
Dense Gaussian Networks: Suitable Topologies for

On-Chip Multiprocessors

Carmen Mart́ınez1, Enrique Vallejo1, Ramón Beivide 1, Cruz Izu 2 and Miquel Moretó 3.

Keywords: On-Chip Networks, Topology, Lay-out, Routing, Broadcasting, Circulant

Graphs.

Abstract

This paper explores the suitability of dense circulant graphs of degree four for the

design of on-chip interconnection networks. Networks based on these graphs reduce

the Torus diameter in a factor
1√
2

which translates into significant performance gains

for unicast traffic. In addition, they are clearly superior to Tori when managing col-

lective communications.

This paper introduces a new two-dimensional node’s labeling of the networks ex-

plored which simplifies their analysis and exploitation. In particular, it provides simple

and optimal solutions to two important architectural issues: routing and broadcast-

ing. Other implementation issues such as network folding and scalability by using

hierarchical networks are also explored in this work.

1Depto. Electrónica y Computadores. Universidad de Cantabria. Avenida de los Castros s/n 39005

Santander, Spain. Email: carmen.martinez@unican.es, {enrique, mon}@atc.unican.es.
2Dept. Of Computer Science. The University of Adelaide. Adelaide, SA 5005, Australia. Email:

cruz@cs.adelaide.edu.au.
3Depto. Arquitectura de Computadors. Universitat Politcnica de Catalunya. Campus Nord, 08034

Barcelona, Spain. Email: mmoreto@ac.upc.edu.

1

1 Introduction

The increasing number of transistors per chip has lead to the design of multiprocessors

in a single die. These chips containing multiple processor cores are denoted as on-chip

multiprocessors (CMPs). Large scale systems, such as Piranha [1] and IBM Power4 [17],

combine multiple CMPs to obtain higher performance. The problem of choosing the ap-

propriate architecture for implementing a CMP is still open nowadays. One proposed

solution is to employ point-to-point on-chip networks [10]. In this way, the resulting reg-

ular wiring scheme allows to reuse highly optimized system components, including wiring

layouts.

With current technology, on-chip networks have to be arranged in two dimensions. We

consider in this paper suitable 2D topologies for the design of on-chip networks which

minimize distances among nodes. We will model the network by means of its associated

graph, processors being represented as graph nodes and communication links as the edges

connecting them. Two basic distance-related graph parameters are diameter and average

distance. Both diameter (longest path among nodes) and average distance should be as

low as possible to minimize communication delays.

The simplest bi-dimensional topology is a 2D Mesh, whose longest path connects any

pair of nodes located in opposite corners. Thus, the diameter of a N -node 2D Mesh is

2(
√

N − 1). The torus adds 2
√

N wrap-around links to an N −node Mesh, which reduces

its diameter to
√

N or
√

N − 1 depending on whether
√

N is even or odd. It also provides

symmetry, a very desirable topological property because it simplifies network analysis and

design.

In real life, we reduce the distance between two points in a plane, by traveling via the

shortest (Euclidean) path. If the same were possible for messages traveling among nodes

in a square lattice, their longest path would be the distance between the farthest nodes

2

(the diagonal), that is
√

2
√

N .

We will show that it is possible to find a mesh-like graph that halves this maximum dis-

tance by adequately connecting its wrap-around links. Its diameter is

⌊√
N√
2

⌋
. Hence,

messages traveling between the farthest nodes will use paths whose distances are bounded

by half of the maximum Euclidean distance in a square of size
√

N
√

N . These networks

can be successfully applied to the design of on-chip parallel systems. As we will see, for

the same number of nodes and links, their richer connectivity and lower diameter make

them topologically superior to Tori for both individual and collective communications.

The networks presented in this paper are based on the family of dense degree four Cir-

culant graphs, that is, containing the maximum number of nodes for a given diameter.

Circulant graphs have been used for decades in the design of computer and telecommunica-

tion networks due to their optimal fault-tolerance characteristics and their simple routing

algorithms [6]. The name Circulant comes from the nature of its adjacency matrix; a

matrix is circulant if all its rows are periodic rotations of the first one. The family of

circulant graphs includes among its members the Complete graph and the Cyclic graph

(Ring).

Traditionally, the N nodes of a circulant graph have been labeled by means of the subset

of integers ranging from zero to N − 1. A previous paper has shown that Gaussian inte-

gers, or the subset of the complex numbers with both real and imaginary integer parts,

provide the appropriate mathematical model to deal with a subfamily of circulant graphs

denoted as Gaussian graphs [12]. As these networks are based on Gaussian graphs con-

taining the maximum number of nodes for a given diameter, we denote them as Dense

Gaussian Networks (DGNs). One of the advantages from considering Gaussian integers

to model these graphs is the existence of an adequate two-dimensional labeling of their

nodes. There are many applications over dense Gaussian networks that can benefit from

this new bi-dimensional labeling. We will consider in this paper some of them such as

3

unicast and broadcast packet routing which lead to simple hardware implementations and

the design of hierarchical networks.

The rest of this paper is organized as follows. Section 2 motivates the suitability of DGNs

for on-chip networks by comparing them versus Tori topologies. Next, Dense Gaussian

Networks are defined in Section 3. Section 4 presents an optimal routing algorithm for

DGNs which only uses sums and comparisons. Section 5 describes a broadcast algorithm

based on a geometrical interpretation of DGNs. Section 6 considers implementation is-

sues for DGNs such as two-dimensional folding and hierarchical based topologies. Finally,

Section 7 concludes the main achievements of the paper.

2 Motivation

This Section motivates the suitability of dense Gaussian networks for the design of on-

chip networks. We present the main characteristics of these networks in comparison to

Tori. Both networks are degree four symmetric graphs containing N nodes and connecting

them by the same number of links, 2N . However, as we will see later in the paper, the

diameter of the dense Gaussian network is just around 70% of the diameter of a Torus of

the same size. The richer connectivity of a DGN has as a counterpart a higher number

of wrap-around links in its two-dimensional layout. The difference between the number of

wrap-around links used by both networks is around a 6%. Then, a 30% diameter reduction

is achieved by employing only about 6% more wraparound links. This seems to be a man-

ageable cost when considering the impact that the diameter has on network performance.

It has been previously proved that reducing topological distances by skewing the wrap-

around links in rectangular and ”L-shape” Tori, results in better system performance [7],

[15], [20]. Having lower distances implies higher network throughput and lower packet

latencies which reduce the execution times of typical applications running over different

4

kinds of multiprocessor platforms.

Nevertheless, we need to compare the two networks not only from the topological point

of view, in which the dense Gaussian network is the clear winner, but also in terms of

their cost, performance and implementation. Consequently, we will devote the rest of this

Section to explore different factors that make a network topology suitable for an on-chip

parallel system. For each one, we will describe how the DGN fares against the Torus.

It is clear that networks should be deadlock-free and provide adaptive minimal routing

at a reasonable cost even in the presence of failures. A minimal and easy to implement

unicast packet routing will be considered in Section 4. Based on this new mechanism,

simple and efficient adaptive routing and deadlock-avoidance mechanisms defined for Tori

can be easily exported to dense Gaussian networks. For example, the adaptive Bubble

routing algorithm proposed in [16] for Tori can be successfully used in Gaussian networks,

even in the presence of arbitrary failures. The implementation costs are identical for both

topologies. That routing mechanism has one of the best cost/performance ratio, and has

been applied to the design of the torus network for the IBM BlueGene/L supercomputer

[5].

An optimal network should efficiently support collective communications like one-to-all

and all-to-all broadcasting and reductions. Modern cache coherency protocols [11] and

synchronizing barriers implementation are based on broadcast trees. As the connectivity

pattern of dense Gaussian networks allows to reach the maximum number of nodes for

a given diameter, a broadcast tree can be traversed in the shortest possible time. We

present in Section 5 a broadcast algorithm that is universal for every node and ends in

time proportional to the diameter of the network, which is
√

N
2 . A similar broadcast in a

Torus needs
√

N steps. In addition, a hardware implementation of our one-to-all broadcast

is much simpler than equivalent optimal mechanisms for Torus networks [21]. Reduction

collective operations can also beneficiate from DGN connectivity as they employ a similar

5

communication topology.

Finally, the network should be easily implementable on a VLSI chip. The number and

shape of wrap-around network links has a significant impact on its final layout. Minimizing

the number of wire’s crosses and equalizing their lengths should be goals to be pursued

in order to achieve a scalable network design. The wrap-around connectivity of the dense

Gaussian network makes it difficult to produce such a compact layout. Nevertheless, as

we will see in Section 6, a folding technique can be applied over Gaussian networks for

obtaining a lay-out similar to the one employed by folded Tori. We provide a method in

which physical distances among nodes are equalized and the maximum wire length for the

resulting layout is
√

5, regardless the number of network nodes. Furthermore, no more

than four metal layers are needed for a complete planar implementation.

3 Dense Gaussian Networks

As mentioned before, dense Gaussian networks are built over circulant graphs. The vertex-

symmetry of circulants allows their analysis starting from any vertex (node zero unless

any other is stated), which simplifies their study. By exploiting this property, degree four

circulants have traditionally been studied by means of plane tessellations, [8], [19].

A Circulant graph with N vertices and jumps {j1, j2, . . . , jm} is an undirected graph

in which each vertex n, 0 ≤ n ≤ N − 1, is adjacent to all the vertices n ± ji, with

1 ≤ i ≤ m. We denote this graph as CN (j1, j2, . . . , jm). It is clear that a circulant

graph CN (j1, j2, . . . , jm) is connected if and only if gcd(j1, j2, . . . , jm, N) = 1. In this

case, the circulant CN (j1, j2, . . . , jm) is a regular graph of degree 2m since every vertex is

connected to exactly 2m vertices. Figure 1 shows the degree four circulant graph C25(3, 4).

In a degree four circulant graph there can be, at most, 4d different nodes at distance d

from node 0. Thus, for a given diameter k the maximum number of nodes of a CN (j1, j2)

6

0 124
2

3

4

11
10

9

5

6

7

8

15
14 13 12

23
22

21

20

19

18

17

16

Figure 1: C25(3, 4) Circulant Graph.

graph is:

N = 1 + 4
k∑

d=1

d = 1 + 4

(
k(k + 1)

2

)
= 2k2 + 2k + 1.

Graphs containing such a maximum number of nodes can be denoted as dense degree four

circulants. Different authors have shown that CN (k, k + 1) graphs with N = 2k2 + 2k + 1

are dense degree four circulants, [3], [4], [6], [2]. The circulant depicted in Figure 1 is,

actually, one of these dense graphs for k = 3 and N = 25. It is easy to infer from the

previous expression that the diameter of a CN (k, k + 1) graph is k =
⌊√

N
2

⌋
. In the same

way, as there are 4d different nodes at distance d from node 0, the average distance of a

CN (k, k + 1) graph is:

k̄ =

4
k∑

d=1

d2

N − 1
=

4k(k + 1)(2k + 1)
6(2k2 + 2k)

=
2k + 1

3
∼=

2
3

√
N

2
.

Gaussian networks are based on these circulant graphs of degree four but they employ a

two-dimensional labeling of their nodes which facilitates their analysis and exploitation.

7

With this new labeling nodes are represented with two integer coordinates. Next, we

define Dense Gaussian Networks.

Definition 1 Let k be a positive integer. The Dense Gaussian Network of diameter k, or

Gk, is defined as follows:

• The square Qk = {(x, y) ∈ Z× Z | |x|+ |y| ≤ k} is the set of nodes and

• Every node (x, y) ∈ Qk is adjacent to the nodes (x + 1, y), (x− 1, y), (x, y + 1) and

(x, y − 1) MOD (k, k + 1),

where the equivalence relation MOD is defined as follows:

(x, y) ≡ (x′, y′) MOD (k, k+1) ⇔ ∃u, v ∈ Z|(x = x′+uk−v(k+1))∧(y = y′+u(k+1)+vk).

Figure 2: Dense Gaussian Network G3.

We can see in Figure 2 the circulant graph C25(3, 4) of Figure 1 as a dense Gaussian

network with diameter k = 3. As an example of how MOD function works, consider node

(1, 2) ∈ Q3. This node is adjacent to nodes (0, 2) and (1, 1) inside the mesh. The wrap-

around links that connects the node (1, 2) to its other two adjacent nodes are determined

by:

8

• (1 + 1, 2) = (2, 2) ≡ (−1− 2) MOD (3, 4) taking u = 1, v = 0.

• (1, 2 + 1) = (1, 3) ≡ (−2,−1) MOD (3, 4) taking u = 1, v = 0.

Note that this modulo function is only necessary for determining peripheral adjacency

among nodes. Actually, this two-dimensional modulo function is the modulo reduction

over the complex numbers with real and imaginary integer parts or Gaussian integers.

Moreover, this modulo operation corresponds with different translations of the region Qk

which tessellate the plane, as shown in Figure 3. Looking at this Figure it is easy to see

that the 2k + 1 nodes located at the north boundary are connected to the 2k + 1 nodes at

the south by means of wrap-around links which are skewed k positions. The same applies

to east and west boundaries.

Figure 3: Plane tessellation.

4 Unicast Routing

There are many applications over dense Gaussian networks that can benefit from the two-

dimensional labeling of nodes presented in the previous Section. We consider first the

9

problem of unicast minimal packet routing.

To send a packet from node (x, y) to node (x′, y′), we need to obtain (∆X, ∆Y) =

(x′ − x, y′ − y) MOD (k, k + 1), with |∆X|+ |∆Y | minimum. Once (∆X, ∆Y) is obtained,

∆X represents the number of links that the packet must traverse along the axis of the

first coordinate and ∆Y the number of links along the second coordinate’s axis. Then,

the network interface will produce a packet header containing two fields, ∆X and ∆Y ,

which indicate the links to be taken in each axis; their signs indicate directions E/W

and N/S directions. Routers will process the header information in the same way as in

a Torus, decrementing the corresponding field header before sending the packet to the

selected neighbor. A packet with ∆X = 0 and ∆Y = 0, will have reached its destination

and will be delivered.

In order to reduce the hardware complexity of the routing record computation, we have

developed a new algorithm to compute (∆X, ∆Y) by using only sums and comparisons.

Such an algorithm will be based on the following Proposition.

Proposition 2 Let k be a positive integer. Let (x, y), (x′, y′) ∈ Z×Z be such that |x|+|y| ≤

k and |x′|+ |y′| ≤ k. If (∆X, ∆Y) ≡ (x′−x, y′−y) MOD (k, k+1) is such that |∆X|+ |∆Y |

minimum, then (∆X, ∆Y) = (x′ − x, y′ − y) + (s1, s2) with (s1, s2) ∈ {(0, 0), (k, k +

1), (−k,−k−1), (−k−1, k), (k+1,−k), (−1, 2k+1), (1,−2k−1), (2k+1, 1), (−2k−1,−1)}.

Although a detailed proof can be found in [13], the idea behind this Proposition is that

the minimal path between two nodes, (x, y) and (x′, y′), always results in one of nine path

alternatives considering the destination node image in the nine tessellations, as illustrated

in Figure 3. Given k > 0, we consider (∆X, ∆Y) = (x′ − x, y′ − y). Then, (∆X, ∆Y) is

either inside the region 0 or in any of the other eight neighbor regions labeled in Figure 3

from 1 to 8. Hence, we could compute the weight of 9 integer couples and choose the one

with minimum weight. Algorithm 1 describes this simple mechanism.

Just as an example of how this mechanism performs, consider again G3 in Figure 2.

10

Data: (x, y): Source node; (x′, y′): Destination node; k: graph diameter
Result: (∆X, ∆Y): routing record((x, y), (x′, y′), k)
begin

∆X := x′ − x; ∆Y := y′ − y;

DO IN PARALLEL:

begin ∆x0 := ∆x− 0;

∆y0 := ∆y − 0;

 ∆x1 := ∆x− k;

∆y1 := ∆y − (k + 1); ∆x2 := ∆x + 1;

∆y2 := ∆y − (2k + 1);

 ∆x3 := ∆x + (k + 1);

∆y3 := ∆y − k; ∆x4 := ∆x + (2k + 1);

∆y4 := ∆y + 1;

 ∆x5 := ∆x + k;

∆y5 := ∆y + (k + 1); ∆x6 := ∆x− 1;

∆y6 := ∆y + (2k + 1);

 ∆x7 := ∆x− (k + 1);

∆y7 := ∆y + k; ∆x8 := ∆x− (2k + 1);

∆y8 := ∆y − 1;

end

(∆X, ∆Y) := (∆xi,∆yi) such that |∆xi|+ |∆yi| is minimum;
end

Algorithm 1: Unicast Routing Algorithm in dense Gaussian networks.

11

Now, consider (x, y) = (−2,−1) and (x′, y′) = (1, 1). We have to compute nine possible

candidates for the minimum path. As (x′ − x, y′ − y) = (3, 2), we obtain candidates

(x′ − x, y′ − y) + (s1, s2), where

(s1, s2) ∈ {(0, 0), (3, 4), (−3,−4), (−4, 3), (4,−3), (−1, 7), (−7,−1), (1,−7), (7, 1)},

Therefore, we have to choose the pair with minimum weight in the set:

{(3, 2), (6, 6), (0,−2), (1, 5), (7,−1), (2, 9), (−4, 1), (4,−5), (10, 3)}.

It is clear that routing record((x, y), (x′, y′), 3) = (0,−2), which gives us a minimal path

of length 2 for reaching the node (1, 1) from node (−2,−1).

Figure 4: Routing Record Generator.

The resulting routing record generator can be easily implemented in hardware. A parallel

implementation using nine adders and nine comparators will provide the fastest solution.

Figure 4 presents an sketch of such a routing record generator circuit. Cheaper alterna-

tives can also be implemented. Anyway, this routing reduces the complexity of previous

mechanisms by avoiding integer divisions and it also provides an scalable implementation.

12

5 Broadcast Routing

In this Section we present an optimal broadcast routing for dense Gaussian networks. Ef-

ficient implementation of collective communications for parallel computing is a research

topic that has received increasing attention in recent years. Broadcast communications

are employed in many parallel applications such as matrix multiplication, LU factoriza-

tion, Householder transformations and other basic linear algebra algorithms. Moreover,

important architectural issues such as maintaining cache coherency and supporting barrier

synchronization in multiprocessors may depend on the ability of the network to perform

broadcasting communication [11], [14].

We will refer to Figure 5 to describe our one-to-all broadcast algorithm. In this Figure,

we can identify a unitary central square in which node (0, 0) is located and four ”discrete”

right-angled triangles with identical legs of size k. We denote this special triangle as a

k-triangle. The number of nodes of a k-triangle is k(k + 1)/2. This geometric analysis

allows us to present a dense Gaussian network of diameter k as a central node plus four

k-triangular quadrants. Therefore, node (0, 0) has four different neighbors: (1, 0), (−1, 0),

(0, 1) and (0,−1). Each of these nodes is located on the right angle of a different k-

triangular quadrant: node (1, 0) belongs to quadrant SE, node (0, 1) belongs to NE, node

(−1, 0) belongs to NW and node (0,−1) belongs to SW. From each one of these nodes

located at distance 1 from node (0, 0) we can visit d different nodes at distance d, with

1 < d ≤ k.

We assume a router model with full-duplex links and all-port capability. Routers will sup-

port both unicast and broadcast routing, with the first header bit in every packet (B/U)

indicating the class of routing service. In the case of broadcast routing, the second field in

the packet header, denoted as distance, will be set to the network diameter, k, when the

broadcast communication starts. Before each new hop, every router will decrement this

field and when distance reaches zero, the broadcast will have finished. The third and last

13

Figure 5: One-to-all Broadcast Pattern.

field in the packet header, denoted as NSEW , has four bits to indicate to the router the

output ports to which the packet will be forwarded. We use bitmasks to deal with these

bits that we denote as B mask. The resulting header is quite compact: log2 k plus 5 bits,

nearly the same bits as needed for recording routing records for unicast traffic.

Any node starting a broadcast injects a packet to its local router with B/U = 1, distance =

k and NSEW = 1111. In the first step, the source node broadcasts in four directions,

reaching the right angle of each k-triangle. Each of the output ports of the source node

has its own bitmask, and updates the packet header according to it. For example, North

output has a bitmask B mask = 1010, as it sends the packet into the NE k-triangle. The

row (or column) reached by node (0, 0) will continue to broadcast in both dimensions,

while the other nodes will only propagate the packet along their column (or row) and up-

dating their B mask. For example, nodes (0, 1) and (0, 2) on the NE triangle broadcast

to the North and East and node (1, 1) only to the East, so that node (1, 2) does not receive

a duplicate.

14

Consequently, the broadcast occurs in k steps as Figure 5 reflects. In each step d, the

4d nodes at distance d from the source are reached with no contention. Note that the

utilization of the network links is balanced, as in each step d, there are d packets traveling

in each of the network quadrants. This means that it is possible to make a balanced use

of the N , S, E and W network links when all nodes broadcast at once.

By using broadcast bitmasks at each output port we can obtain a simple hardware imple-

mentation. The ports B mask is fixed, and the packet bitmask is updated on each output

port it transverses. In this implementation, any received broadcast packet is consumed

and sent to the outputs whose bits are set in the header field NSEW , and then each

output port will update that header field by doing a logical AND operation with its own

B mask. Algorithm 2 describes this mechanism.

As there are no duplicates, this algorithm uses N − 1 = 2k2 + 2k links, which is the

optimal number for a one-to-all broadcast operation. Besides, this algorithm is universal

for every node and ends in time proportional to the diameter k, which is of order of
√

N
2 .

A similar broadcast in a Torus needs
√

N steps. In addition, a hardware implementation

of our one-to-all broadcast is much simpler than equivalent optimal mechanisms for Torus

networks, such as the one proposed in [21].

6 Implementation issues

In this work, we introduce Dense Gaussian Networks as suitable topologies for modern

high-end multiprocessors whose nodes are, as well, on-chip multiprocessors. We are going

to consider in this Section two important architectural issues. The first one deals with the

implementation of the on-chip network and the second with the inter-node network.

15

Data: (B/U, distance,NSEW): Header of the incoming packet

N out mask = 1010; S out mask = 0101;

E out mask = 0110; W out mask = 1001
begin

if (distance < k) then

CONSUME packet;
end

if (distance > 0) then

distance := distance− 1;

if NSEW&&1000 then

send packet to N with (NSEW := NSEW&&N out mask);
end

if NSEW&&0100 then

send packet to S with (NSEW := NSEW&&S out mask));
end

if NSEW&&0010 then

send packet to E with (NSEW := NSEW&&E out mask));
end

if NSEW&&0001 then

send packet to W with (NSEW := NSEW&&W out mask));
end

end
end

Algorithm 2: One-to-All routing algorithm in a Dense Gaussian Network.

16

6.1 Folded Dense Gaussian Network

Dense Gaussian Networks, as 2D-Tori, are mesh-like topologies with wrap-around links,

whose lengths grow with the network size. While internal links are supposed to have uni-

tary length, wrap-around links in square Torus grow as
√

N , where N is the number of

nodes. As a consequence, an on-chip implementation can be negatively affected by this

unbalance. In the case of the Torus, the Folded Torus presented in Figure 6 is a solution

to equalize the network links by increasing the wire length to 2. With the same aim, a

new layout for Dense Gaussian Networks was proposed in [18], obtaining as a result a

maximum wire length bounded by
√

5.

(a) 4× 4 Torus (b) 4× 4 Folded Torus

Figure 6: 4× 4 Torus and Folded Torus

The algorithm begins with an initial layout of the network, arranged as follows. Nodes are

located in 2k + 1 rows and k + 1 columns. An example for the case of G4 with N = 41 is

shown in Figure 7. The first row contains a single node (node (0, 0), at the end of row 1).

Each node will have four links, two of them joining with the node above and the one on

the left of this. Vertical links will increase the coordinate in Y , while diagonal links will

17

increase the coordinate in X, with all the operations MOD (k, k + 1) as defined in Section

3. This procedure allows us to label all the nodes. Remaining links, shown in grey in the

Figure, can be obtained using the adjacency pattern of DGN.

The algorithm that maps a DGN into a bounded link layout is presented in Algorithm

6.1. Given a row with nodes {1, 2, . . . n} two shuffle transformations which map every

node location onto a different one on the same row are defined in the following way:

• Shuffle A:

x′ = 2x− 1 if x ≤ (n + 1)/2.

x′ = 2n− 2x + 2 if x > (n + 1)/2.

• Shuffle B :

x′ = 2x if x < (n + 1)/2.

x′ = 2n− 2x + 1 if x ≥ (n + 1)/2.

After using different rotations and shuffles of the rows and columns of the network, we

obtain a mapping of the dense Gaussian networks with no links larger than
√

5. As an

example, this algorithm converts the initial layout into the final layout in Figure 7.

An important property of any network-on-chip layout is the number of different metal

layers required to arrange all its links. This parameter will have a significant impact on

its cost. In the case of DGNs, four planes are enough to lay all the network links without

cutting links, as shown in [18]. Even more, in most of the area, except the upper and

lower links, three planes are enough.

6.2 Hierarchical Gaussian Networks

High Performance Computing systems are already being designed on the idea of multi-

CMPs, this is, systems built by joining together several Chip-Multiprocessors (CMPs),

such as [1]. While Gaussian Networks appear as a competitive option for the intra-chip

18

Data: t: Diameter of the network to map
Step 1 or Initial layout: Arrange the N = 2k2 + 2k + 1 nodes in 2k + 1 rows

(1, ..., 2k + 1) in an initial layout as defined above.

Step 2 or Row rotation and shuffle:

-For rows 1 ≤ i ≤ k + 1, apply a rotation
⌊

i−1
2

⌋
and then apply an A shuffle to

odd rows and a B shuffle to even ones;

-For rows k + 2 ≤ i ≤ 2k + 1, apply a rotation
⌊

i
2

⌋
and then apply a B shuffle to

odd rows and an A shuffle to even ones;

Step 3 or Column shuffle A: Shuffle all columns according to shuffle A.

Algorithm 3: Mapping Algorithm

interconnect, a hierarchical approach is needed to interconnect different CMPs. Hence, it

is necessary exploring new networks whose topological properties match the new require-

ments imposed by these emerging architectures. We explore in this Subsection hierarchical

Gaussian networks as possible candidates for implementing such two-level interconnection

networks.

Next, we define the two-level hierarchical Gaussian network, while it can be generalized

to any number of levels.

Definition 3 Given k a positive integer we define the Two-Level Hierarchical Gaus-

sian Network HGk of Gk as follows:

• Qk ×Qk := {((x, y), (x′, y′)) | (x, y), (x′, y′) ∈ Qk} is the set of nodes and

• A node ((x, y), (x′, y′)) is adjacent to a node ((x0, y0), (x′0, y
′
0)) if and only if (x, y) =

(x0, y0) and d((x′, y′), (x′0, y
′
0)) = 1 or (x′, y′) = (x′0, y

′
0) and d((x, y), (x0, y0)) = 1,

where d is the distance in Gk.

An intuitive visualization of how to build this network is to take N dense Gaussian net-

works of N nodes and join their centers following the adjacency pattern of a dense Gaussian

network of N nodes. A simple example with k = 3 and N = 25 can be seen in Figure 8.

19

(a) Initial layout for N = 41 (b) Final layout for N = 41

Figure 7: Folded Dense Gaussian Network.

Some of the wrap-around links are omitted for the sake of simplicity. Thus, we have that

HGk has N2 nodes and 2N2 + 2N links, where N = k2 + (k + 1)2. Also, it is clear that

the diameter of this structure is 3k. This is neither a regular graph, as we have nodes of

degree four and eight, nor a vertex-symmetric graph. We denote the links in lower level of

hierarchy as base links, while the links in the higher level are denoted as express links.

Unicast routing in this hierarchical network can be obtained from a direct generalization

of the Proposition 2 of Section 4, while broadcasting should also consider the different

levels of the network. This hierarchical Networks can be easily applied to the design of

multi-CMP systems, being the lower level the on-chip Network, and the higher level the

inter-chip network.

20

Figure 8: Hierarchical Gaussian Network HG3

7 Conclusions

This paper introduces Dense Gaussian Networks as a suitable regular two-dimensional

topology for on-chip networks. This mesh-like topology reaches the maximum number of

nodes for a given diameter, meaning that it improves diameter and average distance against

any other two-dimensional mesh-based topology. This paper translate these topological

advantages into real network gains by presenting and analyzing different architectural is-

sues that makes Dense Gaussian Networks attractive for on-chip parallel computing.

First of all, a new two-dimensional node’s labeling of the networks explored in this work

has been proposed. In this way, the two-dimensional nature of these networks can be ex-

21

ploited which facilitates their analysis. Based on this new labeling we have proposed both

optimal unicast and broadcast routing schemes that make an efficient use of the network

resources. In addition, a smart layout for a two-dimensional VLSI network implementation

which equalizes the length of all the network links has been also introduced. Such new

layout makes this topology suitable for embedded on-chip systems. Finally, a hierarchical

design presenting an extended network to connect multiple on-chip systems has been also

described.

In conclusion, the overall properties of Dense Gaussian Networks outdo other well-known

topologies such as Tori, by just rearranging some of the network links. Thus, these net-

works appear as a clear alternative to be considered for the design of future parallel

systems.

References

[1] L. A. Barroso et al. ”Piranha: A Scalable Architecture Based on Single-Chip Mul-

tiprocessing”. 27th Annual International Symposium on Computer Architecture, pp.

282-293, June 2000.

[2] R. Beivide, E. Herrada, J. L. Balcázar and A. Arruabarrena. ”Optimal Distance

Networks of Low Degree for Parallel Computers”. IEEE Transactions on Computers,

Vol. C-40, No. 10, pp. 1109-1124, 1991.

[3] R. Beivide, E. Herrada, J. L. Balcazar and J. Labarta. ”Optimized Mesh-Connected

Networks for SIMD and MIMD Architectures”. 14th Annual International Symposium

on Computer Architecture, pp. 163-169, 1987.

[4] J.-C. Bermond, G. Illiades and C. Peyrat. ”An Optimization Problem in Distributed

Loop Computer Networks”. 3rd Interantional Conference on Combinatorials Mathe-

matics. New York Academy of Sciences, pp. 1-13, 1985.

22

[5] M. Blumrich et al. ”Design and Analysis of the BlueGene/L Torus Interconnection

Network”. IBM Research Report, RC23025 (W0312-022), December 3, Computer

Science, 2003.

[6] F. T. Boesch and J. Wang. ”Reliable Circulant Networks with Minimum Transmission

Delay”. IEEE Transactions on Circuit and Systems. Vol. 32, pp. 1286-1291, 1985.

[7] Z. Cvetanovic. ”Performance Analysis of the Alpha 21364-based HP GS1280 Mul-

tiprocessor”. 30th Annual International Symposium on Computer Architecture. pp.

218-228, 2003.

[8] M. A. Fiol, J. L. Yebra, I. Alegre and M. Valero. ”A Discrete Optimization Problem

in Local Networks and Data Alignment”. IEEE Transactions on Computers, Vol. 36,

No. 6, pp. 702-713, 1987.

[9] M. R. Mullins, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. Martin and D. A.

Wood. ”Improving Multiple-CMP Systems Using Token Coherence”. 11th Interna-

tional Sysmposium on High Performance Computer Architecture, pp. 328-339. 2005.

[10] R. Mullins, A. West and S. Moore. ”Low-Latency Virtual-Channel Routers for On-

Chip Networks”. 31th International Sysmposium on Computer Architecture, pp. 188-

197. 2004.

[11] M. M. K. Martin, M. D. Hill and D. A. Wood. ”Token Coherence: Decoupling Per-

formance and Correctness”. 30th Annual International Symposium on Computer Ar-

chitecture, pp. 182-193, 2003.

[12] C. Mart́ınez, R. Beivide, J. Gutierrez and E. Gabidulin. ”On the Perfect t-Dominating

Set Problem in Circulant Graphs and Codes over Gaussian Integers”. Proceedings of

the 2005 IEEE International Symposium on Information Theory (ISIT’05). Adelaide,

Australia. Septiembre, 2005.

23

[13] C. Mart́ınez, E. Vallejo, M. Moretó, R. Beivide y M. Valero, Hierarchical Topologies

for Large-scale Two-level Networks, XVI Jornadas de Paralelismo. Granada, Spain,

September 2005.

[14] J. Mellor-Crummey and M. Scott. ”Algorithms for Scalable Synchronization on

Shared- Memory Multiprocessors”. ACM Transactions on Computer Systems 9(1),

pp. 2165, February 1991.

[15] V. Puente, C. Izu, J.A. Gregorio, R. Beivide, J.M. Prellezo and F. Vallejo. ”Rearrang-

ing Links to Improve the Performance of Parallel Computers: The Case of Midimew

Networks”. International Conference on Supercomputing, ICS’2000, pp. 44-53, 2000.

[16] V. Puente, J.A. Gregorio, F. Vallejo and R. Beivide. ”Immunet: A Cheap and Robust

Fault-Tolerant Packet Routing Mechanism”. 31th Annual International Symposium

on Computer Architecture, pp. 198-209, 2004.

[17] J.M. Tendler et al. ”Power4 System Microarchitecture”. IBM Journal of Research and

Development, 46(1), 2002.

[18] E. Vallejo, R. Beivide and C. Mart́ınez. ”Practicable Layouts for Optimal Circulant

Graphs”. Euromicro Conference on Parallel, Distributed and Network-based Process-

ing, Switzerland, February 2005.

[19] C. K. Wong and D. Coppersmith. ”A Combinatorial Problem Related to Multimodule

Memory Organizations”. Journal of the ACM, Vol. 21, No. 3, pp. 392-402, 1974.

[20] Y. Yang, A. Funashi, A. Jouraku, H. Nishi, H. Amano and T. Sueyoshi. ”Recursive

Diagonal Torus: An Interconnection Network for Massively Parallel Computers”.

IEEE Transactions on Parallel and Distributed Systems, Vol. 12, No. 7, July 2001.

[21] Y. Yang and J. Wang. ”Efficient All-to-All Broadcast in All-Port Mesh and Torus Net-

works”. 5th International Symposium on High Performance Computer Architecture,

Florida, 1999.

24

