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Abstract—Dragonfly networks are appealing topologies for
large-scale Datacenter and HPC networks, that provide high
throughput with low diameter and moderate cost. However,
they are prone to congestion under certain frequent traffic
patterns that saturate specific network links. Adaptive non-
minimal routing can be used to avoid such congestion. That
kind of routing employs longer paths to circumvent local or
global congested links. However, if a distance-based deadlock
avoidance mechanism is employed, more Virtual Channels (VCs)
are required, what increases design complexity and cost.

OFAR (On-the-Fly Adaptive Routing) is a previously proposed
routing that decouples VCs from deadlock avoidance, making
local and global misrouting affordable. However, the severity
of congestion with OFAR is higher, as it relies on an escape
subnetwork with low bisection bandwidth. Additionally, OFAR
allows for unlimited misroutings on the escape subnetwork,
leading to unbounded paths in the network and long latencies.

In this paper we propose and evaluate OFAR-CM, a variant
of OFAR combined with a simple congestion management (CM)
mechanism which only relies on local information, specifically
the credit count of the output ports in the local router. With
simple escape subnetworks such as a Hamiltonian ring or a tree,
OFAR outperforms former proposals with distance-based dead-
lock avoidance. Additionally, although long paths are allowed
in theory, in practice packets arrive at their destination in a
small number of hops. Altogether, OFAR-CM constitutes the first
practicable mechanism to the date that supports both local and
global misrouting in Dragonfly networks.

Index Terms—Dragonfly Networks; Cogestion Management;
Deadlock Avoidance;

I. INTRODUCTION

Dragonfly networks [1] have been proposed as a cost-
efficient solution for large-scale interconnection networks. A
Dragonfly is organized in groups of routers. The intercon-
nection between groups employs optical global links. Routers
within groups are connected using short electrical local links.
The topologies of the local and global interconnects are
typically low-diameter direct topologies that exploit high-
radix routers. For example, the IBM PERCS Interconnect
[2] employs an all-to-all topology (1D-Flattened Butterfly)
in both the local and global interconnects, while the Cray
XC30 (codenamed “Cascade”, [3]) employs an 1D-Flattened
Butterfly (FB) for the global interconnect and a 2D-FB within
groups.

OFAR (On-the-Fly Adaptive Routing, [4]) is an adaptive
routing mechanism for Dragonfly networks that relies on a
deadlock-free escape subnetwork, [5]. In OFAR, packets can

freely circulate in the canonical network. This allows for sev-
eral optimizations that improve performance: local misrouting
(two local hops within a group instead of the direct one)
circumvents congested local links; global misrouting (sending
traffic to an intermediate group) avoids saturated global links;
and in-transit changing from minimal to nonminimal routing
(global misrouting) increases responsiveness to traffic changes.

However, this routing freedom permits the appearance of
cyclic dependencies. When these occur, packets are derived
to a deadlock-free escape subnetwork, what removes the
deadlock situation in the canonical network. Packets can return
to the canonical network from the escape subnetwork to
continue on a minimal path, or follow the escape subnetwork
until they reach their destination. As packets can return to
the canonical network, the system is restricted to Virtual Cut-
Through switching, as discussed in [5]. The implementation
in [4] employs a Hamiltonian ring with bubble flow control
[6] as its deadlock-free escape subnetwork. This approach
is very effective, but it introduces two main limitations.
Firstly, under high traffic load, if the canonical network gets
saturated, the network could respond with the throughput of
the escape subnetwork (the ring), which is much lower. This
is, congestion in the escape network leads to congestion in the
canonical network which cannot be mitigated with the misrout-
ing mechanisms. Secondly, under high congestion, packets can
bounce from the canonical to the escape subnetwork, leading
to unbounded network paths.

In this paper we introduce OFAR-CM, an overall solution
which combines OFAR routing with a simple congestion man-
agement (CM) mechanism to prevent its original performance
problems. Our experiments show that even a very simple CM
mechanism such as injection throttling is enough to prevent
any congestion issues. Furthermore, OFAR-CM obtains better
performance than alternative mechanisms with higher cost in
terms of number of virtual channels and design complexity.
Specifically, the main contributions of this paper are:

• We introduce OFAR-CM, an overall solution for routing
in Dragonflies that relies on a simple injection throttling
mechanism. Using the same resources as previous propos-
als, OFAR-CM provides the maximum routing freedom
without the congestion problems of the original OFAR.

• We evaluate two simple congestion control mechanisms,
Base Congestion Management (BCM) and Escape Con-



gestion Management (ECM), that rely on local informa-
tion. Overall, both are effective in preventing network
congestion. However, ECM restricts injection more, lead-
ing to higher throughput but also higher latencies.

• We evaluate two low-cost options for the escape subnet-
work: a Hamiltonian ring with bubble flow control, and
a spanning-tree with up-down routing. Comparatively,
although the tree is more likely to cause load imbalance
making traffic consumption slower, it provides better
latencies at low traffic loads.

• We evaluate the problems of unfairness and unbounded
paths. We identify unfairness issues that can arise at the
group or router levels under high loads. However, in our
system packets do not follow unbounded paths.

The rest of the paper is organized as follows. Section
II introduces related work in the field. Sections III and IV
detail the escape subnetworks and the congestion management
mechanisms evaluated in this paper. Then, Sections V and VI
present and discuss the simulation results of these mechanisms,
and Section VII concludes the paper.

II. RELATED WORK

Several adaptive routing mechanisms have been proposed
for Dragonfly networks [1], [7], [4]. They differ in multiple
aspects, mainly whether they support certain nonminimal
routing options. Global misrouting (or Valiant routing, [8])
sends traffic to an intermediate group to avoid congested global
links. Local misrouting (motivated in [4]) avoids congested
local links with two local hops. In-transit adaptive routing
(supported in PAR, [7]) can switch a packet’s path from
minimal to non-minimal on the fly, adapting faster to changes
in network congestion.

Regarding congestion sensing, Piggybacking (PB, [7])
floods congestion information between the routers in a group.
To do so, it employs additional bits in the data packets sent
between routers in the group, what reduces overhead. Other
mechanisms can modify the packet path in-transit (OFAR or
PAR), using information local to each router of the path.

Deadlock avoidance in multiple proposals (such as PB or
PAR) relies on an increasing ordered sequence of virtual
channels, based on an original result in [9]. This implies
that allowing longer paths in the network (for example, to
support local misrouting or in-transit adaptive routing) requires
a larger number of VCs and increases the design complexity
of the router. OFAR [4] employs VCs from the “original”
(or canonical) Dragonfly in a fully adaptive manner, but
adds a deadlock-free escape subnetwork to prevent deadlock
situations. A Hamiltonian ring with bubble flow control is
employed in that work as the escape subnetwork.

Multiple congestion control mechanisms have been studied
and proposed for different networks. A good survey of their
application in HPC can be found in [10]. Virtually every mech-
anism relies on injection throttling, such as the transmission
window in TCP [11] or Quantized Congestion Notification
(QCN, [12]) in Datacenter Bridging. The differences rely on
how they detect network congestion. Several proposals rely

on explicit congestion notification (ECN), such as QCN, Dat-
acenter TCP [13] or recent Infiniband implementations [14]. In
such cases, the network equipment detects congestion based
on the occupancy of router queues. Alternative mechanisms
derive congestion from other indicators, such as estimated
round-trip time or packet loss.

Alternatively, equal-cost multipathing was proposed in [15]
as a mechanism for datacenter bridges to circumvent congested
network areas without reducing transmission rates. A similar
approach is the one employed in adaptive routing mechanisms
in Dragonflies [1], but in this case selecting between paths with
different lengths or costs.

When the packets in a flow can follow different paths
(to avoid congested links), additional end-to-end congestion
control is not very effective since not all packets traverse the
same congestion point. In this work we study local congestion
control mechanisms, BCM and ECM, which apply source
throttling based on the occupancy of the local queues. Similar
mechanisms have been studied before in other networks, [16].

III. ESCAPE SUBNETWORKS

When a escape deadlock-free subnetwork is employed for
deadlock avoidance, no virtual channels (VCs) are required
to prevent deadlock [5], although they help mitigating Head-
of-line blocking (HoLB). We will denote the number of VCs
employed in local and global ports separately. For example,
Piggybacking requires 3/2 VCs, meaning 3 VCs in local ports
and 2 VCs in global ones.

The escape subnetwork can employ links separated to the
ones in the canonical network, using extra ports in the routers
and interconnecting them with additional local and global
links. Another possibility is to embed the escape subnetwork.
In that case it would be necessary to add at least one virtual
channel to each link forming the escape subnetwork. We will
denote this extra VC separately, for example 3/2(+1).

The escape subnetwork must interconnect all the routers
in the network. Depending on the topology employed, the
network cost and the performance results will vary. In this
section we describe two such topologies, first a subnetwork
based in a Hamiltonian ring like the one employed in [4] and
then one based on a tree. They are depicted in Figure 1.

A. Hamiltonian Ring

In this case, the escape subnetwork interconnects every
router in the network forming a ring. With Virtual Cut-
Through, the ring subnetwork is deadlock-free as long as there
is space for at least one packet in one of its buffers. To assure
this, bubble flow control is applied to the ring. To inject a
packet in the ring, it is required to have free space for two
packets in the buffer, what preserves the previous condition.
On the contrary, packets can freely circulate inside the ring.

B. Tree

In this case one of the routers is chosen as a “root”, Rroot.
We denote the group containing Rroot as Groot. Rroot is con-
nected by additional links or VCs to all the remaining routers



(a) Hamiltonian Ring Subnetwork (b) Tree Subnetwork
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Fig. 1: Escape subnetwork topologies for a small Dragonfly interconnection network.
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Fig. 2: Latency and throughput under uniform traffic for OFAR
with a tree escape subnetwork and different CM.

in Groot. Each router in Groot is globally connected with
one or several remote routers, each one in a different group.
Finally, each remote router is connected with the remaining
routers in its group. The routing employed to advance in the
tree network is up-down, what makes it deadlock-free.

IV. CONGESTION MANAGEMENT

The capacity (or bisection bandwidth) of the proposed
escape subnetworks is much lower than the capacity of the
canonical Dragonfly network. If all the buffers of the canonical
network got full and only the escape subnetwork was used to
deliver packets to their destination, the performance would
drop significantly, [4]. Such situation is unlikely, but still
proper congestion management (CM) mechanisms have to be
applied to the network to guarantee that this never happens.

Figure 2 shows the throughput and latency results obtained
for OFAR under uniform random traffic with a tree as escape
subnetwork. The results of PB are shown as a reference. With
OFAR, if no congestion management mechanism is applied
(OFAR Tree), the throughput drops drastically when the
canonical network gets congested under high load. However,
a simple congestion management mechanism (BCM or ECM)

prevents this throughput fall. We introduce next these two
different simple CM mechanisms based on injection throttling.
One of them takes into account the state of the escape
subnetwork, while the other takes into account the state of
the canonical network.

A. Escape Congestion Management (ECM)

With OFAR, the network congestion is reflected in the use
of the escape subnetwork to prevent deadlock. The Escape
Congestion Management (ECM) employs the occupancy of
the local buffers of the escape subnetwork as an indicator of
congestion. If the occupancy of all those buffers is higher than
a given threshold, no packets will be injected. In such case, the
local nodes will have to wait to a subsequent cycle to inject
their traffic. The threshold used is chosen empirically, ranging
from 0% to 100%. Regardless the threshold, buffers can still be
used for in-transit traffic. Contrary to the following mechanism
BCM, ECM does not take into account how occupied is the
queue in which the packet should be injected.

B. Base Congestion Management (BCM)

The Base Congestion Management (BCM) mechanism for-
bids the injection of packets when the canonical (base) net-
work is congested. This is implemented as an extension of the
bubble flow control mechanism. A certain “bubble” is required
to inject packets in the next buffer, what prevents traffic
injection from introducing deadlock in the canonical network.
Consequently, a packet at the head of an injection queue can
be injected in the network only if there is enough space in
the next queue for one packet plus the bubble. Otherwise, the
packet will have to wait to a subsequent cycle. The bubble
size can range from 1 to the buffer size in packets minus 1,
and it is chosen empirically to prevent over-throttling, as will
be detailed in Section V-A. Packets are never injected directly
into the escape subnetwork, so its occupancy is not relevant
for the injection decision. Hence, the BCM mechanism only
takes into account the state of the canonical network.



V. PERFORMANCE RESULTS

In this section we study the behavior of OFAR with different
escape subnetworks and congestion management mechanisms
in a Dragonfly network, using complete graphs for the local
and global interconnects. We have employed an in-house de-
veloped Dragonfly network time-driven simulator. We simulate
a Dragonfly with size: p = 6 computing nodes and h = 6
global ports per router, and a = 12 routers per group. This
network interconnects 5,256 computing nodes organized in 73
groups of 12 routers with 23 ports each. Latencies are 10
cycles for local links and 100 for global links. We model
input buffered routers with FIFO queues. Taking into account
the round-trip latencies, FIFO sizes are set to 32 phits for the
local ones, and 256 phits for the global ones. Packet length is
8 phits. We do not model virtual output queuing (VoQ) [17] or
router speedup, as they highly increase the complexity and cost
of high-radix routers. We employ the MM global misrouting
policy, as introduced in [18] and a misrouting threshold of
90% as presented in [4].

We evaluate OFAR with the two different subnetwork
topologies, Ring and Tree, and the two congestion manage-
ment mechanisms, BCM and ECM: OFAR Ring+BCM, OFAR
Ring+ECM, OFAR Tree+BCM and OFAR Tree+ECM. Each
subnetwork is embedded in the canonical Dragonfly by adding
an extra VC in those links forming the escape subnetwork.
We show the results for Piggybacking (PB) as a reference,
as it is the routing based on VCs for deadlock avoidance
with the best overall results in previous works, [7]. It always
employs 3/2 VCs, which are required for deadlock avoidance.
We carry out steady state and traffic consumption experiments.
For the steady state experiments, we simulate uniform random
(UN) and adversarial global (ADVG) traffic patterns. With
UN traffic destination nodes randomly selected among all the
possible destinations, excluding the source node itself. With
the adversarial pattern ADVG+i all traffic from a group N is
sent to group N + i. We show 2 different cases: ADVG+2
and ADVG+6. ADVG+2 requires global misrouting to obtain
good performance. However, as explained in [4], due to a
pathological problem of congestion in certain local links,
the ADV G + i traffic is more or less adversarial depending
on the value of i; ADV G + n · h (in our case ADVG+6)
generates the maximum congestion in local links, requiring
of local misrouting to sustain throughput. We show results
for ADVG+2 instead of ADVG+1 because the additional ring
VC between consecutive groups could favor the OFAR+Ring
model. The results show the average latency and throughput
obtained after a network warm-up period.

For the traffic consumption experiments, each node sends
2,000 packets of a specific traffic pattern as fast as possible
and we show the number of cycles required until all packets
are consumed. In addition to UN, ADVG+2 and ADVG+6,
we simulate one phase of an all-to-all communication. In that
case each node sends one packet to each of the other nodes in
the network (5,255 packets per node), randomizing the source
and destination pairs to alleviate hotspots like in [19].

 200

 250

 300

 350

 400

 450

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

A
v
e
ra

g
e
 l
a
te

n
cy

 (
cy

cl
e
s)

Offered load (phits/(node*cycle))

Bubble=3
Bubble=2
Bubble=1
Bubble=0

(a) Latency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1

A
cc

e
p
te

d
 l
o
a
d
 (

p
h
it

s/
(n

o
d
e
*c

y
cl

e
))

Offered load (phits/(node*cycle))

Bubble=3
Bubble=2
Bubble=1
Bubble=0

(b) Throughput

Fig. 3: Latency and throughput under ADVG+2 traffic for
different BCM bubble sizes.

A. Congestion Management Parameter Selection

As previously explained in Section IV, the size of the
bubble for BCM and the threshold for ECM have to be chosen
empirically. We show next an example of how the size of the
bubble affects performance results. Figure 3 shows the latency
and throughput results obtained for OFAR+Ring with 3/2(+1)
VCs, BCM, and different bubble sizes. Although a smaller
bubble provides a higher throughput, it also generates higher
latencies. Consequently, we choose a bubble of 2 packets for
our BCM implementation, what provides a high throughput
while maintaining low latencies. A similar methodology is
used to choose the threshold for ECM.

B. Network Resources

In this section we study how the number of virtual channels
(VCs) affects performance. With OFAR, no VCs are needed
for deadlock avoidance, but they help mitigating Head-of-Line
Blocking (HoLB). As a result, a higher number of VCs will
provide higher performance, until a point in which there is
another factor that limits performance more than HoLB, such
as the switch allocation mechanism. Passed that point, a higher
number of VCs degrades performance, since there are more
packets in the network what can increase congestion.

Figures 4 and 5 show the average latency and throughput
results obtained for OFAR Ring+BCM with different number
of VCs. The bubble size for our BCM implementation is 2
packets. The number of VCs ranges from 1/1(+1) to 4/4(+1).
PB is also shown as a reference.

In general OFAR always obtains better performance than
PB (3/2 VCs) when using the same or more VCs. Even with
a lower number of VCs, 2/2(+1), OFAR results are better.
Only when OFAR employs less VCs, 2/1(+1) or 1/1(+1),
and with traffic ADVG+2, PB results are better than OFAR.
When the traffic is uniform, Figures 4a and 5a, OFAR 1/1(+1)
obtains a result very close to that for PB. All the rest of
the configurations present a better performance, very close
to each other. OFAR with 3/3(+1) VCs is the configuration
that achieves the best overall performance for all the traffic
patterns. Further increasement of the number of VCs does not
provide a better performance: OFAR 4/4(+1) obtains worse
results, specially for the latency when the traffic is adversarial.
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Fig. 4: Latency under UN, ADVG+2 and ADVG+h traffic for PB and OFAR varying the number of VCs.
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Fig. 5: Throughput under UN, ADVG+2 and ADVG+h traffic for PB and OFAR varying the number of VCs.

From the figures we can observe a clear problem of network
unfairness when the VC count is low. With 2/1(+1) VCs
and adversarial traffic, the average latency of OFAR rockets
at around 0.15 phit/(node · cycle). However, its throughput
reaches 0.3 phit/(node · cycle). This effect is typical with
unfairness issues, when some specific nodes of the network
suffer from starvation: their latency is much higher than the
rest, what increases the average latency values. Similar star-
vation problems in Dragonfly networks were studied in [18].
In this case, the problem arises from localized congestion, as
will be studied in more detail in Subsection V-C.

We have seen that with the same amount of resources,
or even less, OFAR outperforms PB. Only under ADVG+2
traffic with a reduced number of VCs, 2/1(+1) or lower,
OFAR cannot match PB due to congestion problems derived
from HoLB. Thus, from now on we will only focus on this
specific configuration with few resources, to study the effects
of congestion and alternative ways to cope with it.

C. Congestion Management and Escape Subnetwork

This section explores how the escape subnetwork and
congestion management mechanisms affect the performance
of OFAR with few resources, 2/1(+1) VCs. We study the
performance of OFAR Ring and OFAR Tree with BCM and
ECM congestion management. The latency and throughput
steady state results are show in Figures 6 and 7. Again, PB
is shown as a reference. As seen in Figures 6a and 7a, under

uniform traffic no significant differences can be appreciated
in the performance of the four OFAR configurations, and all
of them outperform PB. Under adversarial traffic, Figures 7b
and 7c, the variants with ECM obtain higher throughput than
those with BCM. Under adversarial traffic ADV G + 2, the
maximum throughput of OFAR with BCM is slightly lower
than with PB, while with ECM it is higher.

These figures also reflect some anomalies caused by load
imbalance. Figures 6b and 6c show the same latency results
for OFAR Ring+BCM with 2/1(+1) as Figures 4b and 4c,
but with a larger y axis. Above load 0.1 the latencies keep
increasing, up to reaching the throughput saturation load.
Also, the throughput for OFAR Tree+ECM at low adversarial
traffic loads is slightly lower than for the other configurations.
This configuration also presents high latency values before
saturation. These are also caused by load imbalance, and both
will be discussed in detail in Section VI.

VI. DISCUSSION

Figure 8 shows the traffic consumption times for each
routing mechanism. OFAR is always faster than PB consuming
traffic except when the traffic is ADV G+2. In general, ECM
yields faster results than BCM, and the ring yields faster results
than the tree. As a result, the fastest OFAR configuration is
OFAR Ring+ECM, while the slowest is OFAR Tree+BCM,
which needs almost the same time as PB to consume traffic.

The same experiments shown in this Subsection were
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Fig. 6: Latency under UN, ADVG+2 and ADVG+h for PB and OFAR with 2/1(+1) VCs.
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Fig. 7: Throughput under UN, ADVG+2 and ADVG+h for PB and OFAR with 2/1(+1) VCs.
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Fig. 8: Traffic consumption time for PB and OFAR 2/1(+1).

carried out for OFAR with 3/2(+1) VCs. In that case, the
four OFAR configurations obtained better performance than
PB in the steady state experiments, and consumed traffic in
approximately 0.7 times the time of PB.

A. Network Fairness

In the experiments in Figures 6 and 7, OFAR obtains
very similar throughput results with the ring and the tree
escape subnetworks, regardless the congestion management.
However, as shown in Figure 8, OFAR ring consumes ADVG
traffic faster than OFAR tree. This behavior is due to a load
imbalance introduced by the asymmetry of the tree escape
subnetwork. Figure 9a, obtained with BCM, shows this effect.
It depicts the total number of packets injected by nodes in

group G0 and Groot for OFAR Tree and OFAR Ring in
50,000 cycles, after warm up, when the applied load is 1
phit/(node ·cycle). We present results for UN, ADVG+2 and
ADVG+h. Groot is the group containing the root router Rroot

when the escape subnetwork is a tree. G0 is a group chosen
as a baseline for comparison. Since there is no root in a ring,
for OFAR Ring we just show results for G0.

For OFAR Tree, the number of packets injected by nodes
in Groot is significantly lower than in G0. When a packet is
injected into a tree escape subnetwork, the probability that it
has to pass through the root router Rroot is very high. As a
result, Rroot and its group Groot receive more traffic than the
rest of the routers and groups. A small part of the network,
Groot, concentrates great part of the traffic. This does not
happen with an escape ring, as it is a symmetric topology that
balances the load among all the groups in the network. With
the tree escape subnetwork, packets in the injection queues of
routers in group Groot have to wait longer to be injected. As
a result, in the same amount of cycles, nodes in Groot inject
less packets than nodes in the rest of the groups. This explains
the slightly lower throughput in Figures 7b and 7c especially
with ECM, and the higher consumption times.

This asymmetry is also responsible for the high latencies
at low traffic loads for OFAR Tree+ECM when the traffic is
adversarial (Figures 6b and 6c). With that configuration, OFAR
only injects packets if the escape subnetwork is not saturated.
Although at low traffic loads the escape subnetwork should not
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Fig. 9: Packets injected with OFAR Ring+BCM in different groups of a Dragonfly network.

be saturated, in Groot it is, due to the concentration of traffic in
that group. Routers in Groot detect the escape subnetwork as
congested, prohibiting packet injection, and increasing average
packet latency. A solution for this problem might come from
using multiple disjoint escape trees, as previously suggested
in [4], in order to distribute the traffic generated by the escape
subnetwork. We do not explore this idea in this paper.

Apart from load imbalance between groups, there could also
exist imbalance between routers within the same group. This
problem occurs for OFAR Ring+BCM in Figures 7b and 7c.
Specifically, under an adversarial pattern all the traffic of a
group will leave it minimally through a single router. If this
router also happens to have a global link of the embedded
escape topology, it will receive much more traffic than other
routers in the group. BCM will then prevent local traffic
injection due to the congestion in the links of this router.
Figure 9b shows an example with ADVG+h traffic, showing
the number of packets injected by each router in group 0 for
an offered traffic load of 0.2 phit/(node · cycle) with OFAR
Ring+BCM and OFAR Tree+BCM. With OFAR Ring+BCM,
R11, through which minimal and escape traffic leave the group,
injects 25% less packets than the rest of the routers in the
group. On the contrary, with OFAR Tree+BCM, no router
starves. The effect of this unbalance is reflected in Figure 7c,
in which the average latency at 0.2 phit/(node · cycle) for
OFAR Ring+BCM is much higher than for OFAR Tree+BCM.

B. Length of network paths

The maximum path length in the canonical Dragonfly
network with local and global misrouting is 8 hops (6 local
and 2 global). If a packet enters the escape subnetwork,
this length can increase significantly. If a packet followed
the escape subnetwork up to its destination, the number of
hops would be much higher if the escape subnetwork was a
Hamiltonian Ring (up to N/2 hops, being N the routers in
the network), than if it was a tree (up to 6 hops). However,
the escape subnetwork is only used to escape from potential
cyclic dependencies, and packets try to return to the canonical
network as soon as possible. Therefore, packets can enter
and leave the escape subnetwork multiple times, making the
maximum path length unbounded. We study next this concern

when congestion management is used, and observe that, in
practice, unbounded paths do not happen.

Histograms in Figures 10a and 10b show how many packets
needed a certain number of hops to reach their destination
nodes under UN and ADVG+h traffic respectively, with or
without BCM, and with log scale in the vertical axis. Data
was collected in traffic consumption experiments like those
in Subsection V-C. Under UN the four OFAR configurations
show a similar behavior. The maximum route lengths are
slightly shorter for OFAR Tree than for OFAR ring. In all the
cases, more than a 99.9% of the packets need less than 11
hops to reach the destination node.

Interestingly, under ADVG+h traffic, OFAR Ring provides
shorter paths than OFAR Tree. This points out that a escape
subnetwork with longer average and maximum distances does
not necessarily lead to longer paths. Figure 10b shows that
long paths are really infrequent when congestion management
is used. In our simulations the longest path with OFAR
Tree+BCM was 20 hops, and with OFAR Ring+BCM only 14
hops. Bigger differences appear when there is no congestion
management. In that case, while for OFAR Ring the longest
path takes 24 hops with OFAR Tree one of the packets had
to make 217 hops, with multiple injections to the escape
subnetwork. When a packet is in the source group and feels
that the canonical network is congested, it goes into the escape
subnetwork. If there is congestion in the next group following
the escape subnetwork, the packet will have to wait long to
advance to it. As a result, whenever there is space, the packet
will return to the canonical network; until it senses congestion
again and has to be injected once more in the escape subnet-
work. This process will be repeated as long as congestion
situation remains. As explained in Subsection VI-A, with
OFAR Tree, group Groot is more prone to congestion than the
rest of the groups. As a result, multiple injections are more
likely. Nevertheless, this situation is not very common. For
OFAR Tree under ADVG+h traffic, more than a 99.99% of
the packets need less than 30 hops to reach its destination.

Although in practice unbounded paths do not occur when
using congestion management, a simple mechanism could
limit the number of subnetwork injections and bound path
lengths. Every packet would need a counter, incremented
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Fig. 10: Hops histogram under uniform (UN) and adversarial traffic (ADVG+h).

each time it is injected in the escape subnetwork. Once
that counter saturates (for example, 15 injections for a 4-bit
counter), the packet is forced to continue through the escape
subnetwork until reaching its destination. In our experiments
with congestion management, no packet was injected to the
escape subnetwork more than 12 times, so this mechanism
would not have a significant impact on performance.

VII. CONCLUSIONS

In this paper we have introduced and evaluated a novel
alternative that solves the main limitations of former routing
mechanisms in Dragonfly networks; routing freedom, resource
cost, congestion problems and unbounded path lengths. Our
mechanism combines OFAR with simple injection throttling.
Compared to alternative proposals, our mechanism only relies
on local information, supports local and global misrouting
without increasing the number of VCs, and achieves higher
performance thanks to the higher routing freedom.

With similar cost (in terms of VCs), our proposal clearly
outperforms alternatives such as PB. Implementations with
lower cost might suffer unfairness issues. In such case, we have
evaluated two congestion management mechanisms, BCM and
ECM, and two escape subnetwork topologies, a Hamiltonian
ring and a tree. The congestion management mechanisms
avoid network saturation that could lead to a performance
drop. We have analyzed how the topology of the escape
subnetwork affects network load imbalance and performance.
Finally, this work shows that, despite path lengths with OFAR
are unbounded in theory, they are relatively short in practice.
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