers and re-
sembles the one employed in the BlueGene/L. Simulation
results obtained for different network sizes report through-
put gains between 33% and 88% for uniform traffic. The
imputable added costs of twisted networks come from both
their packet routing mechanisms and their wireability. We
propose in this research scalable and practicable solutions
for these important architectural issues. As a conclusion,
the proposed topologies appear as a clear option to improve
the overall network performance by just rearranging the pe-
ripheral links of the network.
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