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Pl. Imperial Tàrraco 1, Tarragona 43005, Spain

2 Department of Information Technology, University of Turku
Joukahaisenkatu 3-5 B, FI-20014 Turku, Finland

cristina.bibire@estudiants.urv.es,timo.knuutila@it.utu.fi

Abstract. We investigate two of the language classes intensively studied
by the algorithmic learning theory community in the context of learning
with correction queries. More precisely, we show that any pattern lan-
guage can be inferred in polynomial time in length of the pattern by ask-
ing just a linear number of correction queries, and that k-reversible lan-
guages are efficiently learnable within this setting. Note that although the
class of all pattern languages is learnable with membership queries, this
cannot be done in polynomial time. Moreover, the class of k-reversible
languages is not learnable at all using membership queries only.
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1 Introduction

Without any doubt, there is no formal model that can capture all aspects of hu-
man learning. Nevertheless, the overall aim of researchers working in algorithmic
learning theory has been to gain a better understanding of what learning really
is. Actually, the field itself has been introduced as an attempt to construct a
precise model for the notion of “being able to speak a language” [9].

Among the most celebrated models (Gold’s model of learning from examples
[9], Angluin’s query learning model [4], Valiant’s PAC learning model [18]), the
best one for describing the child-adult interaction within the process of child
acquiring his native language is the one proposed in [4]. There, the learner re-
ceives information about a target concept by asking queries of a specific kind
(depending on the chosen query model type) which will be truthfully answered

? The preparation of this paper was done while the first author was visiting the De-
partment of Mathematics of Turku University, and was supported in part by the
European Science Foundation (ESF) for the activity entitled ’Automata: from Math-
ematics to Applications’, and by the FPU Fellowship AP2004-6968 from the Spanish
Ministry of Education and Science.
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by the teacher. After finitely many queries, the learner is required to return its
hypothesis, and this should be the correct one.

The first query learning algorithm, called L∗, was able to identify any min-
imal complete deterministic finite automaton (DFA) in polynomial time, using
membership queries (MQs) and equivalence queries (EQs) [4]. Meanwhile, other
types of queries have been introduced: subset, superset, disjointness and exhaus-
tive queries [5], structured MQs [15], etc., and also various target concepts have
been investigated: non-deterministic finite automata [19], context-free grammars
[15], two-tape automata [20], regular tree languages [8, 17], etc.

Still, none of the above mentioned queries reflects one important aspect of
children language acquisition, namely that although children are not explicitly
provided negative information, they are corrected when they make mistakes.
Following this idea, L. Becerra-Bonache, A.H. Dediu and C. T̂ırnăucă introduced
in [7] a new type of query, the so-called correction query (CQ), and showed
that DFAs are learnable in polynomial time using CQs and EQs. Continuing
the investigation on CQs, C. T̂ırnăucă and S. Kobayashi found necessary and
sufficient conditions for an indexable class of recursive languages to be learnable
with CQs only [16]. Also, they showed some relations existing between this model
and other well-known (query and Gold-style) learning models.

In contrast with the approach in [16], where the learnability was studied
regardless time complexity, we focus in this paper on algorithms for identifying
language classes in polynomial time. Thus, the rest of the paper is structured as
follows. Preliminary notions and results are presented in Section 2. In Section
3 we give a polynomial time algorithm for learning the class of k-reversible
languages with CQs. Section 4 contains an algorithm for learning the class of
pattern languages, along with discussions about correctness, termination and
time analysis. In Section 5 we present some results on the learnability with MQs
of the classes investigated in the previous sections. We conclude with remarks
and future work ideas (Section 6).

2 Preliminaries

Familiarity with standard recursion and language theoretic notions is assumed
(good introductory books are [10, 12], for example).

Let Σ be a finite alphabet of symbols. By Σ∗ we denote the set of all finite
strings of symbols from Σ. A language is any set of strings over Σ. The length
of a string w is denoted by |w|, and the concatenation of two strings u and v by
uv or u · v. The empty string (i.e., the unique string of length 0) is denoted by
λ. If w = uv for some u, v ∈ Σ∗, then u is a prefix of w and v is a suffix of w.

A set S is said to be prefix-closed if for all strings u in S and all prefixes v
of u, the string v is also in S. The notion of suffix-closed set is defined similarly.

By Σ≤k we denote the set {w ∈ Σ∗ | |w| ≤ k}, by Pref (L) the set {u | ∃v ∈
Σ∗ such that uv ∈ L} of all prefixes of a language L ⊆ Σ∗, and by TailL(u) =
{v | uv ∈ L} the left-quotient of L and u. Thus, TailL(u) 6= ∅ if and only if
u ∈ Pref (L).
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A deterministic finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q
is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of final states, and δ is a partial function, called transition function,
that maps Q × Σ to Q. This function can be extended to strings by writing
δ(q, λ) = q, and δ(q, u · a) = δ(δ(q, u), a) for all q ∈ Q, u ∈ Σ∗ and a ∈ Σ. A
string u ∈ Σ∗ is accepted by A if δ(q0, u) ∈ F . The set of strings accepted by
A is denoted by L(A) and called a regular language. The number of states of an
automaton A is also called the size of A. A DFA A = (Q,Σ, δ, q0, F ) is complete
if for all q in Q and a in Σ, δ(q, a) is defined, i.e., δ is a total function. For any
regular language L, there exists a minimum state DFA AL such that L(AL) = L
(see [10], pp. 65-71).

A state q is called reachable if there exists u ∈ Σ∗ such that δ(q0, u) = q and
co-reachable if there exists u ∈ Σ∗ such that δ(q, u) ∈ F . A reachable state that
is not co-reachable is a sink state. Note that in a minimum DFA there is at most
one sink state, and all states are reachable.

Given a language L ⊆ Σ∗, one can define the following relation on strings:
u1 ≡L u2 if and only if for all u in Σ∗, u1 · u ∈ L ⇔ u2 · u ∈ L. It is easy
to show that ≡L is an equivalence relation, and thus it divides the set of all
finite strings in Σ∗ into one or more equivalence classes. We denote by [u]L (or
simply [u], when there is no confusion) the equivalence class of the string u (i.e.,
{u′ | u′ ≡L u}), and by Σ∗/≡L

the set of all equivalence classes induced by ≡L

on Σ∗.
The Myhill-Nerode Theorem states that the number of equivalence classes

of ≡L (also called the index of L) is equal to the number of states of AL. As a
direct consequence, a language L is regular if and only its index is finite.

Assume that Σ is a totally ordered set, and let ≺lex be the lexicographical
order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either
|u| < |v|, or else |u| = |v| and u ≺lex v. In other words, strings are compared
first according to length and then lexicographically.

If f : A → B is a function, by f(X) we denote the set {f(x) | x ∈ X}.
Moreover, we say that f and g are equal if they have the same domain A, and
f(x) = g(x) for all x ∈ A.

2.1 Query Learning

Let C be a class of recursive languages over Σ∗. We say that C is an indexable
class if there is an effective enumeration (Li)i≥1 of all and only the languages
in C such that membership is uniformly decidable, i.e., there is a computable
function that, for any w ∈ Σ∗ and i ≥ 1, returns 1 if w ∈ Li, and 0 otherwise.
Such an enumeration will subsequently be called an indexing of C. In the sequel
we might say that C = (Li)i≥1 is an indexable class and understand that C is an
indexable class and (Li)i≥1 is an indexing of C.

In the query learning model a learner has access to an oracle that truthfully
answers queries of a specified kind. A query learner M is an algorithmic device
that, depending on the reply on the previous queries, either computes a new
query, or returns a hypothesis and halts.
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More formally, let C = (Li)i≥1 be an indexable class, M a query learner, and
let L ∈ C. We say that M learns L using some type of queries if it eventually
halts and its only hypothesis, say i, correctly describes L, i.e., Li = L. So, M
returns its unique and correct guess i after only finitely many queries. Moreover,
M learns C using some type of queries if it learns every L ∈ C using queries of
the specified type. In the sequel we consider:

– Membership queries. The input is a string w, and the answer is ‘yes’ or ‘no’,
depending on whether or not w belongs to the target language L.

– Correction queries. The input is a string w, and the answer is the smallest
string (in lex-length order) of the set TailL(w) if w ∈ Pref (L), and the
special symbol θ 6∈ Σ otherwise. We denote the correction of a string w with
respect to the language L by CL(w).

The collection of all indexable classes C for which there is a query learner M
such that M learns C using MQs (CQs) is denoted by MemQ (CorQ , respec-
tively).

3 Learning k-Reversible Languages with CQs

Angluin introduces the class of k-reversible languages (henceforth denoted by
k-Rev) in [3], and shows that it is inferable from positive data in the limit. Later
on, she proves that there is no polynomial algorithm that exactly identifies DFAs
for 0-reversible languages using only equivalence queries [6].

We study the learnability of the class k-Rev in the context of learning with
CQs, and show that there is a polynomial time algorithm which identifies any
k-reversible language after asking a finite number of CQs.

Although the original definition of k-reversible languages uses the notion of
k-reversible automata, we will give here only a purely language-theoretic char-
acterization.

Theorem 1 (Angluin, [3]). Let L be a regular language. Then L is in k-Rev if
and only if whenever u1vw, u2vw are in L and |v| = k, TailL(u1v) = TailL(u2v).

Let Σ be an alphabet, and L ⊆ Σ∗ be the target k-reversible language.
For any string u in Σ∗, we define the function rowk(u) : Σ≤k → Σ∗ ∪ {θ} by
rowk(u)(v) = CL(uv). We show that each equivalence class in Σ∗/≡L is uniquely
identified by the values of function rowk on Σ≤k.

Proposition 1. Let L be a k-reversible language. Then, for all u1, u2 ∈ Σ∗,
u1 ≡L u2 if and only if rowk(u1) = rowk(u2).

Proof. Let us first notice that for all regular languages L and for any k ∈ IN,
u1 ≡L u2 ⇒ rowk(u1) = rowk(u2) (by the definition of function rowk), so we
just have to show that rowk(u1) = rowk(u2) ⇒ u1 ≡L u2.

Indeed, suppose there exist u1, u2 ∈ Σ∗ such that rowk(u1) = rowk(u2) and
u1 6≡L u2. Hence, there must exist w such that either
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– u1w ∈ L and u2w 6∈ L, or
– u1w 6∈ L and u2w ∈ L.

Let us assume the former case (the other one is similar).

1) If |w| ≤ k, then w ∈ Σ≤k, and since rowk(u1) = rowk(u2) we get in particu-
lar rowk(u1)(w) = rowk(u2)(w), that is CL(u1w) = CL(u2w). But u1w ∈ L
implies CL(u1w) = λ, and so CL(u2w) = λ which is in contradiction with
u2w 6∈ L.

2) If |w| > k, then there must exist v, w′ ∈ Σ∗ such that w = vw′ and |v| = k.
Moreover, by assumption u1vw′ ∈ L and u2vw′ 6∈ L, so u1v 6≡L u2v.
On the other hand since rowk(u1) = rowk(u2) and v ∈ Σ≤k, we have
rowk(u1)(v) = rowk(u2)(v), that is CL(u1v) = CL(u2v) = v′. Because
u1v · w′ ∈ L, TailL(u1v) 6= ∅ and hence CL(u1v) ∈ Σ∗. Since L ∈ k-Rev ,
u1vv′ ∈ L, u2vv′ ∈ L and |v| = k, we get TailL(u1v) = TailL(u2v) (cf.
Theorem 1) which is in contradiction with u1v 6≡L u2v.

ut
This result tells us that if AL = (Q,Σ, δ, q0, F ) is the minimal complete

automaton for the k-reversible language L, then the values of function rowk(u)
on Σ≤k uniquely identify the state δ(q0, u). We use this property to show that
k-reversible languages are learnable in polynomial time with CQs.

3.1 The Algorithm

The algorithm follows the lines of L∗. We have an observation table denoted by
(S,E, C) in which lines are indexed by the elements of a prefix-closed set S,
columns are indexed by the elements of a suffix-closed set E, and the element of
the table situated at the intersection of line u with column v is CL(uv).

We start with S = {λ} and E = Σ≤k, and then increase the size of S by
adding elements with distinct row values. An important difference between our
algorithm and L∗ is that in our case the set E is never modified during the run
of the algorithm (in L∗, E contains only one element in the beginning, and it is
gradually enlarged when needed).

We say that the observation table (S,E, C) is closed if for all u ∈ S and
a ∈ Σ, there exists u′ ∈ S such that rowk(u′) = rowk(ua). Moreover, (S, E,C)
is consistent if for all u1, u2 ∈ S, rowk(u1) 6= rowk(u2). It is clear that if the
table (S, E,C) is consistent and S has exactly n elements, where n is the index
of L, then the strings in S are in bijection with the elements of Σ∗/≡L

.
For any closed and consistent table (S, E, C), we construct the automaton

A(S, E, C) = (Q,Σ, δ, q0, F ) as follows. Q := {rowk(u) | u ∈ S}, q0 := rowk(λ),
F := {rowk(u) | u ∈ S and CL(u) = λ}, and δ(rowk(u), a) := rowk(ua) for all
u ∈ S and a ∈ Σ.

To see that this is a well-defined automaton, note that since S is a non-empty
prefix-closed set, it must contain λ, so q0 is defined. Because S is consistent, there
are no two elements u1, u2 in S such that rowk(u1) = rowk(u2). Thus, F is well
defined. Since the observation table (S,E, C) is closed, for each u ∈ S and a ∈ Σ,
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there exists u′ in S such that rowk(ua) = rowk(u′), and because it is consistent,
this u′ is unique. So δ is well defined.

Remark 1. The following statements are true.

1) rowk(u) is a sink state if and only if CL(u) = θ;
2) δ(q0, u) = rowk(u) for all u in S ∪ SΣ.

We present a polynomial time algorithm that learns any k-reversible language
L after asking a finite number of CQs.

Algorithm 1 An algorithm for learning the class k-Rev with CQs
1: S := {λ}, E := Σ≤k

2: closed := TRUE
3: update the table by asking CQs for all strings in {uv | u ∈ S ∪ SΣ, v ∈ E}
4: repeat
5: if ∃u ∈ S and a ∈ Σ such that rowk(ua) 6∈ rowk(S) then
6: add ua to S
7: update the table by asking CQs for all strings in {uaa′v | a′ ∈ Σ, v ∈ E}
8: closed := FALSE
9: end if

10: until closed
11: output A(S, E, C) and halt.

Note that since the algorithm adds to S only elements with distinct row
values, the table (S,E,C) is always consistent. We will see that as long as |S| < n,
it is not closed.

Lemma 1. If |S| < n, then (S, E, C) is not closed.

Proof. Let us assume that there exists m < n such that |S| = m and the
table (S, E,C) is closed. Let AL = (Q′, Σ, δ′, q′0, F

′) be the minimal complete
automaton accepting L, and A(S, E, C) = (Q,Σ, δ, q0, F ).

We define the function ϕ : Q → Q′ by ϕ(rowk(u)) := δ′(q′0, u). Note that ϕ
is well-defined because there are no two strings u1, u2 in S such that rowk(u1) =
rowk(u2). Moreover, it is injective since ϕ(rowk(u1)) = ϕ(rowk(u2)) implies
δ′(q′0, u1) = δ′(q′0, u2) which is equivalent to [u1] = [u2], and cf. Proposition
1, to rowk(u1) = rowk(u2). We show that ϕ is a morphism of automata from
A(S, E, C) to AL, that is: ϕ(q0) = q′0, ϕ(F ) ⊆ F ′, and ϕ(δ(rowk(u), a)) =
δ′(ϕ(rowk(u)), a) for all u ∈ S and a ∈ Σ.

Clearly, ϕ(q0) = ϕ(rowk(λ)) = δ′(q′0, λ) = q′0. Let us now take rowk(u)
in F , that is, u ∈ S and CL(u) = λ. Since ϕ(rowk(u)) = δ′(q′0, u) and u ∈
L, it follows that ϕ(rowk(u)) ∈ F ′. Finally, ϕ(δ(rowk(u), a)) = ϕ(rowk(ua))
= ϕ(rowk(v)) for some v in S such that rowk(ua) = rowk(v) (the table is
closed), and δ′(ϕ(rowk(u)), a) = δ′(δ′(q′0, u), a) = δ′(q′0, ua). It is enough to see
that ϕ(rowk(v)) = δ′(q′0, v) = δ′(q′0, ua) (because by Proposition 1, rowk(v) =
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rowk(ua) implies [v] = [ua], and AL is the minimal automaton accepting L) to
conclude the proof.

We have constructed an injective morphism from A(S, E,C) to AL such that
|Q| = m < n = |Q|. Since both A(S,E, C) and AL are complete automata, this
leads to a contradiction. ut

We show that Algorithm 1 cannot be used for the whole class of regular
languages.

Lemma 2. Algorithm 1 does not work in general for arbitrary regular languages.

Proof. Indeed, let us assume that Algorithm 1 can identify any regular language.
Let us fix k ≥ 0, and consider the language Lk = {abka, abkb, bk+1a} which is
finite, and hence regular. The minimal complete DFA of Lk is represented in
Figure 1.

Fig. 1. The automaton ALk

Since the strings a · bk · a and b · bk · a are both in Lk, and TailLk
(a · bk) =

{a, b} 6= {a} = TailLk
(b · bk), the language Lk is not k-reversible (Theorem 1).

When running the algorithm on Lk, the set S is initialized with the value
{λ}. Then, since both rowk(a) and rowk(b) are different from rowk(λ), one of the
two elements is added to S. Note that for all u in Σ≤k, rowk(a)(u) = rowk(b)(u)
because:

– if u = bi with 0 ≤ i ≤ k, then CLk
(au) = bk−ia = CLk

(bu), and
– if u = Σ≤k\{bi | 0 ≤ i ≤ k}, then CLk

(au) = θ = CLk
(bu).

Hence, rowk(a) = rowk(b). But this implies that in the automaton output by
the algorithm, the strings a and b represent the same state, a contradiction. ut

In the following sections we show that the algorithm runs in polynomial
time, and terminates with the minimal automaton for the target language as its
output.



8 Cristina T̂ırnăucă and Timo Knuutila

3.2 Correctness and Termination

We have seen that as long as |S| < n, the table is not closed, so there will always
be an u in S and a symbol a in Σ such that rowk(ua) 6∈ rowk(S). Since the
cardinality of the set S is initially 1, and increases by 1 with each “repeat-until”
loop (lines 4–10), it will eventually be n, and hence the algorithm is guaranteed
to terminate.

We claim that when |S| = n, the observation table (S,E, C) is closed and
consistent, and A(S,E, C) is isomorphic to AL. Indeed if |S| = n, then the set
{rowk(u) | u ∈ S} has cardinality n, since the elements of S have distinct row
values. Thus for all u ∈ S and a ∈ Σ, rowk(ua) ∈ rowk(S) (otherwise [ua] would
be the (n + 1)th equivalence class of Σ∗/≡L

), and hence the table is closed.
To see that A(S, E,C) and AL are isomorphic, let us take A(S, E, C) =

(Q,Σ, δ, q0, F ), AL = (Q′, Σ, δ′, q′0, F
′), and the function ϕ : Q → Q′ defined

by ϕ(rowk(u)) := δ′(q′0, u) for all u ∈ S. As in the proof of Lemma 1, it can
be shown that ϕ is a well-defined and injective automata morphism. Since the
two automata have the same number of states, ϕ is also surjective, and hence
bijective. Let us now show that ϕ(F ) = F ′. Indeed, take q ∈ F ′. Because ϕ is
bijective, there exists u in S such that ϕ(rowk(u)) = q. It follows immediately
that δ′(q′0, u) ∈ F ′, and hence u ∈ L. Thus, CL(u) = λ and rowk(u) ∈ F . Clearly,
ϕ(rowk(u)) = q ∈ ϕ(F ). So, F ′ ⊆ ϕ(F ), and since ϕ(F ) ⊆ F ′, ϕ(F ) = F ′ which
concludes the proof.

3.3 Time Analysis and Query Complexity

Let us now discuss the time complexity of the algorithm. While the cardinality of
S is smaller than n, the algorithm searches for a string u in S and a symbol a in
Σ such that rowk(ua) is distinct from all rowk(v) with v ∈ S. This can be done
using at most |S|2 · |Σ| · |E| operations: there are |S| possibilities for choosing u
(and the same number for v), |Σ| for choosing a, and |E| operations to compare
rowk(ua) with rowk(v). If we take |Σ| = l, the total running time of the “repeat-
until” loop can be bounded by (12 +22 + . . .+(n− 1)2) · l · (1+ l + l2 + . . .+ lk).
Note that by “operations” we mean string comparisons, since they are generally
acknowledged as being the most costly tasks.

On the other hand, to construct A(S,E, C) we need n comparisons for de-
termining the final states, and at most n2 · |Σ| · |E| operations for constructing
the transition function. This means that the total running time of the algorithm
is bounded by n + l · lk+1−1

l−1 · n(n+1)(2n+1)
6 , that is O(n3lk).

As for the number of queries asked by the algorithm, it can be bounded
by |S ∪ SΣ| · |E| (i.e., by the size of the final observation table), so the query
complexity of the algorithm is O(nlk).

4 Pattern Languages

Initially introduced by Angluin [1] to show that there are non-trivial classes of
languages learnable from text in the limit, the class of pattern languages has been
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intensively studied in the context of language learning ever since. Polynomial
time algorithms have been given for learning pattern languages using one or
more examples and queries [13], or just superset queries [5], or for learning k-
variables pattern languages from examples [11], etc.

We assume a finite alphabet Σ such that |Σ| ≥ 2, and a countable, infinite set
of variables X = {x, y, z, x1, y1, z1, . . . , }. A pattern π is any non-empty string
over Σ ∪ X. The pattern language L(π) consists of all the words obtained by
replacing the variables in π with arbitrary strings in Σ+. Let us denote by P
the set of all pattern languages over a fixed alphabet Σ.

We say that the pattern π is in normal form if the variables occurring in π
are precisely x1, . . . , xk, and for every j with 1 ≤ j < k, the leftmost occurrence
of xj in π is left to the leftmost occurrence of xj+1.

Next we show that there exists an algorithm which learns P using a finite
number of CQs.

4.1 The Algorithm

Suppose that the target language is a pattern language L(π), where π is in
normal form. Then the following algorithm outputs the pattern π after asking a
finite number of CQs.

Algorithm 2 An algorithm for learning the class P with CQs
1: w := CL(λ), n := |w|, var := 0
2: for i := 1 to n do
3: π[i] := null
4: end for
5: for i := 1 to n do
6: if (π[i] = null) then
7: choose a ∈ Σ\{w[i]} arbitrarily
8: v := CL(w[1 . . . i− 1]a), m := |v|
9: if (|v| = |w[i + 1, . . . , n]|) then

10: var := var + 1, π[i] := xvar

11: for all j ∈ {1, . . . , m} for which v[j] 6= w[i + j] do
12: π[i + j] := xvar

13: end for
14: else
15: π[i] := w[i]
16: end if
17: end if
18: end for
19: output π
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4.2 Correctness and Termination

The correctness of the algorithm is based on the following observation. If w is
the smallest string (in lex-length order) in L(π) and n = |w|, then for all i in
{1, . . . , n}, we have:

– if π[i] is a variable x such that i is the position of the leftmost occurrence
of x in π, then |CL(w[1, . . . , i − 1]a)| = |w[i + 1, . . . , n]| for any symbol
a ∈ Σ; moreover, we can detect the other occurrences of the variable x in
π by just checking the positions where the strings CL(w[1, . . . , i − 1]a) and
w[i + 1, . . . , n] do not coincide, where a is any symbol in Σ\{w[i]};

– if π[i] = a for some a in Σ, then for all b ∈ Σ\{a}, CL(w[1, . . . , i − 1]b) is
either θ, or longer than w[i + 1, . . . , n].

Obviously, the algorithm terminates in finite steps.

4.3 Time Analysis and Query Complexity

For each symbol in the pattern, the algorithm makes at most n+1 comparisons,
where n is the length of the pattern. This implies that the total running time of
the algorithm is bounded by n(n + 1), that is O(n2).

It is easy to see that the query complexity is linear in the length of the
pattern since the algorithm does not ask more than n + 1 CQs.

5 Learning with CQs versus Learning with MQs

The notion of CQ appeared as an extension of the well-known and intensively
studied MQ. The inspiration for introducing them comes from a real life setting
(which is the case for MQs also): when children make mistakes, the adults do not
reply by a simple ’yes’ or ’no’ (the agreement is actually implicit), but they also
provide them with a corrected word. Clearly, CQs can be thought as some more
informative MQs. So, it is only natural to compare the two learning settings
(learning with CQs vs. learning with MQs), and to analyze their expressive
power.

The first step in this direction has already been done: C. T̂ırnăucă and S.
Kobayashi showed in [16] that learning with CQs is strictly more powerful than
learning with MQs, when we neglect the time complexity.

In this section we make a step further towards understanding the differences
and similarities between these two learning models by taking into consideration
the efficiency of the learning algorithms, that is, the time complexity. For this,
we need some further terminology.

Let C = (Li)i≥1 be an indexable class. We say that C is polynomially learnable
with MQs (or with CQs) if there exists a polynomial time algorithm which learns
C using MQs (CQs, respectively). We denote the collection of all indexable classes
C which are polynomially learnable with MQs by PolMemQ (PolCorQ is defined
similarly).
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Recall that if the correction for a given string u is λ, then the string is in the
language, and the oracle’s answer would be ’yes’; in all other cases, the string is
not in the language, and the answer would be ’no’. Since the answer to any CQ
gives us also the answer to the corresponding MQ, it follows immediately that
the class PolMemQ is included in PolCorQ . We show that the inclusion is strict
using pattern languages as the separating case.

Theorem 2. The class P is in PolCorQ\PolMemQ.

Proof. It is clear that P is in PolCorQ since Algorithm 2 is a polynomial time
algorithm which identifies any pattern language using COs (see Section 4).

Assume now that P is in PolMemQ , and consider the class of singletons S of
fixed length n over the alphabet Σ. Because every language L = {w} in S can
be written as a pattern language (L = L(w), where w is a pattern without any
variables), S is also in PolMemQ . But Angluin shows that, if l is the cardinality
of the alphabet, then any algorithm which learns S using MQs needs to ask at
least ln − 1 MQs [2], which leads to a contradiction. ut

Note that although P is not polynomially learnable with MQs, it is in MemQ
(see [14], page 266). However, there are classes of languages in PolCorQ which
cannot be learned at all (polynomially or not) using MQs, as we will see in the
sequel.

Theorem 3. The class k-Rev is in PolCorQ\MemQ.

Proof. Since Algorithm 1 learns any k-reversible language using CQs in polyno-
mial time (see Section 3), it follows immediately that k-Rev is in PolCorQ .

To show that k-Rev is not in MemQ , we use Mukouchi’s characterization of
the class MemQ in terms of pairs of definite finite tell-tales. A pair 〈T, F 〉 is said
to be a pair of definite finite tell-tales of Li if:

(1) Ti is a finite subset of Li, Fi is a finite subset of Σ∗\Li, and
(2) for all j ≥ 1, if Lj is consistent with the pair 〈T, F 〉 (that is, T ⊆ Lj and

F ⊆ Σ∗\Lj), then Lj = Li.

Mukouchi proves in [14] that an indexable class C = (Li)i≥1 belongs to MemQ
if and only if a pair of definite finite tell-tales of Li is uniformly computable for
any index i.

So, let us assume that k-Rev is in MemQ . Consider the alphabet Σ such
that {a, b} ⊆ Σ, and the language L = {a}. Clearly, L is in k-Rev for all
k ≥ 0 and hence a pair of definite finite tell-tales 〈T, F 〉 is computable for L.
This means that T ⊆ L and F is a finite set included in Σ∗\{a}. Let us take
m = max{|w| | w ∈ F} and the language L′ = {a, bamb}. It is clear that L′ is
in k-Rev for all k ≥ 0, and that it is consistent with 〈T, F 〉. Moreover, L′ 6= L
which leads to a contradiction. ut

On the other hand, very simple classes of languages cannot be learned in
polynomial time using CQs. For example, if we take S̄ to be S̄ = (Lw)w∈Σ∗ ,
where Lw = Σ∗\{w}, then any algorithm would require at least 1+l+l2+. . .+ln

CQs in order to learn Lw, where n = |w| and l = |Σ|.
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6 Concluding Remarks

We have investigated the learnability of some well-known language classes in the
query learning setting. Figure 2 illustrates a synthesis of the results obtained.

Fig. 2. CQ learning vs MQ learning

The class of pattern languages was known to be learnable with MQs. We gave
a polynomial time algorithm for learning P using CQs, and showed that they
cannot be efficiently learned with MQs. Moreover, we proved that k-reversible
languages are efficiently learnable with CQs, and not learnable (at all) with MQs.

For the future, we would like to see what happens with the learnability results
obtained so far when we change the correcting string. A possible direction could
be to choose as correction the closest string in the edit distance.
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12. Mart́ın-Vide, C., Mitrana, V., Păun, G., eds.: Formal Languages and Applica-
tions. Studies in Fuzzyness and Soft Computing 148. Berlin, Heidelberg, Springer-
Verlag(2004)

13. Marron, A., Ko, K.I.: Identification of pattern languages from examples and
queries. Information and Computation 74(2) (1987) 91–112

14. Mukouchi, Y.: Characterization of finite identification. In: Proc. 3rd International
Workshop on Analogical and Inductive Inference (AII ’92). Volume 642 of Lecture
Notes in Artificial Intelligence, London, UK, Springer-Verlag (1992) 260–267

15. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial
time. Theoretical Computer Science 76 (1990) 223–242
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