
Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

Implementing Kilo-Instruction Multiprocessors

Enrique Vallejo1, Marco Galluzzi2, Adrián Cristal2, Fernando Vallejo1, Ramón Beivide1,
Per Stenström3, James E. Smith4 and Mateo Valero2

1Grupo de Arquitectura de Computadores, Universidad de Cantabria

2Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya
3Dept. of Computer Science and Engineering, Chalmers University of Technology
4Dept. of Electrical and Computer Engineering, University of Wisconsin-Madison

Abstract

Multiprocessors are coming into wide-spread use in
many application areas, yet there are a number of
challenges to achieving a good tradeoff between
complexity and performance. For example, while
implementing memory coherence and consistency is
essential for correctness, efficient implementation of
critical sections and synchronization points is
desirable for performance.

The multi-checkpointing mechanisms of Kilo-
Instruction Processors can be leveraged to achieve
good complexity-effective multiprocessor designs. We
describe how to implement a Kilo-Instruction
Multiprocessor that transparently, i.e. without any
software support, uses transaction-based memory
updates. Our model not only simplifies memory
coherence and consistency hardware, but at the same
time, it provides the potential for implementing high
performance speculative mechanisms for commonly
occurring synchronization constructs.

1. Introduction

Multiprocessors are rapidly becoming the standard
for computing platforms, including simple single-
board and even single-chip systems. Many of these
designs implement shared memory multiprocessors
because shared memory provides a clear programming
model where sharing code and data structures is
simplified. However, there are several aspects that
complicate the design and programming of a shared
memory system and limit its performance. Among
these complicating, potentially restrictive aspects are:

• The interconnection hardware, which provides
quick access to data held in remote memory --
Accessing data from remote memories is much
slower than from local memory, increasing the
effective memory latency. This latency can be

increased even more by the overhead that a
coherence protocol imposes.

• The coherence protocol, which manages the correct
sharing of memory values among private caches --
Basic coherence protocols are based on a memory
directory or a broadcast bus, although significant
work has been done to simplify protocols and
improve performance [19][15].

• The consistency model, which manages the correct
ordering of memory operations to different memory
locations -- Sequential Consistency (SC) [17] is the
most desirable model as it provides the most
intuitive programming model, but it most often
requires that memory operations from each program
appear to be executed in-order which may limit the
system performance. Other consistency models
achieve a higher performance by relaxing these
constraints [25], at the cost of a more complex
programming framework.

• The need for data sharing can generate access
conflicts, which are solved with exclusion
mechanisms -- Locks ensure sequential access to
shared data by stalling other processors that try to
access the same critical section simultaneously.
Sometimes critical sections are created in a
conservative manner which can degrade
performance. Previous works [21][27][26][14][29]
have proposed the speculative execution of critical
sections, improving performance in case there is no
real data contention.

• Finally, synchronization operations which ensure
that different program threads can cooperate with
each other -- These operations, such as barriers or
flags, can also stall processors when a
synchronization wait is needed. Some proposals
[21][14] also deal with this problem by using
speculative execution.

A way to solve the above-mentioned problems is to
employ transactional memory systems. These
systems implement memory operations as transactions
that are guaranteed to be atomic, and which simplify

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

the design or improve the performance of a
multiprocessor system. Much work has been done on
this field and we list some important recent work:

• Transactional Lock Removal (TLR) [27] is a method
that detects critical sections, and dynamically
substitutes them with transactions, eliding the lock
acquisition. Transactions are used as a substitute for
critical sections, with the aim of augmenting
parallelism when no access conflict occurs.

• Thread-level Transactional Memory (TTM) [23] is a
software-hardware approach that covers different
levels of the system. They implement transactional
support at thread level, so that the programmer
specifies the start and finish of transactions, with
support in lower levels of the operating system and
hardware.

• Transactional Coherence and Consistency (TCC)
[14] proposes a new shared memory model where
atomic transactions are the basic unit for
communication, simplifying both parallel
applications and coherence and consistency
hardware. Similar to TTM, this proposal modifies
the programming model, forcing the programmer to
divide the program into transactions.

In prior work, the memory latency problem has
been shown to be significantly reduced by Kilo-
Instruction Processors [4][6][7]. These processors
can hide the memory latency by supporting thousands
of in-flight instructions. Among the different
mechanisms proposed to enable this very large number
of in-flight instructions, the primary one is multiple
checkpointing [2] which easily facilitates speculative
execution.

Later, in [10] the idea of having a multiprocessor
composed of Kilo-Instruction Processors, which is
intuitively called Kilo-Instruction Multiprocessor, is
introduced for the first time. This work just evaluates
the performance potential of the new system.

In this paper, we describe a correct implementation
of a Kilo-Instruction Multiprocessor, which will
henceforth be referred as KIMP, which takes
advantage of the underlying uniprocessor mechanisms
to simplify the design and to improve performance.
This way, KIMP leverages the multiple checkpointing
mechanism of the Kilo-Instruction Processors 1) to
perform memory updates in a transactional manner,
and 2) to apply speculation mechanisms to execute
through critical sections and synchronization points in
a straightforward manner.

Performing memory updates in KIMP as if they are
transactions leads to implicit transactions; i.e., they are
orchestrated in hardware, without any software support
and are transparent to the programmer. Consequently,

the proposed KIMP comprises all the advantages of a
transactional memory system, including the
implementation of sequential consistency, in a natural
and efficient manner. On the other hand, having the
ability to speculate through critical sections and
synchronization points can improve system
performance when such constructs are conservatively
coded. Hence, the KIMP design is a high-quality
complexity-effective option for future multiprocessor
systems.

The remainder of the paper proceeds as follows. In
Section 2, an overview of the mechanisms and the
expected performance of the Kilo-Instruction
Processors is given, in single and in multiprocessor
systems respectively. Section 3 introduces KIMP, with
an initial overview. Section 4 explores the implicit
transactional behavior of KIMP systems, and some of
the advantages that it provides. Sections 5 and 6
explain the details about memory coherence and
consistency in KIMP. Sections 7 and 8 provide some
ideas to improve performance by speculating past
locks and barriers. Finally, some conclusions are given
in Section 9.

2. Background

2.1. Kilo-Instruction Processors

The first work on single Kilo-Instruction Processors
[2] demonstrated in detail their ability for hiding large
latencies, specifically due to memory accesses, because
the processor allows thousands of instructions to be in-
flight at the same time. However, in order to increase
the number of in-flight instructions we must increase
the capacities of several resources, the most important
ones being the re-order buffer or ROB, the instruction
queues, the load/store queues and the physical
registers. Unfortunately, simply up-sizing these
structures, is not feasible with current and near-term
technology.

In order to overcome the difficulties of up-sizing
critical structures, Kilo-instruction processors employ
a number of different techniques, to arrive at an overall
implementation. Such an approach is possible because
critical resources are underutilized in present out-of-
order processors as has been shown in [3][16].

The main technique consists of multi-checkpointing
long latency instructions instead of having a large
ROB [2]. This way, instructions can be committed in
an out-of-order fashion, with the possibility of freeing
more resources than in normal processors. The second
technique is the Slow Line Instruction Queue that
proposes a secondary instruction queue to which long-
latency instructions can be moved [5]. This mechanism

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

allows the regular instruction queue to remain small
and fast. The last technique is called Ephemeral
Registers. It is an aggressive register recycling
mechanism [20], which combines delayed register
allocation and early register recycling and, in
conjunction with multicheckpointing and Virtual Tags
[22], it allows the processor to non-conservatively de-
allocate resources.

Multi-checkpointing. At specific instructions
during program execution, generally branches and long
latency instructions like loads that miss in the L2
cache, a checkpoint is taken. The checkpoint is a
snapshot of the processor state. If an exception or
branch misprediction occurs, instead of using a ROB
and flushing up to the excepting instruction, the state is
rolled back to the closest checkpoint prior to the
excepting instruction, leading to a longer recovery
time. However, to minimize the misprediction penalty
a reduced structure called a pseudo-ROB is
additionally used [5]. The pseudo-ROB only maintains
the youngest in-flight instructions and allows precise
recovery of these instructions in a manner similar to a
conventional ROB. Because exceptions and branch
mispredictions fall most frequently within these
youngest instructions, the average recovery time is
effectively reduced. Therefore, using a relatively small
set of checkpoints for long flight time instructions
assures safe points of return and reduces ROB
requirements considerably.

Given that multiple checkpoints are taken during
program execution, the mechanism works as follows.
As the pipeline advances, in-flight instructions
corresponding to the different checkpoints are
executed. When these speculatively executed
instructions finish, they remain in the processor queues
if they are memory operations, otherwise are flushed
from the processor, leaving their results to the
corresponding registers. Only when all the instructions
corresponding to the oldest checkpoint are finished,
the processor commits the checkpoint atomically,
consequently removing memory operations from the
load or store queue and committing all the results
speculatively calculated. Then, with this action, the
speculative instructions become globally performed.
Figure 1 shows an example of the multiple

checkpointing mechanism, where oldest instructions
are to the left. Black instructions are finished, but their
results are not committed. In case a), instructions from
three consecutive checkpoints are in flight. In case b),
the second checkpoint is finished, as all the
instructions within it are finished, but it can not
commit as it is not the oldest checkpoint in the
pipeline. In case c), the first checkpoint (the oldest
one) finishes, so it and the second checkpoint can
commit, making the third checkpoint to be the new
oldest checkpoint.

a)

b)

c)

In-flight instruction Executed instruction

Figure 1: Multiple checkpoints.

2.2. Kilo-Instruction Multiprocessors

This previous work by A. Cristal et al. and the

problem of increased latencies in multiprocessors are
the motivation for Kilo-Instruction Multiprocessors.
In this first approach, we use a number of Kilo-
Instruction Processors to construct a small-scale non-
uniform memory access (NUMA) multiprocessor. The
new multiprocessor configuration, firstly published in
[10], has been shown to effectively hide large latencies
coming from both local and remote memory accesses,
including latencies due to the interconnection network.
Figure 2 shows the reduction in the execution time for
different benchmarks from the Splash2 suite, when
using 1024 in-flight instructions as compared with 64;
the memory access time is 500 cycles.

This work explores for the first time
multiprocessors based on processors that use
checkpointing as the basic mechanism for improving
performance, while other previous work like [30] make
use of checkpointing just for fault tolerance. However,
in [10] only an evaluation of the performance achieved
by the system is done, leaving out any kind of
architectural detail. Describing the system architecture
in more detail is one of the goals of this paper, i.e., we
show one possible design for checkpoint-based
multiprocessors.

0

10

20

30

40

50

60

70

80

90

100

FFT Ocean Radix Water-nsq Water-sp
Splash 2 benchmark

pe
rc

en
ta

ge

Figure 2: Performance potential of Kilo-
Instruction Multiprocessors.

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

3. KIMP overview

The KIMP design is based on a shared memory
multiprocessor. In particular, we propose as the basic
system a small-scale multiprocessor where the nodes
are Kilo-Instruction Processors interconnected via a
snoopy bus. For the sake of simplicity, we present an
SMP architecture, although the idea can be applied to
CMP or DSM systems. Our proposal takes advantage
of the main mechanism of the Kilo-Instruction
Processors, that is, the multiple checkpointing, so the
cost of implementing a KIMP can be very low.

Figure 3 shows an example of the execution flow
from four processors, P1 to P4, and their respective
checkpoints. Different processors execute different
portions of code, taking different checkpoints as the
execution advances, and being able to roll back
execution to a certain checkpoint in case of an
exception, branch misprediction or memory
consistency violation as we will see below.

As in the multiple checkpointing mechanism for a
uniprocessor, all the in-flight instructions remain
speculative until their corresponding checkpoint
commits. This means that memory instructions remain
in the processor queues and do not modify the local
cache or the global memory, and they are subject to a
rollback. The oldest checkpoint in the processor can
commit when all of its corresponding instructions, i.e.
those that come after the checkpoint and before the
next checkpoint, are finished. In Figure 3, for example,
P3 can commit checkpoint Chk31, when all the
instructions up to Chk32 have been completed. In the

KIMP system, this commit is followed by the atomic
broadcast of all the cache tags that the processor has
modified during the checkpoint execution, these are,
the pending memory updates. By “atomic” we mean
that after the processor gets access to the bus it does
not release the bus until all the tags have been
broadcast.

Remote processors snoop the memory updates
searching for a conflict with the loads they have in
their load queues, which are speculatively executed
and are not already committed. In case of a conflict,
the remote processor in question is forced to roll back,
because it has speculatively used data that, at this
point, is discovered to be “previously” modified. Thus,
as long as conflicts are not found, speculatively
executed instructions are not discarded. Finally, if no
rollback happens, the speculatively executed
instructions are globally performed when the
checkpoint commits. In the example from Figure 3, the
broadcasting of a store to a given memory location “a”
conflicts with two other processors that have already
speculatively loaded from location “a”, but the loads
have not been already committed. In this example, P2
is rolled back to Chk23, causing instructions from
Chk24 to Chk23 to be discarded. Also P4 roll back to
Chk42, forcing its newest instructions to be discarded.

This model makes the instructions between two
checkpoints to behave as a single memory transaction,
because they are executed speculatively and are
globally and atomically performed when the
corresponding checkpoint commits. Therefore, we call
such groups of instructions implicit transactions, as
they behave in a transactional manner, but they are not
explicitly defined by the programmer or by any
software level. In brief, our system acts like a
transaction-based system, similar to the proposed TCC
[14], but without any software support. This behavior
allows the natural support for sequential consistency
memory model.

P3

Chk34

Chk33

Chk32

Chk31

st a

P1

Chk11

Chk12

Chk13

Chk14

P4

ld a

Chk44

Chk43

Chk42

Chk41

P2

Chk24

Chk23

Chk22

Chk21

ld a

Executed Instruction
Checkpoint

In-flight Instruction

Chk34

Figure 3: Execution flow for 4 processors.

Furthermore, multi-checkpointing yields improved
performance if simple hardware modifications are
made to support the concurrent execution of critical
sections and speculative execution beyond
synchronization points.

KIMP naturally allows concurrent execution of
multiple threads in the same critical section, because
the lock acquire is not performed until a checkpoint
commits. However, a “silent stores elimination” [18] is
needed to avoid unnecessary rollbacks due to the
updating of the lock variable, when no actual data
conflicts exist in the critical section. This mechanism
only works when no checkpoint is taken inside a
critical section. In addition, we can ensure that
checkpoints are taken around a critical section by

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

detecting the lock entry and exit. Section 7 details
these mechanisms.

Speculating beyond synchronization points can also
be done, using a hardware mechanism to detect simple
barrier constructs. Once a barrier is detected, a
checkpoint is taken and the cache line corresponding to
the flag variable is marked and changed to the
expected value. This way the processor is able to
execute the following instructions in a pure speculative
mode, which means that no checkpoint can be
committed. The speculated instructions can be rolled
back if a memory conflict is found; otherwise they will
wait for an update of the line associated with the flag
variable, indicating that the expected and speculated
value has been reached. Of course, any modification to
the flag variable that does not correspond to the
expected value will be ignored and will not produce a
rollback. More details are given in section 8.

The recovery from violations for such speculative
mechanisms is already included in Kilo-Instructions
Processors, since they can already restore the system
state from the previous checkpoint of an excepting
instruction.

4. Implicit transactions

In the KIMP system, we define a transaction as the
atomic execution of the instructions included between
a committing checkpoint and the next one. The stores
of a transaction are kept as a group, and are atomically
released to the memory hierarchy only when the
associated checkpoint is committed, updating the main
memory and remote caches.

We say the proposed system executes implicit
transactions. They are implicit because they are
automatically hardware delimited, by means of the
checkpointing mechanism, and the programmer does
not need to know that the system provides such
transactional behavior. Therefore, the ISA do not need
any change, and current binaries can be directly
executed. Note that this idea differs from the concept
of transactions in previous works [14][23][1], where
transactions are considered as programming constructs
that normally need a hardware support.

4.1. Basic operation

As a processor speculatively executes the
instructions within transactions, the read sets of the
transactions (i.e. the memory locations referenced by
load instructions) are stored in the processor load
queue. In the same way, the write set (i.e. the store
instructions) are temporarily kept in the store queues.
In our snoopy bus based shared memory system, after
a checkpoint commit, the stores are packaged and in-

order broadcast over the bus, and the packet is snooped
by the remote processors. This action globally
validates all the speculative memory updates in a
transaction, and with it, all the instructions in the
transaction turn from speculative to executed.

During a transaction, the executed loads are
speculative and, consequently, accessed memory
locations must not change in order for the loads to
remain valid. To verify this correctness, remote
processors compare snooped modified addresses with
the addresses of their write set in the processor load
queues, and in case of a match, the processor rolls back
to the checkpoint previous to the data use. In this case
the remote processor has to re-execute instructions
with new values. In absence of such a conflict,
speculative instructions remain valid, and when all the
instructions between two consecutive checkpoints
finish, they can safely commit.

With such transaction-based system, forward
progress of the parallel application is always
guaranteed because rollbacks, other than normal
exceptions or branch mispredictions, occur only when
one processor is committing a transaction and the other
ones have a conflict. Therefore, at least one processor,
the one committing, always makes progress. The
system does not care about conflicts that can exist
during the execution of transactions because they are
not revealed, i.e. not released to the memory hierarchy,
until one transaction commits. Another related issue, is
how to make the system fair, including avoidance of
starvation; this is an issue partially covered by using
adaptive transaction lengths, explained in next
subsection.

Therefore, we have shown how KIMP provide a
correctness substrate, constituted of speculative
execution, atomic validation, and the rollback
mechanism, which ensures that code is executed
correctly.

4.2. Adaptive transaction length

The number of outstanding transactions and the
number of instructions included in a single transaction
directly depend on the maximum number of
checkpoints and on the points where checkpoints are
taken. Previous experience with a single Kilo-
Instruction Processors dictates that a small number of
checkpoints are enough.

In this multiprocessor transactional system,
however, we propose that transaction lengths should
be adaptive, decreasing in case of frequent rollbacks
and increasing as long as no rollbacks occur. In case of
frequent consistency violations, the length of the
transactions decreases, also decreasing the number of
violations and the number of instructions that are

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

discarded in case of a rollback. This is valid as our
system, based on the correctness substrate indicated in
the previous section, works properly independently of
the instruction where a checkpoint is taken.

5. Memory Coherence

In KIMP, a snoopy bus based multiprocessor, the
overall coherence protocol is simplified. Lines are not
maintained in “shared” or “exclusive” state, as dictated
by MESI-like cache coherence protocols. Our
broadcast-based approach works as either a snoopy
write invalidate or write update protocol as follows.

Basic Operation. During a transaction, the cache is
not modified by local stores, only speculative loads are
performed. Once a transaction commits, the pending
stores are atomically performed and the broadcast
mechanism transmits the changes to the rest of
processors, updating or invalidating the remote cache
lines. This way, when the stores from a transaction
need to be broadcast, the corresponding processor will
get control of the bus and release it only when all its
memory updates are globally performed. This
operation prevents other processor from broadcasting
memory updates simultaneously and protects the
memory system from coherence and consistency
problems.

Finally, if there is an update or invalidation of a
cache line, the corresponding processor will update or
invalidate those cache lines matching a snooped
address, and the execution will roll back to the
previous checkpoint.
Broadcast Information. The contents of the broadcast
message will determine the snoopy type: if the packet
contains the written data, the protocol will behave as
write update. Else, if the packet only contains the
updated addresses, remote processors will invalidate
those lines, and the protocol will work as write
invalidate. Of course, it must be taken into account that
using write update can put more pressure on the bus,
because the data values have to be sent together with
the modified addresses. In any case, if the processors
running some specific parallel application need to send
many stores when committing transactions, the
resulting large broadcast packet can result in
contention problems. However, we reduce the
probability for such contention by intelligently
merging and packaging stores as in [8].

When a processor needs to inform other processors
that an address has been changed, the address sent to
the bus is, in fact, the base address of the modified
cache line. Therefore, in our system, the update or
invalidate packet broadcast to the bus contains the set
of the base addresses for the modified cache lines. The
packaging mechanism we use, then, can reduce the

number of addresses sent on a transaction commit,
since several stores probably match the same cache
line address as spatial locality indicates. This way, the
number of addresses sent, for an update or invalidate
packet, can be reduced up to a factor of n, where n is
the number of memory locations that fit into a cache
line. Furthermore, silent store elimination explained in
section 7 can work together with the transaction
packaging mechanism to effectively reduce the final
number of memory addresses collected in a broadcast
packet.

Scalability Problem. A snoopy bus allows atomic
memory accesses because of the simultaneous
broadcast capability of a bus and, therefore, the simple
coherence mechanism we propose can be implemented
in a straightforward manner. However, it is well
known that buses do not scale well, so if we want to
have the system to work with a larger number of
processors we have to make the system use an
alternative interconnection network. A directory-based
KIMP using a packet-switched network is, therefore,
an interesting alternative.

However, the directory-based approach lacks
atomicity in the memory accesses due to the implicit
unordered nature of packet-switched networks. This
means that the implementation of the proposed
coherence protocol under this model is no longer
straightforward. The problem is that during the
updating or invalidation of memory locations from a
processor, other processors can simultaneously start
their own updating or invalidation phases. This
problem, then, would produce consistency problems
due to the interleaving of updates from transactions of
different processors.

In order to successfully implement a simple
coherence protocol in a directory-based KIMP, an
arbitration mechanism is needed. Arbitration would
decide which processor can send its update packet to
the rest of processors, avoiding the interleaving
problem. Arbitration could be implemented, for
instance, using a token-based mechanism. Briefly, the
simplification of a normal coherence protocol, under
this approach, would be the same as for a bus: no
coherence state is needed for each memory address.
However, it would be good for performance to
maintain the list of sharers on each directory entry in
order to reduce the number of messages.

6. Memory consistency

6.1. Consistency models

The memory consistency model of a shared-
memory multiprocessor determines how the system
can overlap or reorder memory operations. Different

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

TR
B2

TR
B1

TR
A2

TR
A1

Process A

A1

A2

A3

Process B

B1

B2

B3

Global order
process A,B

A4

A5

A6

B4

B5

TR
A2

TR
A1

A1

A2

A3

A4

A5

A6

TR
B1

B1

B2

B3

TR
B2

B4

B5

Figure 5: Sequentially consistent reordering of
checkpoints from 2 processors.

Process A

A1

A2

A3

Process B

B1

B2

B3 A2

A3

B3

A1

B1

B2

Global order
process A,B

Figure 4: Sequentially consistent reordering of
memory operations from 2 processors.

models offer a trade-off between programming
simplicity and performance:

• Sequential Consistency (SC) [17], the most

restrictive model, guarantees that interleaved
memory operations from different processors appear
to execute in program order, at the cost of a
generally lower performance [28].

• On the other hand, less restrictive models, such as
Release Consistency (RC) [11] provide a higher
performance, at the cost of not ensuring strict
ordering of memory operations.

• Other consistency models provide intermediate
performance and restrictions, such as Processor
Consistency [12].

Sequential Consistency is the most desirable
model, as it is the simplest model to understand and it
provides the most intuitive programming interface. A
basic implementation of SC requires a processor to
delay each memory access until the previous one is
completed, what is simple but clearly leads to a low
performance.

However, there are recent proposals that preserve
the SC model without compromising performance.
Some of these are:

• SC++ [13] makes use of hardware speculation for

both load and store operations, and preserves SC by
rolling back when a consistency violation is found.
This way the system can rely on reordering and
overlapping memory operations for performance
similar to that achieved with the RC model.

• TCC [14] solves the problem of the consistency by
proposing a parallel model based on software-
delimited transactions, with a sequential ordering
between them. Therefore, this model, which takes a
software approach to the consistency problem,
requires a new programming model to be used.

6.2. KIMP maintains SC

Our proposal, based on the previously described
transactional behavior, provides SC support in a
natural manner: instead of assuring that single memory
operations from a processor to be globally performed
in order, we require full transactions to be in order.
Fortunately, requiring an order for transactions inside a
single processor is straightforward, because the
checkpointing mechanism always commits the oldest
transaction first.

Next, we explain with an example how we maintain
SC. Sequential consistency requires that the result of
any execution be the same as if the memory accesses
executed by each processor were kept in order and
with the accesses among different processors
(arbitrarily) interleaved. In other words, we can have
different global orders with different interleavings of
memory operations from the different processors, but
each of these interleavings must maintain all the
individual program orderings. In Figure 4 we give an
example of a sequentially consistent global ordering of
memory operations from two different processors,
labeled [A1, A2, A3] for processor A, and [B1, B2,
B3] for processor B. The third column shows a global
order that respects the program orders from processors
A and B.

In the KIMP system we group memory accesses
from each processor into implicit transactions by
taking checkpoints. Thus, we can extend the definition
of sequential consistency to such transactions, and
require only transactions from each processor to be in
order. The resulting global order will be an arbitrarily
interleaved succession of transactions that will also

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

meet the basic definition of SC since it corresponds
with one of the possible sequentially consistent global
orderings. We show an example in Figure 5 where we
group instructions into transactions, labeled [TR_A1,
TR_A2] for processor A, and [TR_B1, TR_B2] for
processor B. The third column shows that respecting
the program order for those transactions will also
respect program order for memory operations.

Furthermore, the KIMP environment allows an
important improvement that avoids the latency that a
simple SC implementation imposes: it allows the
execution of memory operations out-of-order. KIMP
allows this improvement without compromising the
correctness of the SC model because:

1. The reordering and overlapping of memory
operations is allowed only within a single
transaction.

2. All the memory operations are executed
speculatively and, while the loads bring data into
the local cache, the stores are delayed until the
transaction can commit without modifying any
cache line.

3. During a transaction all the speculative loads that
match the address of a previous pending store
receive the correct value thanks to the usual store-
forwarding mechanism.

4. The snooping of memory updates from the bus
ensures that the values speculatively loaded are
valid unless an address match is found, which
would produce a rollback of the transaction.

5. Finally, the memory updates from the transaction
are atomically broadcast only when the transaction
commits, making the pending stores globally
performed at this moment.

This way the global result of a transaction is the
same, independently of the order of execution of its
instructions, making the system behave as in figure 2.

Therefore, in the figure an acceptable order for
instructions in transaction “TR_A1”, for example,
could be “A2, A3 and A1”, instead of the order shown:
“A1, A2 and A3”.

7. Locks

Lock structures control the access to critical
sections by allowing only one process, the lock owner,
to enter and to read and modify shared variables. A
typical critical section, using load-linked and store-
conditional instructions, is shown in Figure 6.

Critical sections ensure exclusive access to the lock
owner, forcing any other threads desiring to enter the
critical section to stall until the lock is released.
Sometimes, this stall is unnecessary, as some threads
may not actually modify any data, or they modify
different fields of a shared data structure. In these
cases, parallel execution could be allowed, avoiding
the stall of threads waiting for the lock. Some
examples, taken from [26] are shown in Figure 7.

The parallel execution of the critical section
eliminates the dependence of other threads on the lock
owner, which can sometimes generate very long waits,
for example if the lock owner is suspended. The
problem of critical sections is even more important in
these cases.

7.1. Related work

In [26] Rajwar and Goodman show that some locks
are too conservative and contention for shared data can
occurs only under certain conditions. Thus, they
propose SLE, a hardware approach that detects a
typical Test&Test&Set lock construction and avoids
acquiring it, leaving the critical section open and thus
allowing several instances of the same critical section

a) LOCK(locks->error_lock)
if (local_error > multi->err_multi)

multi->err_multi = local_err;
UNLOCK(locks->error_lock)

b) Thread 1

 LOCK(hash_tbl.lock)

var = hash_tbl.lookup(X)
if (!var)

hash_tbl.add(X);
UNLOCK(hash_tbl.lock)

Thread 2

 LOCK(hash_tbl.lock)

var = hash_tbl.lookup(Y)
if (!var)

hash_tbl.add(Y);
UNLOCK(hash_tbl.lock)

Figure 7: Critical sections that, in most cases,
admit parallel execution.

LOCK(t)

UNLOCK(t)

Critical
section

Execution
flow

Short
set of
instr.

L1:ldl t0, 0(t1)
 bne t0, L1
 ldl l t0, 0(t1)
 bne t0, L1
 lda t0, 1(0)
 stl_c t0, 0(t1)
 beq t0, L1

stl 0 ,0(t1)

Figure 6: A typical critical section.

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

to execute concurrently. Correctness is preserved by
detecting data collisions. All the data used during a
speculative section is kept in the local cache, and a
remote request to write that address forces the
execution to roll back to the checkpoint. Thus, if no
collision is detected, several instances of the same
critical section can be executed in parallel, and if a
collision happens, only one of them advances, forcing
the other ones to restart with new data. This
mechanism is improved in [27] by adding a timestamp
to the write requests, which avoids process starvation,
ensuring the forward progress of the oldest thread.

In [21] Martínez and Torrellas propose Speculative
Synchronization. With specific lock instructions that
help detecting the critical section entrance, they
propose the execution of one safe thread, which
actually acquires the lock, and multiple speculative
threads, that detect the busy lock and execute
speculatively. When the lock owner releases it, the rest
of the threads commit their state, if they have already
finished their critical section, or compete for
ownership of the lock.
In [29] an improvement to the previous ideas is
proposed. All the speculative threads execute their
critical section, even though they may have a conflict.
When all of the speculative threads can commit, an
arbiter dictates the order in which they do so,
minimizing collisions.

TCC [14], as stated in section 4, divides code into
transactions which replace critical sections.
Consequently, every access to shared data has to fall in
the same transaction as the computation and the update
of the data, and software locks are replaced with
special instructions that mark a transaction change.
This method naturally allows the parallel execution of
critical sections, and detects conflicts in case of data
collision, without the need of using control variables.

7.2. KIMP and critical sections

The correctness substrate composed of the
transactional behavior and the collision detection
mechanism ensures valid operation, including when
executing critical sections. In this section, we study
and propose some improvements that allow KIMP to
execute critical sections in parallel, in those cases
where there is no real data collision. As the code from
a critical section is executed different checkpoints are
taken. In Figure 8, cases a) to d) show different
possible checkpointing schemes.

Basic KIMP behavior. When a processor reaches
the lock, it checks the value of the lock and acquires it
if it is free. This acquire operation remains in
speculative state in the processor queues. If a new
checkpoint is taken inside the critical section, the

validation of the transaction that finishes inside the
critical section will globally acquire the lock, forcing
remote processors inside the critical section to
rollback, due to the lock variable invalidation. After
that, remote processors will not enter the critical
section, due to the acquired lock. This case is shown in
Figure 8 a), where a checkpoint is taken inside the
critical section. The validation of transaction T1 will
force any other thread executing inside the critical
section to rollback, as the lock variable had been
speculatively read. When the processor validates
transaction T2, the critical section gets unlocked and
remote processors can start executing it.

The same invalidation happens if no checkpoint is
taken until unlocking the critical section. In this case,
the lock variable is also written. Thus, the validation of
a transaction that has entirely executed a critical
section will cause any other processor that is executing
it speculatively to rollback, which means that only a
single valid processor stays inside a critical section.
This case is shown in Figure 8 b), and it should be the
most frequent case, due to the short nature of critical
sections.

These examples show that basic KIMP ensures the
correctness of code, wherever checkpoints are taken.

Enhancing KIMP. However, if the lock variable is
the only interaction between different processors
accessing the same critical section, parallel execution
of the critical section is feasible. In case b), the store of
the lock variable writes a value in a memory position
that already contains that value, which constitutes a
silent store. We propose the use of two mechanisms
that allow KIMP to naturally speculate through critical
sections.

Firstly, a silent store detection and removal

C A B

Instruction
Checkpoint Chk1

Chk1

Chk3

UNLOCK(t)

Chk2

LOCK(t)

Chk1

Chk2

UNLOCK(t)

LOCK(t)
Chk1

Chk2

UNLOCK(t)

LOCK(t)

T1

T2

Figure 8: Different checkpointing schemes.

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

mechanism, which detects that the value does not
globally modify memory, and removes that update
from the update packet. When applied to a lock
variable, the lock is removed from the update packet
and this would allow a checkpoint configuration such
as Figure 8 b) to be executed in parallel, avoiding
processor stalls.

Additionally, we can ensure that no checkpoint is
taken within a critical section. We make use of a lock
and barriers detection mechanism, which dynamically
detects typical Test&Test&Set lock constructs. To
maximize parallelism, the lock detection hardware
forces a new checkpoint to be taken just before the
lock, so that the lock remains open for the rest of the
processors at the beginning of the new transaction.

Normally, it is enough because critical section are
short, as stated before, and the next checkpoint would
fall after the unlock. However, the hardware could
detect the lock release, which is a store to the lock
variable, and take a new checkpoint just after it. This
makes the transaction length equal to the critical
section, and avoids unnecessary rollbacks due to
collisions on data outside the critical section. This
example is shown in Figure 8 c).

In case of multiple consecutive conflicts and
rollbacks, the mechanism that adaptively changes the
transaction length, would make processes to advance
reducing transaction length as needed.

Finally, we note that the proposed method preserves
correctness independently of the length of the critical
section. TCC, which is a very similar transaction
approach, locally buffers all the memory updates
corresponding to a certain transaction. In case of a
buffer overflow, the processor in TCC has to acquire
the bus grant and not leave it up to the end of the
transaction, thus blocking the rest of the system. KIMP
in case of such an overflow, takes a new checkpoint
and waits for the resources to free from previous
checkpoints before continuing execution. Thus, in such
case, the behavior would be similar to the one
presented in Figure 8 a).

7.3. Silent stores and store merging

Recent work on value locality introduced the
concept of silent stores [18]. A silent store is defined
as a memory write that does not change the system
state. In [18] it is shown that a non-trivial percentage
of the stores are silent. There is other works that makes
use of silent stores, but we will mention only
speculative lock elision (SLE) [26] which is of interest
to us. The SLE proposal tries to dynamically remove
locks to allow critical sections to be executed
concurrently. Nevertheless, in order to achieve lock
removal, SLE needs to detect and elide the silent store

pairs associated with the modification of the flag
variable of the lock and unlock constructs of parallel
applications. Therefore, SLE implements silent stores
detection which is specifically designed for those silent
store pairs of a critical section, without considering
other possible silent stores.

In KIMP, we also need to remove these silent store
pairs because, like SLE, we remove the lock from
critical sections in order to concurrently execute them.
However, the mechanism we propose does not just
remove this specific type of silent store. We will
remove all the possible silent stores that appear during
a single transaction, which of course includes those
silent stores associated with locks.

The mechanism we propose is quite simple -- an
ordinary store merging mechanism reduces the number
of stores to the same address within a transaction to
only one, and silent store removal avoids broadcasting
the remaining stores. Figure 9 shows an example of
use of these mechanisms.

The store merging mechanism we use in KIMP is
similar to that implemented in the Alpha 21164 [9].
Store merging consists of removing a store when a
younger store is to the same address. If we apply this
mechanism just before broadcasting a transaction, and
before searching for silent stores, we do not have to
care about race conditions as in [9]. The Alpha 21164
needs to ensure, for instance, that between these two
stores there is no load to the same address. But in our
system, at the point we perform the store merging, all
the loads of the transaction are supposed to be
executed. It is also true that our mechanism is simpler
because, unlike the Alpha 21164, only stores of a
single transaction are supervised.

After performing the store merging, we carry out
the silent store removal. To detect silent stores we
leverage the store-forwarding logic used in current

LD A

Critical
section

Execution
flow

Chk1

ST #1, A

Chk2

ST #0, A

Merged:
ST #0, A

Silent Store
detected:
removed

Figure 9: Silent store elimination.

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

processors. Store-forwarding searches the older stores
before executing a load, and if an address match is
found, the value of the store is forwarded to the load.
Our mechanism, instead, searches older loads before
executing a store, and if an address and value match is
found, the store is removed because it is silent. Our
silent store mechanism is simple because we just look
for silent stores within a single transaction, and during
a single transaction we have all the loads queued
waiting to be committed and the stores queued waiting
to be broadcast to the memory hierarchy.

BARRIER(t)

Speculative
execution

Chk1

Chk2

Normal
execution

Figure 10: A speculated barrier.

8. Flags and barriers

Flags and barriers are used to synchronize different
threads. A correct execution should make all threads
wait for the barrier to open, before continuing
execution. Similar to the previous case, this stall can be
avoided in those cases, in which there is no real data
interaction between different threads.

8.1. Related work

Speculative Synchronization [21] also deals with
flags and barriers. When such a construct is detected,
execution is continued further, in a speculative state.
The instructions after a barrier remain speculative,
waiting for the barrier to open before validating all the
work.

TCC [14] substitutes flags and barriers by assigning
phase number to each transaction. A processor can not
commit a transaction if there is a remote pending
transaction with a lower phase number. This way,
transactions with the same phase numbers can commit
in any order, whereas transactions with consecutive
phase numbers are ensured to commit sequentially.
Speculation is implemented naturally, as transactions
after the phase change can be executed, but not
committed.

8.2. KIMP mechanisms

KIMP can be adapted to speculate after barriers, in
a similar manner to [21]. As in the previous section,
there is the need to detect the barrier code and take a
new checkpoint just prior to it. Speculative execution
starts after the barrier, as shown in Figure 10. All the
transactions after this barrier remain fully speculative,
meaning that none of them can be validated, as long as
the barrier remains closed. This is ensured by setting a
“pure speculative mode” in the processor.

To determine the moment in which the barrier
opens, the processor tracks the cache line containing
the barrier variable, waiting for a cache event (an

invalidation or an update of the line) to check the value
again. When the barrier opens, the “pure speculative
mode” is disabled, and the processor can start
committing all the transactions in the pipeline. Note
that a remote invalidation of the speculatively marked
line does not force a rollback, but makes the
speculative control unit check the variable again.

Of course, all the speculative execution done before
the opening of the barrier variable, has no effect on the
consistency model. This is so, because the commit only
happens after the barrier opening, and is the
correctness substrate that ensures that the cache
contents remain valid up to the commit instant.

The expected performance improvement of this
scheme depends on the average time the processors
wait at a barrier, while in the previous case the
processor can commit the critical section and continue
execution. Thus, if the waiting time does not exceed
the time needed for the pipeline to fill and stall, we can
achieve performance improvements. As Kilo-
instruction Processors are designed to have thousands
of in-flight instructions, this can occur frequently.
Furthermore, in case of a conflict forcing a rollback,
this mechanism will prefetch needed data, similar to
[24], possibly reducing following memory latencies.

9. Conclusions

This paper introduces KIMP, a framework that
makes Kilo-instruction Processors capable of
executing parallel code in a transactional fashion,
similar to the TCC model, but modifying neither the
code nor the programming methodology. Our model
maintains Sequential Consistency with a low hardware
cost, a high performance potential and a reduced bus
overhead. The hardware requirements are low, as most
of the mechanisms are already proposed for kilo-
instruction processors, and the processor model is
simplified thanks to the transactional behavior.

Invited paper in the IEEE Conference on Pervasive Services, ICPS-05. Santorini, Greece. July 11-14, 2005.

Our model considers speculative execution in
critical sections and barriers, reducing as much as
possible the performance loss that these constructs
cause in parallel programs. This, together with the
advantages of transactional behavior, will provide high
performance with no required code modifications.

Acknowledgements

This work has been supported by the Ministry of
Education of Spain under contract TIN-2004-07739-
C02-01 and grant AP2003-0539 (M. Galluzzi), the
HiPEAC European Network of Excellence, and the
Barcelona Supercomputing Center. J. E. Smith is
partly supported by the NSF grant CCR-0311361. Per
Stenström is partly supported by the Swedish Research
Council under contract VR 2003-2576.

References

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie, “Unbounded Transactional Memory”,
In Proc. of the 11th HPCA, California, pp 316-327, Feb. 2005
[2] A. Cristal, M. Valero, J. Llosa, and A. González, “Large
virtual ROBs by processor checkpointing”, Tech. Rep. UPC-
DAC-2002-39, UPC, Spain, July 2002
[3] A. Cristal, J. F. Martínez, J. Llosa, and M. Valero, “A
Case for Resource-conscious Out-of-order Processors”, In
IEEE TCCA Comp. Architecture Letters, 2, October 2003.
[4] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Kilo-
instruction processors”, In Intl. Symp. on High Performance
Computers, October 2003. LNCS 2858, 2003.
[5] A. Cristal, D. Ortega, J. Llosa, and M. Valero, “Out-of-
Order Commit Processors”, In Proc. of the 10th HPCA,
February 2004.
[6] A. Cristal, O. Santana, M. Valero, J. F. Martínez,
“Toward Kilo-instruction Processors”, In ACM Transactions
on Architecture and Code Optimization, V. 1, No. 4, Dec. 04.
[7] A. Cristal et al., “Kilo-instruction Processors:
Overcoming the Memory Wall”, To be published on IEEE
Micro Magazine, Vol. 25, No. 3, May/June, 2005.
[8] F. Dahlgren, M. Dubois, and P. Stenström, “Combined
Performance Gains of Simple Cache Protocol Extensions”, in
Proc. of 21st ISCA, pp. 187-197, April 1994.
[9] J. H. Edmondson, et al., “Internal organization of the
Alpha 21164, a 300-MHz 64-bit quad-issue CMOS RISC
microprocessor”, Digital Technical Journal, Vol. 7, No. 1,
1995, pp. 119--135.
[10] M. Galluzzi et al., “A First Glance at Kilo-Instruction
based Multiprocessors”, In Proc. of the 1st Conf. on
Computing Frontiers, pp. 212-221, Ischia, Italy, April 2004.
[11] K. Gharachorloo et al., “Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors”, In
Proc. of the 17th ISCA, 1990.

[12] J. R. Goodman, “Cache Consistency and Sequential
Consistency”, Tech.Rep. no.61, SCI Committee, March 1989
[13] C. Gniady, B. Falsafi, and T. N. Vijaykumar, “Is SC +
ILP = RC?”, In Proc. of the 26th ISCA, 1999
[14] L. Hammond et al., “Transactional Memory Coherence
and Consistency”, In Proc. of the 31st Annual International
Symposium on Computer Architecture, Germany, June 2004.
[15] J. Huh et al., “Coherence Decoupling: Making Use of
Incoherence”, In Proc. of the 11th ASPLOS, October 2004
[16] T. Karkhanis and J.E. Smith, “A Day in the Life of a
Data Cache Miss”, In Proc. of the 2nd WMPI, 2002.
[17] L. Lamport, “How to make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs”, IEEE
Transactions on Computers, C-28(9):690-691, 1979.
[18] M. H. Lipasti, K. M. Lepak, “On the Value Locality of
Store Instructions”, In Proc. of the 27th ISCA, 2000
[19] M. M. K. Martin, M. D. Hill and D. A. Wood, “Token
Coherence: Decoupling Performance and Correctness”, In
Proc. of the 30th ISCA, 2003
[20] J. F. Martinez, A. Cristal, M. Valero, and J. Llosa,
“Ephemeral Registers”, Technical Report CSL-TR-2003-
1035, Cornell Computer Systems Lab, 2003.
[21] J. Martínez, J. Torrellas, “Speculative Synchronization:
Applying Thread-Level Speculation to Explicitily Parallel
Applications”, In Proc. of the 10th ASPLOS, Oct. 02
[22] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez, and
V. Vinals, “Delaying Physical Register Allocation Through
Virtual-Physical Registers”, In Proc. of the 32nd Intl. Symp.
on Microarchitecture, pages 186–192, November 1999.
[23] K. E. Moore, M. D. Hill and D. A. Wood, “Thread-
Level Transactional Memory”, TR1524, Comp. Science
Dept. UW Madison, March 31, 2005
[24] O. Mutlu et al., “Runahead Execution: An Alternative to
Very Large Instruction Windows for Out-of-Order
Processors”, In Proc. 9th HPCA, pp. 129-140, 2003
[25] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton,
“An Evaluation of Memory Consistency Models for Shared-
Memory Systems with ILP Processors”, In Proc. Of the 7th
ASPLOS, October 1996
[26] R. Rajwar, and J. R. Goodman, “Speculative Lock
Elision: Enabling Highly-Concurrent Multithreaded
Execution”, In Proc. of 34th Intl. Symp. on
Microarchitecture, pp.294-305, Dec. 2001.
[27] R. Rajwar, and J. R. Goodman, “Transactional Lock-
Free Execution of Lock-Based Programs”, In Proc. of the
10th ASPLOS, Oct. 02.
[28] P. Ranganathan, V.S.Pai, and S. Adve, “Using
Speculative Retirement and Larger Instruction Window to
Narrow the Performance Gap Between Memory Consistency
Models”, In Proc. of the 9th Symposium on Parallelism in
Algorithms and Architectures. June, 1997.
[29] P. Rundberg, and P. Stenström, “Speculative Lock
Reordering”, In Proc. of IPDPS, April 2003.
[30] D. J. Sorin et al., “SafetyNet: improving the availability
of shared memory multiprocessors with global
checkpoint/recovery”, In Proc. of the 29th ISCA, June 2002.

	1. Introduction
	2. Background
	2.1. Kilo-Instruction Processors
	2.2. Kilo-Instruction Multiprocessors

	3. KIMP overview
	4. Implicit transactions
	4.1. Basic operation
	4.2. Adaptive transaction length

	5. Memory Coherence
	6. Memory consistency
	6.1. Consistency models
	6.2. KIMP maintains SC

	7. Locks
	7.1. Related work
	7.2. KIMP and critical sections
	7.3. Silent stores and store merging

	8. Flags and barriers
	8.1. Related work
	8.2. KIMP mechanisms

	9. Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

