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Introduccion

Esta memoria trata sobre el estudio de dos herramientas novedosas en el contexto
de la Geometria Algebraica. La primera de ellas es la introduccién del concepto de
construccién geométrica para la comparacion de las realizaciones de configuraciones en
Geometria Algebraica y Geometria Tropical. La segunda consiste en el estudio de la
geometria de las curvas Hipercirculos y su aplicacion al problema de reparametrizacion
y simplificacion algebraica de curvas racionales.

Construcciones en Geometria Tropical

La Geometria Tropical es un area de las Matematicas de reciente creaciéon. Su car-
acteristica mas destacable es la sustitucion de las variedades algebraicas clasicas por
complejos poliedrales. Los complejos poliedrales asociados comparten muchas de las
propiedades geométricas de las variedades algebraicas, aunque tal vez requiera realizar
un “cambio de mentalidad” para redefinir estas propiedades geométricas en el contexto
tropical. El interés que tiene esta sustitucién es que, en bastantes ocasiones, estas
propiedades de las variedades algebraicas son maés sencillas de calcular o acotar en el
contexto tropical, obteniendo, de esta forma, informacién adicional de las variedades
algebraicas que de otra forma seria complicada de hallar.

La redefinicién de los conceptos geométricos en un contexto tropical ha despertado
un creciente interés en los ultimos anos. En [Mik05], Mikhalkin proporciona los con-
ceptos de grado y género de curvas planas tropicales, asi como las nociones béasicas de
Geometria Enumerativa Tropical. A partir de estas nociones, se prueba el teorema de
correspondencia de Mikhalkin, que relaciona el nimero de curvas tropicales de género
y grado fijado que pasan por una familia adecuada de puntos con el niimero correspon-
diente de curvas algebraicas planas de grado y género fijado que pasan por un conjunto
de puntos. También demuestra un teorema de correspondencia analogo para curvas
reales, pero en este contexto la correspondencia no se refiere al niimero de curvas, que
no es un invariante de la familia de puntos ni siquiera en el plano complejo, sino con el
llamado invariante de Welschinger. Estas técnicas han revolucionado la Geometria Enu-
merativa: en [IKS03], los autores proporcionan una equivalencia asintética logaritmica
de los invariantes de Gromov-Witten y Welschinger en el plano. En [GMar| los au-
tores relacionan los invariantes de Gromov-Witten relativos y demuestran la validez
de la férmula de Caporaso-Harris en el contexto tropical. Estos éxitos han animado
a diversos autores a desarrollar aiin més diversos conceptos de geometria algebraica
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tropical. Asi, en [RGSTO05] se proporcionan unas nociones elementales de teoria de la
interseccién, con unas pruebas de los teoremas de Bezout y Bernstein en el contexto
tropical. En [SS04a] se estudia la grasmaniana tropical, prestando especial atencién a
sus propiedades combinatorias. En [Vig04], se proporciona una nocién de operacién
sobre las curvas elipticas tropicales. Una teoria completa de geometria tropical en
términos de esquemas y morfismos estd ain en fase embrionaria.

Sin embargo, a pesar del éxito de este diccionario algebraico tropical, esta corres-
pondencia no es completa. Para ver esto, definimos las variedades tropicales como
sigue:

Definicion 1.11 Sea K un cuerpo algebraicamente cerrado provisto de una valuacion v
no trivial v : K* — R. Sea V una variedad algebraica en (K*)". La imagen —v(V) C R”
resultante de aplicar el opuesto de la valuacién sobre cada componente es la variedad
tropical asociada a V.

De esta forma, las variedades tropicales son proyecciones de variedades algebraicas
a través de una valuacion fijada en un cuerpo algebraicamente cerrado. A través de
esta definicién, se puede entender la Geometria Tropical como el intento de dar un
sentido geométrico a estos objetos v(V). Pero, inevitablemente, esta proyeccién de las
variedades a través de la valuacion conlleva una pérdida de informacién. Tal vez el caso
mas llamativo por la inmediatez de esta pérdida de informacién es el hecho de que dos
rectas tropicales distintas en el plano pueden tener infinitos puntos en comun. Este
simple hecho demuestra que no se puede dar una axiomatica proyectiva en el conjunto
de rectas tropicales. La memoria que presentamos trata de cuantificar esta pérdida de
informacién mediante la comparacion de las realizaciones algebraicas y tropicales de
una configuracién de incidencia.

Para poder estudiar las relaciones entre las configuraciones de incidencia algebraicas
y tropicales, una nocién fundamental es la de estabilidad. Dadas dos curvas planas trop-
icales C1, Cy sin ninguna componente comun, estas pueden tener infinitos puntos de
interseccion. Si queremos comparar la Geometria Algebraica con la Geometria Tropi-
cal, es deseable una nueva nocién de interseccion tal que dos curvas diferentes posean
solamente una cantidad finita de puntos de interseccién. Una respuesta a esta pregunta
es la nocién de interseccién estable (cf. [RGSTO05]). Se puede definir la interseccién
estable como el conjunto de puntos de interseccién que es continuo por pequenas per-
turbaciones de una de las curvas. Esta interseccion estable es siempre un conjunto
finito, aunque las curvas C1 y Cs tengan componentes comunes, o incluso en el caso de
que C7 = C5. Ademas, esta nocién de interseccion verifica teoremas elementales de in-
terseccién como el teorema de Bernstein-Koushnirenko (cf. [RGST05]). Analogamente,
podemos definir la curva tropical estable que pasa por un conjunto de puntos dados.
Sea I el soporte de un polinomio bivariado, 6 = #(I) y 6 — 1 puntos en el plano trop-
ical P = {qi,...,95—1}. Es posible que haya infinitas curvas distintas de soporte I
que pasen por los puntos. Sin embargo, existe una Unica curva tropical de soporte I
que pasa por P y tal que se puede deformar de manera continua para que pase por
pequenas perturbaciones (translaciones) {q},...,q,_;} de los puntos. A la curva que
tiene esta propiedad de continuidad se la denomina la curva tropical estable que pasa
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por P.
A continuacién presentamos un breve sumario de los problemas tratados en la
memoria y las principales aportaciones originales.

Capitulo 1

En este Capitulo presentamos las nociones basicas de cuerpos valuados y las defini-
ciones bésicas de variedades tropicales e introducimos el concepto de configuracion de
incidencia. Las configuraciones de incidencia son una herramienta clasica en el estudio
de geometrias finitas, véase por ejemplo [Dem68], cuya definicién reproducimos aqui.

Definicién 1.27 Una estructura de incidencia es un triple G = (p,B,7J), tal que
pNB=0, TCpxB

los elementos de p se llaman puntos, los elementos de B son curvas y los elementos
de I son relaciones de incidencia. Ademds, suponemos que cada elemento z € B estd
etiquetado con un soporte I, es decir, un subconjunto finito de Z2.

Se sigue de la definicién que una estructura de incidencia se puede interpretar como
un grafo bipartito G con dos colores p y 9B y aristas J en el que los elementos de tipo
B estan etiquetados con un soporte.

Una realizacién algebraica (respectivamente tropical) de una estructura de inciden-
cia es una asignacién de un punto en el plano (tropical) para cada elemento = € p y de
una curva plana (tropical) definida por un polinomio de soporte I, para cada elemento
y € B. Se exige ademds que, para cada relacién de incidencia (z,y) € J, el punto
representado por x esté contenido en la curva representada por y.

Las curvas tropicales son mas flexibles que las algebraicas, en el sentido de que,
fijada una estructura de incidencia G, pueden existir realizaciones tropicales que no son
nunca la proyeccion de una realizacién algebraica de G. Sin embargo, toda realizacién
algebraica de G se proyecta sobre una realizacién tropical de G.

Nuestro primer resultado original es:

Teorema 1.30 Sea G una estructura de incidencia tal que, si se interpreta como grafo,
éste es aciclico. Entonces hay una correspondencia entre las realizaciones tropicales y
algebraicas. FEs decir, para cada realizacion tropical x de G existe una realizacion
algebraica T de G que se proyecta sobre x.

Capitulo 2

En el siguiente Capitulo estudiamos la regla de Cramer tropical presentada en [RGSTO05]
y su relacién con la regla de Cramer algebraica. Para ello, sea k el cuerpo residual de
K por la valuacién. Sea t' = {t7 | v € T'} una seccién de la valuacién de K* sobre T,
es decir v : t© — T es un isomorfismo de grupos. La projeccién natural del anillo de
valuacion de K sobrer k se puede extender a un homomorfismo de grupos multiplicativos
m: K" — k*. Siz € K*, v(x) = v, entonces 7(Z) es la proyecciéon de ¢t~ sobre k*.
Este elemento se le denominara el coeficiente principal de T o €l coeficiente residual de
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Z. Esta nocién esté inspirada en el caso de las series de Puiseux. Todos los resultados
de genericidad que exijamos seran resultados de genericidad residual, es decir, que la
imagen por 7 sea un elemento genérico de k. De esta forma, estudiamos la proyeccion
de la solucién de un sistema de ecuaciones lineales cuando sus coeficientes residuales
son genéricos y su aplicacién al calculo de la curva de soporte fijo I que pasa por
#(I) — 1 puntos. El resultado original que relaciona los sistemas lineales en el contexto
algebraico y tropical es el siguiente:

Teorema 2.10 Sea I un soporte, § = #(I), P = {q1,...,¢5-1}, ¢j = (qjl.,qu) un

conjunto de puntos tropicales, P = {¢1,...,45-1} un conjunto de puntos algebraicos
tales que su proyeccion es P. Entonces, si los puntos residuales 7(q;) = i € k2
son genéricos, solo hay una curva algebraica C' pasando por P y ésta se proyecta so-
bre la curva tropical estable de soporte I pasando por P. Ademds, podemos calcular
explicitamente condiciones de genericidad suficientes en las coordenadas de ~y; para
tener esta correspondencia.

En esta caso, ademads, la curva calculada también es genérica entre las curvas de
soporte I.

Teorema 2.11 En las condiciones anteriores, si los puntos residuales y; son genéricos y
C es la curva algebraica de soporte I pasando por P entonces los coeficientes residuales
en k de un polinomio definiendo C también son geENETICOS.

Capitulo 3

Con una aproximaciéon andloga al Capitulo 2, en este Capitulo estudiamos la inter-
seccion de curvas algebraicas y su relacién con la interseccién de curvas tropicales. Para
poder estudiar esta relacién proponemos una definicién de resultante tropical como la
proyeccién de la resultante algebraica para polinomios de soporte fijado. Probamos que
esta nocion tiene un significado geométrico andlogo a la resultante algebraica y permite
biyectar los puntos de intersecciéon de dos curvas genéricas f, g de soporte dado Iy, I
con la interseccién estable de dos curvas tropicales f = T(f), g = T(g), contando
multiplicidades. La aportacién principal es un resultado andlogo al presentado en el
capitulo anterior, y que detallamos a continuacién.

Teorema 3.10 Sean f, g € K[z, y]. Entonces podemos calcular condiciones suficientes
en los coeficientes principales de los polinomios f, g, que dependen solamente de la
proyeccion f, g de dichos polinomios, tales que si estas condiciones se cumplen, en-
tonces la proyeccion de la interseccion de f, g es exactamente la interseccion estable
de f y g. Ademas, las multiplicidades de interseccion se conservan.

Z mult(q) = multy(q)
qefng
T(g)=q

Ademds, en este caso, si las curvas tienen coeficientes residuales genéricos, también
los tiene genéricos cualquier punto de interseccién de las mismas. Este teorema es
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imprescindible para los resultados del siguiente Capitulo:

Teorema 3.14 Sean f, g € Klz,y] dos polinomios representando dos curvas. Si
los coeficientes principales de estos polinomios son genéricos en k entonces, cualquier
punto interseccion de f, g también tiene coeficientes principales genéricos.

Capitulo 4

En este Capitulo proponemos y exploramos las posibilidades de una sencilla her-
ramienta para el estudio de las configuraciones de incidencia: la nocién de construccion
geométrica. Intuitivamente, una construccién es un procedimiento que toma como
elementos de entrada un conjunto de puntos y curvas y da como resultado una con-
figuracién de incidencia que contiene a estos puntos y curvas de entrada entre sus
elementos.

Definicion 4.1 Una construccion geométrica es un procedimiento abstracto consistente
en:

e Elementos de entrada: dos conjuntos finitos pg, Bg tales que pg N By = () y cada
elemento z € B tiene asociado un soporte I,. El conjunto de relaciones de
incidencia inicial es el conjunto vacio J = ().

e Pasos de una construccién: una sucesién finita de pasos tales como los siguientes

— Dado un soporte I con #6(I) = n > 2y n — 1 puntos {q1,...,qn-1},
anadimos una nueva curva C' de soporte I a B, también anadimos condi-
ciones de incidencia orientadas ¢; — C, 1 <i<n — 1.

— Dadas dos curvas Cy, Cy de soporte I1, I3 y poligonos de Newton (clausuras
convexas) A(I1), A(I3) respectivamente, anadimos M(A(I), A(I3)) puntos
nuevos a p, donde

M(A(I1), A(L)) = vol(A(L1) + A(L)) — vol(A(L)) — vol(A(L)).

También anadimos condiciones de incidencia orientadas C; — ¢;, Co — gq;,
1 <i< M(A(L),A(I2)).

e Salida: una estructura de incidencia G en la que las relaciones de incidencia estan
provistas de una orientacion.

Una realizacién (tropical) de una construccién algebraica es una realizacién del
grafo de incidencia de salida G tal que

e Six € B\ By de soporte Iy {yi,... ,y(;(l),l} son sus predecesores inmediatos
entonces x es la curva (tropical estable) que pasa por el conjunto de puntos

{y17 s 7y’n}
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e Si z € pynoes un elemento de entrada, sean y;, yo sus predecesores inmedi-
atos, y sean {z1,...,x,} los sucesores inmediatos comunes de y; e y2. Entonces
{z1,...,x,} es exactamente la interseccion (tropical estable) de y; e y2, contadas
con multiplicidad.

Notemos que, en el contexto tropical, la curva que pasa por un conjunto de puntos
se interpreta siempre como la curva estable que pasa por ellos y la interseccion de dos
curvas como la interseccién estable. Estas nociones se comportan razonablemente bien
con la proyeccion del contexto algebraico al tropical.

Con el concepto que hemos introducido de construccién como herramienta, pode-
mos estudiar las realizaciones tropicales de una configuracion de incidencia obtenidas
a través de una construccion con las realizaciones de algebraicas de esta misma con-
struccion. Para ello introducimos la nociéon de admisibilidad.

Definicion 4.5 Sea € una construccién geométrica. Sea G el grafo de incidencia
orientado inducido por la construccién. La construccién € es admisible si, para cada
par de nodos A, B de G, existe a lo mas un camino orientado de A a B.

Esta nocién es clave en nuestro contexto. Nuestro resultado original principal es el
siguiente:

Teorema 4.6 Sea € una construccion admisible. Entonces, para cada realizacion x
tropical de €, existe una realizacion algebraica T de la construccion € tal que se proyecta
sobre x.

En este Capitulo también estudiamos diversas situaciones en las que se puede
obtener informacién de una construccién geométrica aun cuando esta no sea admisible.
También discutimos los distintos casos que pueden aparecer al estudiar las construc-
ciones.

Capitulo 5

La principal aplicacién que tienen las técnicas desarrolladas en los capitulos anteriores
es un teorema de transferencia del contexto algebraico al tropical. Ahora bien, teoremas
equivalentes en Geometria Proyectiva pueden no serlo en Geometria Tropical. En este
Capitulo presentamos un resultado de transferencia cuando el teorema a transferir
estd enunciado de una manera muy explicita. Para poder formalizar cémo debe estar
enunciado un teorema para poder aplicar nuestros resultados, introducimos la nocién
de teorema construible admisible.

Definicién 5.1 Un enunciado de incidencia construible es un triple (G, H, z) tal que
G es una estructura de incidencia, H es una construccién geométrica, llamada las
hipdtesis, tal que, considerado como estructura de incidencia, H es una subestructura
completa de G, H C G. Ademas,

{pc UBct\ {pg UBpu} = {z},

se requiere que solo hay un vértice z de G que no es un vértice de H, este vértice es
llamado el nodo tesis.
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Sean Hj los elementos de entrada de H. Sea K un cuerpo algebraicamente cerrado.
Diremos que un enunciado de incidencia se cumple en K o que es un teorema en K si
se cumple una realization genérica de Hy. Es decir, si existe un conjunto denso L en el
espacio de realizaciones de Hy tal que:

e Para cada h € L, la construccién H esta bien definida.

e Si p € Ry es una realizacién de H construida a partir de he L, entonces existe
un elemento ¥ tal que (p, T) es una realizacién de G.

En el contexto tropical, la construccién H estd siempre bien definida para toda
entrada gracias a la nocién de estabilidad. Por lo que un teorema se cumple en el
plano tropical si, para cada realizaciéon p de H obtenida por la construccién, existe un
elemento x tal que (p, x) es una realizacién tropical de G.

Un enunciado de incidencia construible es admisible si la construccién asociada a
las hipdtesis es una construccion admisible. Con este lenguaje, podemos probar que:

Teorema 5.3 Sea Z = (G,H,x) un enunciado de incidencia construible que sea
admisible. Si Z se cumple en un cuerpo algebraicamente cerrado K, entonces se cumple
para el plano tropical sobre cualquier cuerpo.

Utilizando esta técnica hemos demostrado con éxito versiones tropicales del Teo-
rema de la configuracién del plano de Fano (5.4), el Teorema de Pappus (5.5), el
reciproco del Teorema de Pascal (5.6), el Teorema de Chasles (5.7) y su generalizacién
el Teorema de Cayley-Bacharach (5.8), asi como una versién no universal del Teorema
de Pascal (5.9).

En particular, con la prueba del Teorema de Pappus, damos una respuesta posi-
tiva a una conjetura aparecida en [RGST05]. En este articulo, los autores muestran
dos enunciados del Teorema de Pappus equivalentes en el contexto algebraico, pero
que no lo son en el contexto tropical. Los autores proporcionan un contraejemplo al
primero de estos enunciados, conjeturando que el otro enunciado siempre se cumple.
Resulta que este enunciado alternativo es un enunciado de incidencia construible cuyas
hipétesis forman una construccién admisible. Por tanto, aplicando las técnicas que
hemos aportado, se demuestra que este enunciado se verifica siempre.

Hipercirculos y Simplificacién de Curvas Paramétricas

En esta segunda parte de la memoria nos dedicamos a estudiar un problema diferente,
en el que también aportamos una herramienta original para su andlisis y resolucion.
Para presentar el contexto del problema, introduzcamos el siguiente ejemplo:

Ejemplo Consideremos el circulo 22 + y> — 1 = 0 C C2. Tomemos las siguientes

parametrizaciones del mismo:
2t -1
)= 55—
¢(t) <t2+1 t2—|—1>
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bt = 2+ 2t 4 2t* 2t% + 3t* 4 215 4 ¢
O\ 242624+ 3t4 + 216 + 87 2+ 242 + 3¢4 + 26 4 8

(1) = 2v2t% — 6t — 4V2 2+ 6V2t — 7

K 32 —2t/2+9 312 -22t+9

La primera parametrizacion es la clasica que se calcula a partir del haz de rectas que
pasan por el punto (0,1). La segunda parametrizacién es més complicada, puesto que
el grado de las funciones racionales involucradas es mayor que el grado de la curva que
estan parametrizando. El problema de la tercera parametrizacion es que sus coeficientes
no son racionales, sino que pertenecen al cuerpo Q(v/2).

La simplificacién de la segunda parametrizacién ¥ (t) se puede efectuar mediante
(una versién constructiva de) el Teorema de Liiroth. Este teorema afirma que toda
reparametrizacién de una curva puede reemplazarse por una parametrizacion fiel, es
decir, que sea uno a uno en casi todo su dominio. En nuestro ejemplo se puede obtener
una parametrizacién fiel mediante el cambio 1 + t% + t* = s.

La tercera parametrizacién plantea otro tipo de problemas. ;Es posible, a partir
de 7n(t) obtener una parametrizacién similar a ¢(¢)? En este caso nos preguntamos
si existen algoritmos que nos permitan pasar de una parametrizaciéon con coeficientes
algebraicos a una representacion con coeficientes racionales, o mas generalmente, dada
una curva a través de una parametrizacién 7(t) € K(«)(t), donde K es un cuerpo de
caracteristica cero y a es un elemento algebraico sobre K, buscamos métodos para
calcular, si es posible una parametrizacién ¢(t) de la misma curva, pero esta vez con
coeficientes en el cuerpo K.

En un contexto computacional, dependiendo del problema que pretendamos re-
solver, puede ser mas interesante tener una representacién implicita o paramétrica de
una curva racional. Si bien ambas representaciones son equivalentes y se conocen algo-
ritmos para pasar de una representacion a la otra, estos algoritmos pueden ser costosos.
Por tanto, en nuestro problema de reparametrizacién, buscamos ademas algoritmos que
permitan calcular dicha reparametrizacion sin recurrir a técnicas de implicitacién. Esto
es, sin calcular las ecuaciones implicitas de la curva a tratar.

Una respuesta a esta pregunta es la utilizacién de una curva auxiliar, introducida
por Andradas, Recio y Sendra en [ARS99]. Esta es una curva auxiliar que codifica, ge-
ométricamente, el cambio de pardmetro necesario para resolver el problema propuesto.
En nuestro ejemplo, el cambio de parametro necesario para pasar de la parametrizacién
n(t) a o(t) s

- 2v/2t + 1
t—+2

Esta fracciéon lineal puede escribirse como

22t + 1 5t 1+ 2t2
V2t+1 Lt
t—+/2 2 -9 2 -9

La hipérbola definida por la parametrizacion ( t25f2, 1t—2¢—3152 ) codifica la informacion nece-

saria para obtener la reparametrizacion deseada del circulo en nuestro ejemplo. Esta
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curva obtenida por la reescritura de una fraccién lineal en la base (1,+/2) recibe el
nombre de hipercirculo en [ARS99].

Definicién 8.1 Sea u(t) = ‘lej:g € K(a)(t) una fraccién lineal, ad—bc # 0. Supongamos

que [K(«) : K] = n y escribamos

n—1
u(t) = Z gi(t)a’, ¢i(t) € K(t)
i—0

dicha fraccién lineal en la base {1,a,...,a" 1}. El hipercirculo asociado a u(t) es la
curva parametrizada por (¢, ..., ¢,—1) sobre la clausura algebraica de K.

Capitulo 6

En este Capitulo presentamos el contexto algebraico en el que desarrollaremos la teoria
de hipercirculo. Si F es un cuerpo algebraicamente cerrado de caracteristica cero y
K C F es un subcuerpo, estamos interesados en el estudio de las K-variedades, es
decir, las variedades algebraicas que pueden expresarse como el conjunto de soluciones
comunes a una familia de polinomios con coeficientes en K. Se presentan algunas
caracterizaciones cldsicas de las K-variedades y algunas de las propiedades geométricas
que se pueden definir de manera racional, es decir, a partir del ideal de polinomios
con coeficientes en K y con operaciones en el cuerpo K solamente. Adaptamos a este
contexto nociones clasicas como la irreducibilidad de un variedad con respecto a un
cuerpo K, la K-birracionalidad de variedades asi como la posibilidad que tiene una
curva para ser parametrizable sobre K. También estudiaremos la relacién existente
entre las topologias Zariski de F” para distintos subcuerpos K de F, donde la topologia
Tk de F™ es la topologia de variedades K-definibles de F™.

Esta recopilacién de resultados clédsicos se incluye en la memoria por dos razones.
En primer lugar para que la memoria sea autocontenida. En segundo lugar porque no
conocemos ninguna referencia estdndar donde aparezcan recogidos a la vez todos estos
resultados, o donde aparezcan en un lenguaje afin a nuestros intereses. La referencia
bésica de este Capitulo es [ZS75b].

Capitulo 7

En este Capitulo abordamos la definicién de la variedad de Weil en el caso implicito y
presentamos una construccién analoga al caso paramétrico.

Definicion 7.1 Sea K un cuerpo de caracteristica cero, F su clausura algebraica y «
un elemento algebraico sobre K de grado d. Sea

V=A{fi(x1,...,2n) = ... = fr(x1,...,2,) =0} CF"

una variedad algebraica de dimensiéon m, donde f; € K(o)[z1,...,2,], 1 < j <7
Definimos la variedad de Weil asociada a V como en [Wei95], reemplacemos cada
variable x; por xjo + awji + -+ + adilxjyd,l, donde hemos introducido las nuevas
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variables xj; y escribamos fj en este nuevo conjunto de variables:

Te(ays -5 2m)) € K@)y -5 2m))s

donde z(;) denota el vector de variables (zjo,...,%;4-1). Expresemos las polinomios
fe(Ty; -5 2(n)) como

fro(@ays -5 2my) + afr(zayi- - 2e) + o+ o a1 (@) T)

con fi; € K[x(l); celd x(n)] univocamente determinados. La variedad W definida por los
polinomios fx; es la variedad de Weil asociada a V.

W:{fki(a:(l);...;:c(n)):()\k:1,...,r,i:07...,d—1}QF"d

Por definicién, esta variedad siempre esté definida sobre el cuerpo K. Es conocido
(véase [Wei95]) que la variedad V puede definirse sobre K siy sélosi W =W N{z;; =
0]j=1,...,n,4 > 1} tiene la misma dimensién que V. Este método funciona para
una representacién implicita de la variedad. Puesto que nosotros estamos interesados
en trabajar con una curva paramétrica, proporcionamos una construccion analoga para
el caso paramétrico inspirado en el caso de curvas de [ARS99].

Para ello, sea V una variedad dada por la parametrizacién unirracional

o(t) : Fm™ — Fn
(t1y o ntm) — (D1(t1, - stm)y ey Onlte, oo tm))
donde ¢y € K(a)(x1,...,zy,). Por lo que cada funcién coordenada ¢y, tiene una repre-

sentacién como un cociente

hk(tl, - ,tm)
t1,...,tm) = ———=, h e Klzq,...,z,].
¢k’( 1, ) m) gk(tl,---,tm)7 ks 9k [ 1, 3 n]
Ademis, sustituyendo g por el minimo comin miiltiplo de los denominadores g, pode-
mos suponer que el denominador g es comin y que la representacién de las funciones

racionales no tiene componentes comunes ged(hq(t), ..., hn(t),g(t)) = 1.
Definicién 7.6 Sea ¢ = (¢1,...,¢y) como arriba, escribamos t; = tjo + tj1oe + -+ +
tjyd,ladfl, donde t;; son nuevas variables. La sustitucién de estas variables en ¢ define
funciones racionales en K(a)(t(1);---;t(m)), donde t(;y denota el vector de variables
(tjo, R 7tj,d—1)-

Estas funciones racionales tienen una expresién tnica como:

o = qﬁko(t(l); .. ;t(m)) + Oé(ﬁkl(t(l); .. ;t(m)) + -+ ¢k7d_104d71(t(1); .. ;t(m))

donde ¢y; € K(t(l); . it(m)). La aplicacién unirracional @ : Fmd — Fnd definida por
(tio --- tig—1s (P10(ty;---3tam)) - Pra—1(tay;-- -3 tam));
tao ... taq—1; G20(twys--3tamy) o Paa-1(); -t m));
......... — e

tmo - 7fmd—l) ¢n0(t(1);'-‘;t(m)) and—l(t(l);'”;t(m)))



Introduccién X1

se llama la parametrizacién obtenida por desarrollo de ¢.

Se tiene que ® parametriza la variedad de Weil W y que ¢ es birracional si y sélo
si @ es birracional. Definimos la variedad testigo como
Definicién 7.12 Sea Y = {t € F™? | ¢3;(t) = 0,7 > 0}. Sean ¢p; = hy;(t)/5(t) las
funciones racionales escritas con un denominador comun. Sea Dg el conjunto de puntos
donde §(t) # 0. Definimos la variedad testigo de V como la clausura Zariski de Y N Ds.

Con estas definiciones, el principal resultado original de este Capitulo es:

Teorema 7.11 Sea U el conjunto de puntos donde ®(t) es una aplicacion finito a
uno. Entonces V estd definida sobre K si y sélamente si dim(Y N Ds N U) = dim(V).
Ademas, en este caso, si 7 : F™ — Y N Ds N U es una parametrizacion unirracional
una componente de Y N DsNU de dimension dim(V), entonces (¢10(7), ..., ¢no(T)) es
una parametrizacion de V sobre K.

Ademsds, en el caso birracional, podemos determinar cémo es la estructura ge-
ométrica de esta componente parametrizable. Para ello introducimos la nocién de
hipercuéadrica.

Definicion 7.15 Sea 6 un F-automorfismo del cuerpo de funciones racionales en m
variables
0: F(tl,...,tm) —>F(t1,...,tm)

dado por la sustitucién
b =01t tm)s et = Om(t, - ).

Supongamos que los coeficientes de 6; pertenecen a K(«a) y desarrollemos cada funcién
racional como
d_ .

Oj(tl, e tm) = Zeﬂ(tl’ c ,tm)oﬂ, Hji € K(tl, - ,tm).

[y

~

Una hipercuddrica es la variedad de F™? parametrizada por las componentes 0ji,j =
1,...,m,i=0,...,d — 1 de un automorfismos 6 en base 1,a,...,a% !

Con esta notacién tenemos que:

Teorema 7.16 Supongamos que ¢ es birracional. Entonces V es parametrizable sobre
K 4 6 es un automorfismo de ™ con coeficientes en K(a) tal que ¢(0) € K(t1,...,tm)
sty solo si Y N DsNU tiene una componente que es la hipercuddrica asociada a 6.

A continuacién presentamos una serie de ejemplos y contragjemplos que muestran
cémo funciona el método y como son necesarias las hipétesis de los teoremas, especial-
mente la inclusién de los conjuntos Ds y U en los enunciados de los teoremas.

Capitulo 8

En este Capitulo nos centramos en el estudio de las propiedades de los hipercirculos,
esto es, las hipercuddricas de dimensién 1. Los resultados de este Capitulo son el
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resultado de un trabajo conjunto con los profesores Recio, Sendra y Villarino. La
principal aportacién es un teorema de estructura de los hipercirculos:

Teorema 8.7 Sea U un hipercirculo asociado al isomorfismo u(t) = %ﬁ’ K(a)(t), s
r = [K(—d) : K]. Entonces, existe una transformacidn proyectiva p : P(F)" — P(F
definida sobre K tal que la curva p(U) es la curva racional normal de grado v en P(F)

parametrizada por

)

a

3

3.

plt:s)=1[s":s" 1 ist™ Lm0 0]

De aqui deducimos las propiedades mas importantes de los hipercirculos:

Corolario 8.8 FEn las condiciones anteriores:
1. U es una curva de grado r.

2. U esta contenido en una variedad lineal de dimension r y no estd contenido en
ninguna variedad lineal de dimension r — 1.

3. U es regular en P(IF)".

4. La funcion de Hilbert de U es igual a su polinomio de Hilbert, hyy(m) = mn + 1.

Una manera de distinguir un hipercirculo de una curva racional normal es mediante
los puntos del infinito. Si la extensién algebraica [K(a) : K] = n y U es un hipercirculo
cualquiera de grado n, entonces los puntos del infinito de I/ sélo depende de la extension
K C K(a). Si P={Py,...,P,} son los puntos del infinito de U, entonces

{zo+ajzr+ - +af” Y2p1=0}nU= P\ {P;},

donde a; = oj(«) son los conjugados de a en F, 1 < j < n y U es la clausura proyectiva
de U.

La caracterizacién proyectiva de los hipercirculos y el conocimiento de los puntos
del infinito proporcionan algoritmos de parametrizacion e implicitacién adaptados a
los hipercirculos. La aportacién original méas relevante en este aspecto es el siguiente
algoritmo de implicitacion. Recordemos que, dada la curva racional normal de grado
n, un sistema de generadores de su ideal homogéneo es {y;y;—1 —yi—1y; | 1 < 4,5 < n}
(cf. [Har92]).

Teorema 8.21 Sea p(t) = (?Vo—g, e q’}\;(lt()t)) una parametrizacion propia de un hiper-

circuloU de grado n con coeficientes enF. Sea I el ideal homogéneo de la curva racional
normal de grado n en P(F)" dado por polinomios homogéneos hi(y),...,h(y), § =
(Y0y -+ Yn). Sea Q@ € Myt1xn+1(F) la matriz de cambio de base de {qo(t), ..., qgn—1(t),

N@#)} a{l,t,...,t"}. Sea

n n
j=0 j=0
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Entonces, {f1,..., fr} es un conjunto de generadores del ideal homogéneo de U.

Ademss, las propiedades de los hipercirculos nos proporcionan el siguiente teorema
de caracterizacién de hipercirculos de grado méaximo.

Teorema 8.24 Sea U C F™ un conjunto algebraico de grado n tal que todas sus
componentes son de dimension 1. FEntonces, U es un hipercirculo si y solo si tiene
infinitos puntos con coordenadas en K y pasa por los puntos del infinito propios de un
hipercirculo.

Capitulo 9

En este Capitulo presentamos la relacion de los hipercirculos con la variedad testigo
definida en el Capitulo 7. En este caso, podemos refinar sensiblemente los resultados
presentados en el Capitulo 7. Primeramente, no es necesaria la inclusién del conjunto
U en el que la aplicacién es finito a uno en las hipotesis de los teoremas porque se puede
probar, en el caso de curvas, que la parametrizacién ® obtenida por desarrollo siempre
es finito a uno en su dominio de definicién Dg. Por otro lado, la variedad testigo tiene
a lo mas una componente de dimensiéon 1. Estos resultados simplifican enormemente
los célculos en el caso de curvas. Si Z es la variedad testigo asociada a una curva V,
entonces se cumple una de estas posibilidades:

e Z es un conjunto finito y V no es K-definible.

e dim(Z) = 1, entonces V es K-definible, ademds, V es K-parametrizable si y s6lo
si la tinica componente 1-dimensional de Z es un hipercirculo.

En particular, podemos utilizar todos los resultados presentados en el Capitulo 8 para
estudiar esta componente unidimensional de Z.

Ademas, en el caso en el que el cuerpo base sean los racionales K = Q, tenemos la
siguiente observacién. Si una curva definida sobre Q no es Q parametrizable, entonces
existen cuerpos cuadraticos Q(3) que parametrizan la curva. Como corolario de estas
afirmaciones tenemos la siguiente propiedad:

Corolario 9.9 Sea V una curva definida sobre Q, parametrizada sobre Q(«) y tal
que no sea parametrizable sobre Q. Sea U la componente 1-dimensional de la variedad
testigo asociada a V. Entonces, existen infinitos cuerpos cuadrdticos distintos Q(3)
tales que U es un hipercirculo para la extension Q(8) C Q(8, a).

A partir de aqui, podemos obtener una aplicacién a la reparametrizacién de V.
Tenemos un resultado sobre reparametrizaciones 6ptimas de V mediante un cambio
afin de parametro ¢t — ejt + eo. La principal aportacion original en este sentido es la
siguiente:

Teorema 9.12 Sea V una curva definida sobre Q dada por una parametrizacion ¢
con coeficientes en Q(a). Entonces, siempre existe [ag : ... : an—1 : 0], un punto del
infinito de la variedad testigo U que es representable sobre Q(«) y que supondremos des-
homogeneizado respecto a una coordenada i. Supongamos que el grado de U es r < n.
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Entonces, V admite una reparametrizacion sobre Q(v) = Q(ag,...,an—1) C Q(a),

donde [Q(~) : Q] = r.

Ademads, si ej,ea € C, eg # 0 son numeros algebraicos, sea ¢(eit + ea) otra
parametrizacion de V y sea L el cuerpo generado sobre Q por los coeficientes de
o(eit + ea), entonces

1. L contiene un cuerpo (isomorfo a) Q(v).
2. [L:Q]>r.
3. Si[L:Q]=r entonces L es isomorfo a Q(y).

4. Emisten €, e}, € L tales que €\t + € reparametriza ¢ sobre (un cuerpo isomorfo

a) Q(v).



Résumé

Cette these traite de ’étude de deux outils nouveaux dans le contexte de la Géométrie
Algébrique. Le premier est I'introduction du concept de construction géométrique
pour la comparaison des réalisations des configurations en Géométrie Algébrique et
Géométrie Tropicale. Le deuxiéme est I’étude de la géométrie des hypercercles et son
application au probleme de reparamétrisation et simplification algébrique des courbes
rationnelles.

Constructions en Géométrie Tropicale

La Géométrie Tropicale est une branche des mathématiques de création récente. Sa
caractéristique la plus remarquable est la substitution des variétés algébriques clas-
siques par des complexes polyédraux. Les complexes polyédraux associés partagent
beaucoup des propriétés géométriques des variétés algébriques, méme s’il faut, peut-
étre, un “changement de mentalité” pour redéfinir des propriétés géométriques dans le
contexte tropical. L’intérét de cette substitution est qu’il y a de nombreuses occasions
dans les quelles les propriétés des variétés algébriques sont plus simples a calculer ou a
borner dans le contexte tropical. On obtient, de cette maniere, de nouvelles informa-
tions sur les variétés algébriques qui seraient plus compliquées a trouver d’une autre
maniere.

La redéfinition des concepts géométriques dans un contexte tropical a suscité un
intérét croissant pendant les dernieres années. Dans [Mik05], Mikhalkin fournit les
concepts de genre des courbes tropicales planes ainsi que les notions de base de la
Géométrie Enumérative Tropicale. A partir de ces notions, il prouve son théoreme de
correspondance, qui donne ’égalité du nombre de courbes tropicales de genre et degré
fixés (comptées avec multiplicité) qui passent par une famille de points de cardinal
convenable avec le nombre correspondant pour les courbes algébriques. II démontre
aussi un théoreme analogue de correspondance pour les courbes réelles. Cette fois la
correspondance n’est pas avec le nombre de courbes algébriques, qui n’est pas un in-
variant de la famille de points, mais avec 'invariant de Welschinger. Ces techniques
ont révolutionné la Géométrie Enumérative: dans [IKS03], les auteurs fournissent
une équivalence asymptotique logarithmique des invariants de Gromov-Witten et de
Welschinger pour le plan. Dans [GMar]| les auteurs démontrent la validité de la for-
mule de Caporaso-Harris dans le contexte tropical.

Ces succes ont encouragé divers auteurs a développer d’autres concepts de la géo-
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métrie algébrique tropicale. Ainsi, dans [RGSTO05] les notions élémentaires de théorie
de l’intersection, avec les théoremes de Bezout et de Bernstein dans le contexte trop-
ical sont montrés. Dans [SS04a] la grassmannienne tropicale est étudiée, surtout ses
propriétés combinatoires. Dans [Vig04], Pauteur fournit une notion d’opération sur les
courbes elliptiques tropicales. Une théorie complete de la géométrie tropicale en termes
de schémas et morphismes est encore dans une phase embryonnaire.

Toutefois, malgré le succes de ce dictionnaire algébrico-tropical, cette correspon-
dance n’est pas complete. Pour voir ceci, on définit les variétés tropicales de la maniere
suivante:

Définition 1.11 Soit K un corps algébriquement clos avec une valuation non triviale,
v : K* — R. Soit V une variété algébrique dans (K*)”. L’image —v(V) C R™ obtenue
en appliquant I'opposé de la valuation sur chaque coordonnée est la wvariété tropicale
associée a V.

De cette maniere, les variétés tropicales sont des projections de variétés algébriques
par une valuation fixée sur un corps algébriquement clos. Donc, on peut entendre la
Géométrie Tropicale comme la tentative de donner un sens géométrique a ces objets
v(V). Mais, inévitablement, cette projection des variétés par la valuation entraine une
perte d’information. Peut-étre le cas le plus immédiat de cette perte d’information
est le fait que deux droites tropicales différentes dans le plan peuvent avoir une in-
finité de points dans leur intersection. Ce simple fait démontre qu’on ne peut pas
donner une axiomatique projective dans ’ensemble de droites tropicales. La these
qu’on présente essaye de quantifier cette perte d’information par la comparaison des
réalisations algébriques et tropicales d’une configuration d’incidence.

Pour étudier les relations entre les configurations d’incidence algébriques et trop-
icales, une notion fondamentale est la stabilité. Soient C7, Cy deux courbes planes
tropicales sans aucune composante commune. Les courbes peuvent avoir une in-
finité de points d’intersection. Si on veut comparer la Géométrie Algébrique avec
la Géométrie Tropicale, une nouvelle notion d’intersection est désirable telle que deux
courbes différentes possedent seulement un nombre fini de points d’intersection. Une
réponse a cette question est la notion d’intersection stable (cf. [RGSTO05]). On peut
définir l'intersection stable comme ’ensemble des points d’intersection qui sont limites
de points d’intersection de C; avec une petite perturbation générique de Cs. Cette
intersection stable est toujours un ensemble fini, méme si les courbes Cy et Cy ont
des composantes communes, ou méme dans le cas C; = Cy. De plus, cette notion
d’intersection vérifie des théorémes élémentaires d’intersection comme le théoreme de
Bernstein-Koushnirenko (cf. [RGSTO05]). De facon analogue, on peut définir la courbe
tropicale stable qui passe par un ensemble de points donné. Soit I un ensemble fini
de Z? qui représente le support d'un polynéme & deux variables, § = #(I) et § — 1
points dans le plan tropical P = {q1,...,qs—1}. Il est possible qu’il y ait une infinité de
courbes différentes de support I qui passent par les points. Toutefois, il existe une seule
courbe tropicale de support I qui passe par P et telle que toute perturbation continue
de P puisse étre suivie par une perturbation continue de la courbe. Cette courbe qui
a cette propriété de continuité est appelée la courbe tropicale stable qui passe par P.
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Nous présentons maintenant un bref résumé des problemes traités dans la these et
les principales contributions originales.

Chapitre 1

Dans ce Chapitre on présente les notions élémentaires de corps valués et les définitions
de base de variétés tropicales et on introduit le concept de configuration d’incidence.
Les configurations d’incidence sont un outil classique dans I’étude des géométries finies,
par exemple [Dem68], dont son définition est reproduite ici.

Définition 1.27 Une structure d’incidence est un triplet G = (p,B,7), tel que
pNB =0, TCpxB.

Les éléments de p sont appelés points, les éléments de B sont les courbes et les éléments
de I sont les relations d’incidence. En plus, on suppose que chaque élément x € B est
étiqueté avec un support I, ¢’est-a-dire, un sous-ensemble fini de Z?2.

11 suit de la définition qu’une structure d’incidence peut étre interprétée comme un
graphe biparti G avec deux couleurs p et B et les arétes J, dans lequel les éléments de
type B sont étiquetés avec un support.

Une réalisation algébrique (respectivement tropicale) d’une structure d’incidence
est une assignation, d’un point sur le plan (tropical) pour chaque élément = € p et
d’une courbe plane (tropicale) définie par un polynéme de support I, pour chaque
élément y € B. On demande en plus que, pour chaque relation d’incidence (x,y) € J,
le point représenté par x soit contenu dans la courbe représentée par y.

Les courbes tropicales sont plus flexibles que les courbes algébriques, dans le sens
que, étant donné une structure d’incidence G, on peut trouver (dans quelques cas) des
réalisations tropicales qui ne sont jamais la projection d’une réalisation algébrique de
G. Mais tout réalisation algébrique de G est projété sur une réalisation tropicale de G.

Le premier résultat original est:

Théoréme 1.30 Soit G une structure d’incidence dont le graphe sous-jacent est acy-
clique. Alors, il y a une correspondance entre les réalisations tropicales et algébriques.
C’est-a-dire, pour chaque réalisation tropicale x de G il existe une réalisation algébrique
T de G qui est projetée sur x.

Chapitre 2

Dans ce Chapitre on étudie la régle de Cramer tropicale présentée dans [RGSTO05] et sa
relation avec la regle de Cramer algébrique. A cet effet, soit k le corps résiduel de K par
la valuation et I' le group de valuation. Soit t!' = {t7 | v € I'} une section de la valuation
de K* & T, cest-d-dire v : t!' — T est un isomorphisme de groups. La projection
naturelle de 'anneau de valuation de K dans k peut s’étendre en un homomorphisme
de groupes multiplicatifs 7 : K* — k*. Si z € K*, v(Z) = v, alors (%) est la projection
de zt~7 sur k*. Cette élément est appellé le coefficient principale de T ou le coefficient
résiduel de T. Cette notion est inspirée par le cas des séries de Puiseux. Tous les
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résultats de généricité qu’on montre seront des résultats de généricité résiduelle, c’est-
a~dire, que 'image par 7 soit un élément générique de k. De cette maniere, on étudie
la projection de la solution d’un systeme d’équations linéaires quand ses coefficients
résiduels sont génériques et son application au calcul de la courbe de support fixé I qui
passe par #(I)—1 points. Le résultat original qui met en rapport les systémes linéaires
dans le contexte algébrique et tropical est le suivant:

Théoreme 2.10 Soit I un support, 6 = #(I), P = {q1,...,¢5-1}, ¢j = (qjl»,qu) un

ensemble de points tropicaur, P = {¢1,-.-,q5-1} un ensemble de points algébriques
dont la projection est P. Alors, si les points résiduels m(¢;) = v; € k* sont génériques,
il y a seulement une courbe algébrique C en passant par P et elle est projetée sur
la courbe tropicale stable de support I en passant par P. De plus, on peut calculer
explicitement des conditions de généricité suffisantes dans les coordonnées de ~; pour
avoir cette correspondance.

Dans ce cas, la courbe calculée est aussi générique parmi les courbes de support I.

Théoréme 2.11 Dans les conditions du Théoréme précédent, si les points résiduels ;
sont génériques et C' est la courbe algébrique de support I en passant par P, alors, les
coefficients résiduels dans k d’un polynoéme définissant C sont aussi génériques.

Chapitre 3

Avec une approche semblable a celle du Chapitre 2, on étudie ici I'intersection de
courbes algébriques et leur relation avec l'intersection de courbes tropicales. Pour
pouvoir étudier cette relation on propose une définition du résultant tropical comme la
projection du résultant algébrique pour des polynomes de support fixé. On prouve que
cette notion a une signification géométrique analogue a celle du résultant algébrique
et permet faire une bijection (en comptant les multiplicités) des points d’intersection
de deux courbes génériques f, g de support donné I;, Iy avec 'intersection stable des
deux courbes tropicales [ = T(f), g =T (g). La contribution principale est le résultat
analogue a celui présenté dans le chapitre précédent.

Théoréme 3.10 Soient ]?, g € K[z,y]. On peut calculer des conditions suffisantes
sur les coefficients résiduels des polynomes f, g, qui dépendent seulement de la pro-
jection f, g de ces polynomes, tels que si ces conditions sont remplies, la projection
de lintersection de f, g est précisément l'intersection stable de f et g. De plus, les
multiplicités d’intersection sont conservées.

Z mult(q) = multy(q)
gefng
T(2)=q

Dans ce cas, si les polynémes définissant les courbes ont des coefficients résiduels
génériques, alors un point d’intersection a aussi des coefficients résiduels génériques.
Ce théoréme est indispensable pour les résultats du Chapitre suivant:
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Théoreme 3.14 Soient f,Zj € K[z, y] deux polynomes représentant deux courbes. Si
les coefficients résiduels de ces polynomes sont génériques dans k alors, tout point
d’intersection de f, g a aussi des coefficients résiduels génériques.

Chapitre 4

Dans ce Chapitre on propose et explore les possibilités d’un outil simple pour I'étude
des configurations d’incidence: la notion de construction géométrique. Intuitivement,
une construction est un procédé qui prend comme éléments d’entrée un ensemble de
points et de courbes et donne comme résultat une configuration d’incidence qui contient
les points et les courbes d’entrée parmi ses éléments.

Définition 4.1 Une construction géométrique est une procédure abstraite consistant
en:

e Eléments d’entrée: deux ensembles finis po, Bo tels que pg N By = O et chaque
élément x € By a un support [, associé. L’ensemble des relations d’incidence
initiale est I’ensemble vide J = 0.

e Etapes de la construction: une succession finie de pas comme les suivants:

— Soit I un support avec #5(I) = n > 2 et n — 1 points {qi,...,qn—1};
on ajoute une nouvelle courbe C' de support I a B, on ajoute aussi des
conditions d’incidence orientées ¢; — C, 1 <¢<n —1.

— Soient deux courbes C7, Cs de support I, Iy respectivement et polygones
de Newton (enveloppe convexe des supports) A(I1), A(l2) respectivement;
on ajoute M(6(11), A(I2)) nouveaux points a p, ou

M(A(Il), A(Ig)) = ’UOl(A(Il) + A(IQ)) — UOZ(A(Il)) — UOZ(A(IQ))

et aussi des conditions d’incidence orientées C7 — ¢q;, Co — ¢;, 1 < 1 <

M(A(L), A(Iz)).

e Sortie: une structure d’incidence GG dans laquelle les relations d’incidence ont une
orientation.

Une réalisation (respectivement réalisation tropicale) d’une construction algébrique
est une réalisation du graphe d’incidence G tel que

e Siz € B\B et une courbe de support I et {y1, ..., ys)—1} sont ses prédécesseurs
immédiats alors x est la courbe (tropicale stable) qui passe par l’ensemble de

points {y1,...,Yn}.

e Six € p n’est pas un élément d’entrée, soient y, y2 ses prédécesseurs immédiats,
et soient {x1,...,z,} les successeurs immédiats communs de y; e yo. Alors
{z1,...,x,} est précisément l'intersection (tropicale stable) de y; et y2 en comp-
tant les multiplicités.
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Remarquez que, dans le contexte tropical, la courbe qui passe par un ensem-
ble de points est toujours interprétée comme la courbe stable passant par ceux-ci et
I'intersection de deux courbes tropicales comme l'intersection stable.

Avec le concept qu’on a introduit de construction comme outil, on peut étudier les
réalisations d’une configuration d’incidence exprimée comme une construction avec les
réalisations de la méme construction dans le contexte algébrique. Pour cela on introduit
la notion d’admissibilité.

Définition 4.5 Soit € une construction géométrique. Soit G le graphe d’incidence
orienté induit par la construction. La construction € est admissible si, pour chaque
paire de sommets A, B de G, il existe au plus un chemin orienté de A a B.

Cette notion est tres importante dans notre contexte. Notre résultat original prin-
cipal est le suivant:

Théoréme 4.6 Soit € une construction admissible. Alors, pour chaque réalisation
tropicale x de €, il existe une réalisation algébrique T de la construction € qui se
projette sur x.

Dans ce Chapitre on étudie aussi diverses situations ot on peut encore obtenir des
informations pour une construction géométrique méme si elle n’est pas admissible. On
regarde aussi les différents cas qui peuvent apparaitre en étudiant les constructions.

Chapitre 5

La principale application des techniques développées dans les Chapitres précédents
est un théoreme de transfert du contexte algébrique au contexte tropical. Mais des
formulations équivalentes de théoremes de Géométrie Projective peuvent ne plus étre
équivalentes dans le cadre tropical. Dans ce Chapitre on présente un résultat de trans-
fert quand le théoreme a transférer est énoncé d’une maniere tres explicite. Pour
pouvoir formaliser comment doit étre énoncé un théoreme et appliquer les résultats, on
introduit la notion de théoréeme constructible admissible.

Définition 5.1 Un énoncé d’incidence constructible est un triple (G, H,z) ou G est
une structure d’incidence, H est une construction géométrique, appelée [’hypothese,
telle que, considérée comme structure d’incidence, H est une sous-structure complete
de G, H C G. En outre, on demande qu’il y ait seulement un sommet z de G qui ne
soit pas un sommet de H:

e UB}\ {prUBH} = {z};

ce sommet x est appelé sommet de thése.

Soient Hj les éléments d’entrée de H. Soit K un corps algébriquement clos. On
dit qu'un énoncé d’incidence est vrai dans K ou qu’il est un théoréme en K s’il est
vrai pour des réalisations génériques de Hy, c’est-a-dire, s’il existe un ensemble dense
L dans l'espace de réalisations de Hy tel que:

e Pour chaque he L, la construction H est bien défini.
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e Si p € Ry est une réalisation de H construite & partir de he L, alors il y a un
élément T tel que (p,Z) soit une réalisation de G.

Dans le contexte tropical, la construction H est bien définie pour toute entrée grace
a la notion de stabilité. Un énoncé est vrai ou il est un théoréme sur le plan tropical
si, pour chaque réalisation p de H obtenue par la construction, il existe un élément x
tel que (p, x) soit une réalisation tropicale de G.

Un énoncé d’incidence constructible est admissible si la construction associée aux
hypotheses est une construction admissible. Avec ce langage, on peut prouver que:

Théoréme 5.3 Soit Z = (G, H,z) un énoncé d’incidence constructible admissible. Si
Z est vrai dans un corps algébriquement clos K, alors il est vrai pour tout plan tropical.

En utilisant cette technique on a démontré avec succes des versions tropicales du
Théoreme de la configuration du plan de Fano (5.4), du Théoréeme de Pappus (5.5),
de la réciproque du Théoreme de Pascal (5.6), du Théoreme de Chasles (5.7) et de
sa généralisation le Théoreme de Cayley-Bacharach (5.8), ainsi qu’une version non
universelle du Théoreme de Pascal (5.9).

En particulier, avec la preuve du Théoreme du Pappus, on donne une réponse pos-
itive & une conjecture formulée dans [RGSTO05]. Dans cet article, les auteurs donnent
deux énoncés du Théoreme de Pappus équivalents dans le contexte algébrique, mais
qui ne le sont pas dans le contexte tropical. Les auteurs fournissent un contrexemple
au premier de ces énoncés, et conjecturent que ’autre énoncé est toujours vrai. Mais ce
deuxieme énoncé est un énoncé d’incidence constructible dont I’hypothese est une con-
struction admissible. Par conséquent, en appliquant les techniques qu’on a développées,
on démontre que cette énoncé est toujours vrai.

Hypercercles et Simplification de Courbes Paramétriques

Dans cette deuxieme partie de la these on étudie un probleme différent, dans lequel
on apporte aussi un outil original pour son analyse et sa résolution. Pour présenter le
contexte du probleme, on introduit I’exemple suivant:

Exemple Considérons les paramétrisations du cercle unité 22 + 4> —1 = 0 C C?

suivantes: )
2t t*—1
= ———, ——
o(t) (t2+1’t2—|—1>

bt = 24 2t2 4 2t 2t% + 3t* 4 21 4 ¢
O\ 24262 4 34+ 216 + 4872 4+ 242 4 34 4+ 26 4+ ¢8

(t) = 2v2t% — 6t — 42 12+ 6V2t — 7
! 362 — 202+ 9 732 — 22t + 9
La premieére paramétrisation est une paramétrisation classique qui est calculée a

partir du faisceau de droites passent par le point (0,1). La seconde paramétrisation
est plus compliquée, puisque le degré des fonctions rationnelles 1 est plus grand que le
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degré du cercle. Le probleme avec la troisieme paramétrisation est que ses coefficients
ne sont pas rationnels, mais appartiennent au corps Q(ﬂ)

La simplification de la seconde paramétrisation 1(t) peut étre effectuée par (une
version constructive de) le Théoreme de Liiroth. Ce théoreme affirme que toute pa-
ramétrisation rationnelle d’une courbe peut étre remplacée par une paramétrisation
birationelle. Dans notre exemple on peut obtenir une paramétrisation birationelle par
le changement 1 + > 4+ t* = s.

La troisieme paramétrisation pose un autre type de probleme. Est-ce qu’il est
possible d’obtenir a partir de n(¢) une paramétrisation semblable & ¢(¢)? Dans ce cas
on demande s’il existe des algorithmes qui permettent de passer d’une paramétrisation
avec des coefficients algébriques a une représentation avec des coefficients rationnels,
ou plus généralement: Soit C' une courbe donnée au moyen d’une paramétrisation 7(t),
avec des coordonnées dans K(«)(t) ou K est un corps de caractéristique zéro et « est un
élément algébrique sur K; on cherche des méthodes pour calculer si une paramétrisation
¢(t) de C est possible, mais cette fois avec des coefficients dans le corps K.

Dans un contexte de calcul formel, par rapport au probleme qu’on veut résoudre, il
peut étre plus intéressant d’avoir une représentation implicite ou paramétrique d’une
courbe rationnelle. Bien que les deux représentations soient équivalentes et qu’on con-
naisse des algorithmes pour passer d’'une représentation a ’autre, ces algorithmes peu-
vent étre trop couteux. Par conséquent, dans notre probléeme de reparamétrisation, on
cherche des méthodes qui permettent de calculer cette reparamétrisation sans utiliser
des techniques d’implicitation, c’est-a-dire sans calculer les équations implicites de la
courbe a traiter.

Une réponse a cette question est 'utilisation d’une courbe auxiliaire, introduite par
Andradas, Recio et Sendra dans [ARS99]. Cette courbe auxiliaire codifie, géométrique-
ment, le changement de parametre nécessaire pour résoudre le probleme proposé. Dans
I’exemple, le changement de parametre nécessaire pour passer de la paramétrisation
n(t) & ¢(t) est
L 2V2t 41

t—v2

Cette homographie peut étre écrite comme

t

22t + 1 5t 1+ 2t2
Vat+1l_ TRV, Rakia
t—/2 2 —2 2 —2

L’hyperbole définie par la paramétrisation ( t25f2, 153’52 ) codifie 'information nécessaire

pour obtenir la reparamétrisation souhaitée du cercle dans I'exemple. Cette courbe
obtenue par I’écriture d’une homografie dans la base (1,v/2) est appelée hypercercle
dans [ARS99].

Définition 8.1 Soit u(t) = ‘C‘fis € K(a)(t) une homographie, ad — bc # 0. On suppose
que [K(a) : K] = n et soit

n—1
u(t) = i)l ¢i(t) € K(t)
i=0



Résumé XXIIT

I'expression de cette homographie dans la base {1, qa,...,a" 1}. L’hypercercle associé
a u(t) est la courbe paramétrée par (o, ..., Pn—1) sur la cloture algébrique de K.

Chapitre 6

Dans ce Chapitre on présente le contexte algébrique dans lequel on travaillera. Si FF
est un corps algébriquement clos de caractéristique zéro et K C F est un sous-corps,
on est intéressé dans 1’étude des K-variétés, c’est-a-dire, les variétés algébriques qui
peuvent étre exprimée comme l’ensemble des solutions communes a une famille de
polynémes a coefficients dans K. On présente quelques caractérisations classiques des
K-variétés et quelques-unes des propriétés géométriques qui peuvent étre définies de
maniere rationnelle, c’est-a-dire a partir de I'idéal de polynomes a coefficients en K et
avec des opérations dans le corps K seulement. On adapte & ce contexte des notions
classiques comme l'irréductibilité d’une variété sur K, la birationalité des variétés sur
K ainsi que la possibilité de paramétriser une courbe sur le corps K. On étudie aussi
la relation existant entre les topologies de Zariski de F™ pour différents sous-corps K
de I, ou la topologie 7 de F™ est la topologie dont les fermés sont les sous-variétés de
F™ définissables sur K.

Ce résumé de résultats classiques est inclus dans la thése pour deux raisons. D’abord
pour que la these soit autocontenue. Ensuite, parce qu’on ne connait aucune référence
standard ou tous ces résultats soient rassemblés et formulés dans un langage proche de
nos intéréts. La référence de base de ce Chapitre est [ZS75b].

Chapitre 7

Dans ce Chapitre on rappelle la définition de la variété de Weil dans le cas implicite et
on présente une construction analogue dans le cas paramétrique.

Définition 7.1 Soit K un corps de caractéristique zéro, F sa cloture algébrique et
« € F un élément algébrique de degré d sur le corps K. Soit

V={fi(z1,...,2n) = ... = fr(x1,...,2,) =0} CF"
une variété algébrique de dimension m, ou f; € K(a)[z1,..., 2], 1 < j <.

On définit la variété de Weil associée a V comme dans [Wei95]: on remplace chaque
variable x; par xjo + axj + -+ adila:j’d,l, ou on a introduit de nouvelles variables
xj;. On peut réécrire fi dans ce nouvel ensemble de variables:

fk((l}(l); R $(n)> S K(a)[$(1); - ;x(n)],
ol z(;) dénote le vecteur de variables (zjo,...,7;4-1). Le polynome fi(x(1);-..;2m))
peut étre écrit comme
fro(@yi- -3 Tm) + afir(@ay -1 zm) + o+ o g (@) Tm)

avec fr; € K[x(l); .. .;x(n)] univoquement déterminés. La variété ¥V définie par les
polynémes fi; est la variété de Weil associée a V.

WZ{fki(l'(l);...;Q?(n)):O‘k=1,...,7’,i:0,...,d—1}and
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Par définition, cette variété est toujours définie sur le corps K. Il est connu (cf.
[Wei95]) que la variété V peut étre définie sur K si et seulement si la variété W =
Wn{z;; =075 =1,...,n,% > 1} a la méme dimension que V. Cette méthode
fonctionne pour une représentation implicite de la variété. Puisqu’on souhaite travailler
avec une courbe paramétrique, on introduit une construction analogue pour le cas
paramétrique qui s’inspires de [ARS99] dans le cas des courbes.

A cet effet, soit V une variété donnée par la paramétrisation unirationnelle

o(t) : Fm . Fr
(t1y.ostm) — (d1(t1y- - stm)y ey Onltty oy tm))
ou ¢y € K(a)(z1,...,2,). Chaque fonction coordonnée ¢y, a une représentation comme
un quotient
hi(t1, ... tm)
Op(ty, ...t =———< hp,gr €Klzy,...,z,]
( m) gk(t1, .- tm) | n)

En outre, en remplacant g par le plus petit commun multiple des dénominateurs g, on
peut supposer que le dénominateur g est commun et que la représentation des fonctions
rationnelles n’a pas de composante commune: ged(hi(t),. .., hn(t),g(t)) = 1.
Définition 7.6 Soit ¢ = (¢1, ..., ¢n) comme ci-dessus, écrivons t; = tjo +tj1o0+-- -+
tjyd,ladfl, ou tj; sont de nouvelles variables. La substitution de ces variables dans ¢
définit des fonctions rationnelles dans K(a)(t(1);- - -;t(m)), ol t(;) dénote le vecteur de
variables (tjo,...,tj4-1)-
Ces fonctions rationnelles ont une expression unique comme:

o = ¢k0(t(1); N t(m)) + apr1 (t(1)§ N t(m)) + -+ ¢k7d710¢d_1(t(1); R t(m)),

bri € K(t(1); - - - 5t(m))- L’application unirationnelle ¢ : Fmd — Fnd définie par

(tio -~ tig—1; (pr0(trys -3 tm)) -+ Dra—1(tayi---item));

tao ... tag-1; G20(tys--5tamy) oo P2a-1(tay; -t m));
......... — [

tmo - 7f’rnd—l) ¢n0(t(1); R t(m)) s d)nd—l(t(l); R t(m)))

est appelée la paramétrisation obtenue par expansion de ¢.

On a que ® paramétrise la variété de Weil W et que & est birationnel si et seulement
si ¢ est birationnel. On définit la variété témoin comme
Définition 7.12 Soit Y = {t € F™ | ¢y;(t) = 0,i > 0}. Soient ¢p; = hy;(t)/5(t) écris
avec un dénominateur commun. Soit Ds I’ensemble des points ot 4 # 0. On définit la
variété témoin de V comme la cloture de Zariski de Y N Dsy.

Avec ces définitions, le principal résultat original de ce Chapitre est:

Théoréme 7.11 Soit U I’ensemble des points t € Ds tels que ®~1(®(t)) soit fini.
Alors, V est définie sur K si et seulement si dim(Y N Ds NU) = dim(V). En outre,
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dans ce cas, si T : F™ — Y N Ds NU est une paramétrisation unirationnelle d’une
composante de Y N Ds NU de dimension dim(V), alors (¢10(7),. .., ¢no(7)) est une
paramétrisation de V sur K.

Dans le cas birationnel, on peut déterminer quelle est la structure géométrique de
la composante paramétrisable. Pour cela on introduit la notion d’hyperquadrique.

Définition 7.15 Soit # un F-automorphisme du corps de fonctions rationnelles & m

variables
0: F(tl,...,tm) —>F(t1,...,tm)

défini par la substitution
=01t tm)s st = Ot ).

On suppose que les coefficients de §; appartiennent a K(a) et on développe chaque
fonction rationnelle comme

d—

Qj(tl, ey tm) = ZGﬂ(tl, ... ,tm)O/, 9]'1‘ € K(tl, ey tm).

[y

=

Une hyperquadrique est la variété de F™? paramétrisée par les composantes 0ji,J =
1,...,m,i=0,...,d —1 des automorphismes 6 dans la base 1, q,...,a% !

Avec cette notation on a:

Théoréeme 7.16 Supposons que ¢ est birationnel. Alors V est paramétrisable sur K et
0 est un automorphisme de F™® ¢ coefficients dans K(a) tel que ¢(0) € K(ty, ..., tm)
si et seulement si Y N DsNU a une composante qui est U’hyperquadrique associée a 0.

On présente finalement une série d’exemples et contrexemples qui montrent com-
ment fonctionne la méthode et comment les hypotheses des théoremes sont nécessaires,
spécialement la présence des ensembles Dy et U dans les énoncés des théoremes.

Chapitre 8

Dans ce Chapitre on étudie les propriétés des hypercercles, c’est-a-dire des hyper-
quadriques de dimension 1. Les résultats de ce Chapitre sont le résultat d’un travail
commun avec les professeurs Recio, Sendra et Villarino. La principale contribution est
un théoreme de structure des hypercercles:

Théoréme 8.7 Soit U 'hypercercle associé a l'isomorphisme u(t) = ‘ﬁj’ € K(a)(t),

soitr = [K(—d) : K]. Alors, il existe une transformation projective p : P(F)" — P(F)",
définie sur K tel que la courbe p(U) soit la courbe rationnelle normale de degré r dans
P(IF)" paramétrisée par

plt:s)=1[s":s" 1 ist™ Lm0 1 0]

On déduit de ce théoreme les propriétés plus importantes des hypercercles:

Corollaire 8.8 Dans les conditions précédentes:
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1. U est une courbe de degré r.

2. U est contenu dans une varicté linéaire de dimension r et n’est contenu dans
aucune varieté linéaire de dimension r — 1.

3. U est non-singuliére dans P(F)".

4. La fonction de Hilbert de U est égale a son polynéme de Hilbert, hy (m) = mn—+1.

Une maniere de distinguer un hypercercle d’une courbe rationnelle normale arbi-
traire est au moyen de ses points a 'infini. Si K(«) est de degré n sur K et U est un
hypercercle de degré n, alors les points a l'infini de &/ ne dépendent que de ’extension
K C K(a). Si P ={Py,...,pn} sont les points & I'infini de U, alors

{zo+ajzi +---+ oz?ilmn,l =0}NU =P\ {P;},
olt aj = 0j(c) sont les conjugués de o dans F, 1 < j < n et U est la cloture projective
de U.

La caractérisation projective des hypercercles et la connaissance des points a l'infini
fournissent des méthodes de paramétrisation et d’implicitation adaptés aux hypercer-
cles. La contribution originale la plus significative de ce point de vue est la méthode
suivante d’implicitation. Rappelons qu'un systeme de générateurs de 'idéal homogene

de la courbe rationnelle normale de degré n est {y;yj—1 — yi—1y; | 1 < 4,5 < n} (cf.
[Har92]).

Théoréeme 8.21 Soit ¢(t) = ((i?((tt)), cee q”n‘é)(t)) une paramétrisation propre d’un hyper-
cercle U de degré n avec des coefficients dans F. Soit I ’idéal homogéne de la courbe
rationnelle normale de degré m dans P(F)" exprimée par des polynémes homogénes
hi(9),...,he(4), ¥ = (Yo,---,Yn) (par exemple, les génerateurs décrits avant). Soit
Q € Mytixnt1(F) la matrice de changement de base de {qo(t),...,qn—1(t),N(t)} a

{1,¢t,...,t"}. Soit
n n
fi@) =hi [ Y Qojwjy- > Qujay |, 1<i<r
=0 =0

Alors, {fi1,..., [r} est un ensemble de générateurs de l’idéal homogéne de U.

En outre, les propriétés des hypercercles fournissent la caractérisation suivante des
hypercercles de degré maximal.

Théoreme 8.24 Soit U C F™ un ensemble algébrique de degré n tel que toutes ses
composantes sont de dimension 1. Alors, U est un hypercercle si et seulement s’il a
une infinité de points a coordonnées dans K et passe par les points a linfini propres a
un hypercercle.
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Chapitre 9

Dans ce Chapitre on présente la relation entre les hypercercles et la variété témoin
définie dans le Chapitre 7. Dans ce cas, on peut raffiner les résultats présentés dans le
Chapitre 7. Premierement, l'introduction de I’ensemble U ou la paramétrisation ® est
a fibres finies n’est pas nécessaire dans les hypotheses des théoremes parce qu’on peut
démontrer que, dans le cas des courbes, I'application ® obtenue par développement est
toujours a fibres finies dans ’ensemble Dgs. D’autre part, la variété témoin a au plus
une composante de dimension 1. Ces résultats simplifient énormément les calculs dans
le cas de courbes. Si Z est la variété témoin associé a une courbe V, alors on a les
possibilités suivantes:

e ou bien Z est un ensemble fini et V n’est pas K-definissable.

e ou bien dim(Z) = 1, alors V est K-définissable; V est K-paramétrisable si et
seulement si la seule composante de dimension 1 de Z est un hypercercle.

En particulier, on peut utiliser tous les résultats présentés dans le Chapitre 8 pour
étudier la composante de dimension 1 de Z.

En plus, dans le cas ou le corps de base est K = Q le corps des rationnels, on fait
I’observation suivante. Si une courbe définie sur Q n’est pas Q paramétrisable, il existe
des corps quadratiques Q((3) qui paramétrisent la courbe. Comme corollaire de ces
affirmations on a la propriété suivante:

Corollaire 9.9 Soit V une courbe définie sur Q, paramétrisée sur Q(a) et tel qu’elle
n’est pas paramétrisable sur Q. Soit U la composante de dimension 1 de la variété
témoin associée a V. Alors, il existe une infinité de corps quadratiques différents Q(3)
tels que U soit un hypercercle pour 'extension Q(5) C Q(f, «).

A partir d’ici, on peut obtenir une application a la reparamétrisation de V. On
donne un résultat sur les reparamétrisations optimales de V par un changement affine
de parametre t — et +eo. La principale contribution originale dans cette direction est
la suivante:

Théoreme 9.12 Soit V une courbe définie sur Q donnée par une paramétrisation
¢ a coefficients dans Q(a). Alors, il existe toujours un point [ag : ... : ap—1 : 0] @
Uinfini de la variété témoin U qui est représentable sur le corps Q(«) et qu’on suppose
deshomogénéisé a l'indice i (a; = 1). Soit v < n le degré de U. Dans ces conditions V
peut étre paramétrisée sur Q(v) = Q(ag,...,an—1) C Q(a), 0t [Q(v) : Q] = r.

En outre, si e1,ea € C, e1 # 0 sont des nombres algébriques, soit ¢(e1t + e2) une
autre paramétrisation de V et soit L le corps engendré sur Q par les coefficients de
¢(ert + e2), alors

1. L contient un corps (isomorphe a) Q(v).
2. [L:Q]>r.

3. Si[L:Q]=r alors L est isomorphe a Q(v).
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4. Iy a €y, ey €L tel que et + €, paramétrise ¢ sur (un corps isomorphe a) Q(7).



Notation

Part 1.

K is an algebraically closed field provided with a rank 1 valuation.
k is the residual field of K

The valuation group is denoted by I". This set, once we define the tropical addition
and product is denoted by T.

The tropical operations in T are the tropical addition “a + b” = maz(a,b) and
tropical product “a-0” = “ab” = a+b.

T is the tropicalization or projection map.

T (f) is the tropical hypersurface associated to the polynomial f.
7, J will denote Ideals.

V(Z) is the algebraic variety defined by Z.

The tropical objects will be denoted by latin letters: g, C for points and curves,
a, b, ¢ for elements in the semifield T etc.

x,1, z we will denote variables.
The lift or preimage of an element X is denoted by X.

I, J will denote the support of a curve C, if it is needed to avoid confusions we
will use I(C), 6 = §(I) is its cardinal and A = A([) is its convex hull in R2.

Subdiv(A) is the subdivision of the Newton polygon A dual to a tropical curve.
Ay is the cell in Subdiv(A) dual to the one containing the point g.
a, 3, v will denote elements in the residual field k.

We will write at™®+ ... or at™* 4 o(t™%) to denote an element of tropicalization
a and principal coefficient a.

M(A1, Ag) is the mixed volume of two polygons Aj, As.
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e R(I,J,K) is the resultant of two generic polynomials of supports I, J with coef-
ficients in K.

e R(I,J,K); is the tropicalization of R(I,J,K).

e Given a tropical matrix A and a matrix B over an arbitrary ring, A 4(B) denotes
the pseudodeterminant of B with respect to weight A.

e (5 is a finite incidence structure.

e p denotes the points of G.

e ‘B is the set of blocks or curves of G.

e Jis the set of flags or incidence conditions of G.
e S is the algebraic support of G.

e St the tropical support of G.

e Rq, the space of algebraic realizations of G.

e R., the space of tropical configurations of G.

e Sup The support map that associates every curve C' with its support 1(C).
e ¢ an abstract geometric construction.

e S, the group of permutations of n elements.

e 0, a permutation of S,.

|Al; the tropical determinant of A.

S the definable set in &V associated to a tropical instance of a construction.

Part 1I.

e K will be a field of characteristic zero, K C L a finite algebraic extension of degree
n and F the algebraic closure of K.

e « will be a primitive element of L over K.

e u(t) will be a unit under composition of IL(¢). That is, u(t) = ‘Cltt—jts with ad—be # 0.

Its inverse ;ft_flb is denoted by v(t).

e For u(t) = Zfig and ¢ # 0, M(t) = t" + k,_1t" "' +--- + ko € K[t] denotes the

minimal polynomial of —d/c over K.
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e We will denote as m(t) the polynomial obtained by dividing M (t) by ct+d. That

M(t
is, m(t) = Ctiil =l " L ot g € L[

e Sometimes we will represent u(t) as

ult) = (at +b)m(t)  po(t) + p1(t)a+ -+ pp_1(t)a"
M@ M(t) 7

where p;(t) € K[t].

e By {01 = Id,o9,...,05}, s > n we will denote the group of K - automorphisms
of the normal closure of K C L.

e We will represent by {a1 = a,...,a,} the conjugates of . We assume without
loss of generality that o;(a) = o; fori =1,...,n.
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Chapter 1

Preliminaries

Tropical Geometry is a rather new topic in Mathematics. Its main characteristic is
the substitution of algebraic varieties by suitable polyhedral complexes. Many geomet-
ric concepts can be translated to this context. However, this translation sometimes
contradicts our geometric intuition.

The approach to Tropical Geometry chosen is defining tropical varieties as non
archimedean amoebas, see [EKLO04]. Fixed an algebraically closed field and a valuation
on it, a tropical variety is the set of valuations of the points in an algebraic variety.
Determining these valuations already appear in the classical method of Newton Puiseux
to compute solutions of a bivariate polynomial as fractional power series [Wal50]. A
generalization to planar curves is presented in [Tha64]|, where some components of
tropical curves are described and it is proved their relationship with the bivariate
Newton polytope. We will not restrict our interest to working with just one variety.

Our objective in this Chapter is to study the relationship of algebraic and tropical
realizations of incidence configurations of curves and points. In order to achieve this,
we start with an introduction of tropical varieties and the statement of some problems
that appear when trying to give geometric significance to these objects.

1.1 Basic Notions of Valued Fields

In this Section we recall the basic notions and properties of valued fields (cf [ZS75b])
that will be used later.

Definition 1.1. Let K be a field, I' a totally ordered abelian group, a valuation is a
map:
v: K — T

such that
e v(ab) = v(a)+v(b) (it is a group homomorphism)
o Ifa+b#0, v(a+0b) > min{v(a),v(b)}

In this case, K is a valued field and I is its valuation group.
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From the definition, it follows that v(a=1) = —v(a), v(—a) = v(a) and, if v(a) # v(b)
then v(a + b) = min{v(a),v(b)}. It is sometimes useful to extend the valuation to the
whole field, defining T' = T'U {00}, v(0) = oo with the usual extended operations, for
gel, g+00=00+00 =00, g<oo. Wewill also suppose that the valuation is always
onto I'.

Definition 1.2. Let K be a valued field. Let V = {z € K | v(x) > 0}. This set is
the wvaluation ring of K. It is a local integral domain whose maximal ideal is m =
{z € K| v(z) > 0}. The field k = V/m is the residual field of K. It follows from the
definition that V* = {z € K | v(z) = 0}.

Valued fields can be classified at a first step by their characteristic. This classifica-
tion will be relevant in Chapter 3. If K is a field of characteristic p > 0, then V is an
integral domain of characteristic p that projects onto k. Thus, in this case, k must be
a field of characteristic p. If K is a characteristic 0 field, we have that Z C V. Hence,
Z N'm is an ideal of Z. There are two possibilities, if Z N m = (0), then k is also a
characteristic zero field and Q C V. If ZNm = (p), then k is a characteristic p field
and the local ring Z,) C V. This is called the p-adic case.

The case when char(k)=char(K) is called the equicharacteristic case. In this case
the prime field of k£ may be identified with the prime field of K. One would like
to identify k£ with a subfield of K, but this is not always possible. For example, let
K = Q(v2+4++/3t) C C((t)), where C((t)) is the field of complex Laurent series, equipped
with the valuation of the order. K is a valued field with the restriction of the valuation
of C((t)) to K. v/2 = v2+ 3t € k, but v2 ¢ Q(+v/2 + v/3t), because V2 + /3t is
transcendent over Q and Q(v/2 + v/3t) = Q(t). However, we are showing in the next
Proposition that if K is algebraically closed this problem never arise.

Proposition 1.3. Let K be an algebraically closed equicharacteristic field with residual
field k. Then, K contains a subfield isomorphic to k via the canonical projection.
m:V — k. Moreover, k is also an algebraically closed field.

Proof. The prime field F' of K can be identified with the prime field of k. Let L be
a transcendence basis of k over F'. Let L be any system of representatives of L in V,
then L is algebraically independent over F'. Namely, if a nonzero polynomial f with
coefficients in F' is such that f(ly,...,l,) = 0, using the projection, we obtain that
f(ly,...,1,) = 0, which is a contradiction with the algebraic independence of L in k.
So, these two fields may be identified.

v =k
F(L) — F(L)

Let k be the algebraic closure of F’ (E) in K. Then, k* is contained in V*. Let z € k*
and f =" ,a;x" be its minimal polynomial over F (E) In particular, the coefficients
a; different from zero are always of valuation zero. Note that ag and a, are always
different from zero. If z were not a valuation zero element, then v(x?) # v(2’) whenever
i # j and v(f(z)) = min{0,v(z™)}. It follows that f(z) # 0 and = cannot be a root of
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f. On the other hand, 7 is injective on k because if w(z) = 0, then z = 0 or = ¢ V*.
We have that & = (k) C k is an algebraically closed field containing F'(L). Thus,
k = m(k) and k is algebraically closed. O

We have seen that, in certain cases, we may suppose that k£ C K. Now, we are
proving that we can also suppose that the valuation group is isomorphic to a subgroup
of the multiplicative group of K*.

Proposition 1.4. Let K be a not necessarily equicharacteristic algebraically closed
valued field. Then K* contains a subgroup isomorphic to I' by the map

¢: K -T =2K/V*

Proof. The reasoning uses Zorn’s Lemma. Take the family of all subgroups of K such
that the projection into I' is injective. This is not an empty family, because it contains
the trivial subgroup {1}. Furthermore, it is an inductive family by the inclusion. Let
G be a maximal element. Then G projects into a subgroup of I'. In this case, the
projection is also onto. If this were not the case, there would be an element u of I not
belonging to the image. Take the group < ¢(G),u >, this is the image of ¢(G) & Z by
the map (g,n) — g + nu. If this map is injective, then < ¢(G),u >= ¢(G)D < u >
is a direct sum. Let v be any element of K* such that ¢(v) = u. Then G& < v > is
a group isomorphic to ¢(G) @ u. This is a contradiction with the maximality of G. If
the projection of G @ Z is non injective, let n be the minimum element of N* such that
there is a g € G with ¢(g) = nu. If w € G and ¢(w) = mu, then m = rn, r € Z and
w = ¢g". Let v be any root of the polynomial 2" — g in K*. It follows that the projection
is injective in the group < G,v > and its image is isomorphic to < ¢(G),u >, which
contradicts again the maximality of G. O

If G is a subgroup of K* isomorphic to I' by ¢, we denote G = tI'. 7 € tI' denotes
the unique element of G such that ¢(t?7) = ~. By the isomorphism, we have that
tu? = vty 0 = 1, ¢+7% = (t*)~1. From now on, we will always suppose that we are
given a fixed subgroup t' C K* with these characteristics.

In the Puiseux series case K = C[[tQ]], every element is a power series of the form

e}
x = Z az/ntz/",z(),n € Z,n > 0.
2=z
The valuation is v(z) = min{z/nla,;, # 0}. In this case, the valuation group is
isomorphic to the subgroup G of K consisting in the elements {t?,¢q € Q}. Without
loss of generality, if an element z # 0, we may suppose that a,,/, # 0 (equivalently
v(r) = 20/n). The term a,, € C is usually called the principal coefficient of the
series and the element a,, /ntzo/ " € K is called the principal term. This concepts can
be extended to a general field.

Definition 1.5. Suppose fixed the subgroup G defined in Proposition 1.4. Let z € K*,
u = v(x), then xt™ € V*. We write

Pc(z)=n(zt™) =y €k
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the principal coefficient of x. The principal term of x is denoted by Pt(x) = yt*. This
principal element is only a notation, it is not an element of K nor k. It happens that
v(z) =v(z) < v(x — z) if and only if Pt(z) = Pt(z). Usually we will write

r=yt"+... or yt"+o(t")
in order to emphasize the principal term of an element .

This notion of principal coefficient is essential in our context. Our geometric objects
in K" will be supposed to be generic. But the genericity conditions will be stated in
terms of the principal coefficients of elements defining our objects. So, we introduce
the notion of residually genericity.

Definition 1.6. Let x € K" be a point, we say that x is residually generic if Pc(x) € k™
is generic.

Proposition 1.3 proves that if a polynomial has every nonzero coefficient of valuation
zero, then all its non zero roots have valuation zero. This is a particular case of a well
known phenomenon. Given a polynomial, we can compute the valuations of its roots
from the valuations of its coefficients. This is a precursor of the facts about tropical
varieties we will face later. Because of its importance, we provide a complete proof
here. For the notation used and the approach itself we refer to [KLP03].

Definition 1.7. Let I' be the valuation group of K. If I' is isomorphic to an ordered
subgroup of R. Then we say that the valuation is of rank omne. In this case, we will
always suppose that v : K* — ' C R.

Let f = Z?;ol a;z’ € K[z], the Newton diagram of f is the set {(i,v(a;)) | 0 <i <
n} C N x T. If the valuation is of rank one, I' C R, we may define the Newton polygon
as the convex hull of {(i,2) | 0 <i <n,x > v(a;)} € R% Given two different vertices
(i,v(ai)), (j,v(a;)) of the Newton diagram of f such that a;, a; # 0, we define the slope
between the vertices (i,v(a;)) and (j,v(a;)) as the quantity (v(a;) —v(a;))/(j —). The
slope of two such vertices is always well defined, since it can be easily checked that if
K is algebraically closed then T' is always a division group.

The next goal is the classical study of the valuations of the roots of f. So, we may
suppose that a, = 1 and that ag # 0. In the case where I' C R, it is usually proved
that the valuations of the roots are the opposite of the slopes of the lower convex hull
of the Newton polygon (See, [Wal50]). To provide a similar result in the general case,
in [KLPO3] two consecutive points of the Newton diagram are defined as two points
(i,v(as)), (4,v(a;)), j > i such that:

v(a;) — v(ag) - v(a;) — v(a;)

o If k < i, — ¢
71— J—1

o Ifi <k <y, U(akli - ?(ai) > v(aj). - y(ai)
— i—i

o If k> 7, v(ag) — v(ay) S v(aj) —v(a;)

k—j j—i
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Note that is a; = 0 or a; = 0 then (,v(a;)), (j,v(a;)) are not two consecutive points of
the Newton diagram.

Proposition 1.8. Let f = S gaixt. Let [z1,...,3y,) be the list of roots of f ordered
by the valuation, v(x;) < v(xiy1). Let 0 < i < j <n be two elements such that

v(z) < ... <v(zp—j) < v(@n—ji1) = = 0(Tp—i) < V(Tp—it1) < ... <v(xy).

Then, (i,v(a;)), (J,v(a;)) € N x T are two consecutive points on the Newton diagram
of [ and the slope between (i,a;) and (j,a;) is —v(Tp—;) = —v(Tp—jt1)-

Proof. We write the coefficients of f as symmetric functions of the roots:

a; = (_1)n—i Z Hxl.

Jc{1,...n} leJd

#JI=n—1i
If v(zg) < v(xgy1), we have that v(xy - - x) < v(zy, - -z, ) for every subset {i1, ...}
of k elements different from {1,...,k}. Thus, we have that v(a,—x) = v(z1---x). On
the other hand, if v(x) = v(zk41), we can only affirm that v(zy - zg) < v(wi, - - x4,)
and the equality hold, for example, for the set {1,...,k — 1,k + 1}. In this case
v(ap—g) > v(zy - 2)).

As v(zp—;) < v(2p—it1) and v(zp—;) < v(Tp—j41), then v(a;) = v(xy - xy—;) and

v(a;) =v(z1 - Tp—i) = 0@ Tp—y) + (§ — ) v(2n—4),

from this,
v(az) — v(ai)
j—i
If i < k < j, then v(ag) > v(xy -+ xp_t) = v(a;) — (k —i)v(z;), hence

= —v(xp—;).

o) —vle) o o) —vfa),

k—i j—i

If £ <, v(ag) > v(xy - xpp) = v(x1- Tp_i) + V(Tp—ig1 - Tp_p) > v(a;) + (i —
k)v(zyn—;) it happens that

v(a;) —v(ag)
i —k

v(ag) = v(ai)

< —v(Tp_g) =
V(XTp—i) =

Finally, if &£ > j, v(aj) = v(@1 - 2p—j) = v(@1 - Tpop) +0( Tp—kt1 - Tn—j) < v(ag)+
(k _j)v('rn—j+1)7 Y

v(ay) — v(ai)
j—i

v(ax) — v(a;)

kL — ] > 77)(:’5”7]'4’1) =
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Thus, every block of roots of the polynomial corresponds with a segment whose
vertices are consecutive points of the Newton diagram of f. Furthermore, the valuation
of these roots is the opposite of the slope of the segment and the number of roots with
this valuation is exactly the integer length of the segment, (j — ). As f has n roots
and the Newton diagram has length n, there is a bijection between the valuation of the
roots and the slopes of the Newton diagram. Once we know the valuation of the roots,
the next step is to determine the principal terms of the roots.

Proposition 1.9. Let f =>" ajzt be a monic polynomial such that ag # 0. Let
(t,v(as)), (4,v(aj)), j > i be two consecutive points of the Newton diagram of f. Let

v = —iji:?ai), g = f(xt¥). Let w be the minimal valuation of the coefficients of g
and let g be the residual polynomial of t~g mod m. Then, the degree of g is j and_its
order is i. Let [by—j11tY, ..., by_it"] be the list of principal terms of the roots of f of
valuation v counted with multiplicity. Then, the list of nonzero roots of g counted with

multiplicities is [bp—jy1,- .., bn—i.

Proof. f =[](x — xx), where v(zy) < v(zp41). Let Pe(xy) = byt

n n—j n—i n
flat?) H xt’ —xp) = H(xt” — 1) X H (xt’ —x7) % H (xt’ — )
=1 =1 l=n—j+1 l=n—it+1
n—j n—i n
=" x H(w —xtY) X H (x —xt™") X H (x —xyt™")
=1 l=n—j+1 l=n—i+1

Once normalized by ¢t~%, the minimum of the valuations of the coefficients is zero. so
we can compute the residual polynomial.

n—i

g(z) = Pc(t™™ f(xt?)) HPC —x7) H (x — Pc(xy)) H x

l=n—j+1 l=n—i+1

From this expression, it is deduced that the degree of g is j, its order is ¢ and its roots,
counted with multiplicities are Pc(x;), n —j +1 <1 < n —i. That is, the principal
coeflicients of the roots of f of valuation v. O

1.2 Tropical Varieties

Definition 1.10. Let K be an algebraically closed field with a rank one valuation
v : K — I'. Without loss of generality, we may suppose that Q C I' C R. The
tropicalization map is the opposite of the valuation

T: K — T=T
x — T(z)=—-v(z),

Clearly T'(zy) = T'(z) + T(y), and T(x + y) = max{T(x),T(y)} whenever T'(x) #
T'(y). This provides the set T with the algebraic structure of idempotent semifield with
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the operations of tropical addition “a+b" = max{a, b} and tropical product “ab” = a+b.
These operations are associative, commutative and distributive, “a(b+c¢)” = “ab+ac”.
Furthermore, every element a has a multiplicative inverse (the additive inverse —a as
an element of the group I' and 0 is the neutral element for tropical multiplication.).

As in the valuation case, we may define a value 7(0) = —oo. This will be the
identity element of the tropical addition. However, we will mainly work with finite
elements of T.

The affine tropical space is the set T™, each element of it is represented by a tuple

(a1,...,ay). Every element can also be represented by a projective tuple, that is a
(n+ 1)—tuple [by : ... : byy1] with the identification
[bl : ...:bn+1] ~ [a1 . ...:an+1]

if and only if there is an element ¢ € T such that b; = “ca;”, 1 <i < n+1. The tropical
homogenization and dehomogenization with respect to the ¢ — th coordinate is made

by:
(b1 —biyba—bjy .. bim1 —biybig1 —biy o g1 —b) = [br . i bi—g i bt bigy ... by

where the minus sign on the left denotes the subtraction in the group I' that correspond
with tropical division. Note that, as long as we are working in T", —oo is never a valid
coordinate, so there is a bijection between the affine and projective representations.
We refer to [RGSTO05] for this projective notation of points.

Definition 1.11. Let V be the variety in the algebraic torus (K*)" defined by a finite
set of Laurent polynomials

7 rs —1 -1
fi,oo s fm €Kz, ..o zp, 2y, 2y,

V={ze®)"|filz) == fm(z) = 0}.
The affine tropical variety T (]NJ) C T™ is the image of v applying 1" componentwise.

T: (K*)™ — T
(21, . T Tn) (T(xl),N.. LT ()

1% — W)=V
That is, our geometric objects are the images of algebraic varieties in the torus. They
are essentially the possible valuations of the points in %

The map T will be called projection or tropicalization. Given a tropical variety
U, every algebraic variety projecting onto U (that always exists by definition) will be
called a lift of U and will be denoted by U. This lift is not unique.

The definition uses Laurent polynomials to define the varieties. But V is invariant
under multiplication of the polynomials ﬁ by a monomial. So, if necessary, we may
always suppose that f; is always a polynomial and that, for each variable x;, the order
of ﬁ with respect to x; is zero.
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1.2.1 Tropical Hypersurfaces

In this Section we provide a self contained notion of tropical hypersurface that does not
need a specific projection T from a valued field. This definition is somehow necessary
if we want to work with tropical objects on their own.

A Laurent tropical polynomial in n variables is a formal sum of monomials

“Zai:ﬁf .. .xif”, a; €T
el
where [ is the support of the polynomial, that is a finite subset in Z". We may provide
the set T[z1,...,z,] of polynomials with the structure of idempotent semiring, using
tropical addition and product. The evaluation of the polynomial in a point (b1, ..., b,)
is the element

« Z aiblf b = T?SIX{C% +i1b1 4+ ... +inby} € T.
i€l
So every tropical polynomial is a convex piecewise affine function. Note that 0 is the
multiplicative identity, so the monomials whose coeflicient is 0 cannot be erased. The
coefficient of a polynomial necessary in order to allow erasing should be —oo which
does not belong to T.

Definition 1.12. Let f € T[zy,...,x,] be a tropical polynomial. The set of zeroes of
f is the set of points b where the value f(b) is attained for at least two different indices
1,7€l
V()= | {beTai+irtby + ... +inby = aj + jibi + ...+ jubn = f(b)}
i#jel

U o eTIVE aitithi+...+inbn = aj+jibi+...+jnbn > ar +kabi + ...+ knbn}
itjel
Equivalently, if we consider the piecewise affine function f : R® — R and W is the

corner locus of this function (the set of points where f is not differentiable), then
V(f)=WnT"

The set of zeroes of a tropical polynomial is a polyhedral complex of pure dimension
n — 1. The relevant fact is that it coincides with the notion of tropical hypersurface.

Theorem 1.13 (Kapranov’s Theorem). Let f = Yier @zl ... xl be a polynomial
in Klz1,...,zn). Let f = “3 ;T (@)} ...xin" be the tropical polynomial whose
coefficients are the projection of the coefficients of f Then T({f: 0}) is exactly the
set of zeroes of f.

Proof. See for example [EKLO04]. O

This Theorem only describes the possible projections of the points belonging to an
algebraic hypersurface. For the applications, we will need more information. Namely,
we will need the possible principal terms of the points in a hypersurface. We introduce
the following notions.
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Definition 1.14. Let f~’: Y ier a;z° € K[z] be a polynomial of support I in n variables
T = X1, Ty, 0= 01,0, Po(@) = ag, T(a;) = a;, f(z) = “Y i a;x'. Let
b= (b1,...,b,) € T" be a tropical point. Let

folzr, ... xn) = Z izt = Pe(f(zt™, ..., 2.t "))
i€l
ai+i1b1+‘"+inbn:f(b17---7bn)
be the residual polynomial over b. This is a non zero polynomial in k[z1,...,z,].
That is, we rewrite the polynomial as f(azlt_bl, o Tt T0) as

Fl@t™®) = fo(z)t= IO 4 o(t= 7O,

Remark 1.15. By construction, the monomials of ﬁ, correspond with the indices ¢
where f(b) is attained. Hence, the following assertions are equivalent:

e beT(f).
° fb contains at least two monomials.
e There is a root of f, in (k*).

With the notion of residual polynomial, we can derive what the possible principal
terms of the points in a given hypersurface are.

Theorem 1.16. Let f =S a2t € K[zy,..., 1] be a polynomial. Then, given

i€l

(M1, ym) € (K", (b1,...,b,) € T,

there is a point b = (by,...,by) € V(f) with Pc(b;) = ’yj,T(gj) = b; if and only if
(b1,...,bn) € T(f) and fy(71,-..,m) =0.

Proof. The only if condition is trivial. The if condition is done by induction on n, for
n = 1 this is the result proved in Proposition 1.9. Now assume n > 1 and that the
result holds for less than n variables. Fix a system of representatives (51, e ,En) of
(71,---,7n), that is take b; any element of valuation 0 whose residual class is ~;. If
f(fl;t*b) = 0, we are done. If there is a variable x; that does not appear in ﬁ, we
evaluate the variable x; of f in Eit_bi without changing the hypothesis. So, without

loss of generality, all the variables z1,...,z, appear in f;. Here, we distinguish two
cases:

e If there is an index j, 1 < j < n, such that ﬁ(wl,...,’yj,...,xn) # 0 then,
reordering the variables if necessary, we may take ;7 = 1. Let us write b = (b1,V'),
r = (x1,2'), v = (71,7'). The conditions needed to apply induction over g(z') =

f(bit=b1 2') are:

v = (bg,...,bn) ET(Q); gb’(727~--7'}’n) =0.
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It is possible that g # f(b1,z), as showed in the Example 1.17. However, as g(z') =
F(byt=b1,2), it is verified that

g(ac t_b ) f(blt_bl 't v ) fb(’)/la l’l)t_f(b) + O(t_f(b)).

So g (') = ﬁ('yl, v') = 0 and it is verified the second condition of Remark 1.15. By
the equivalence there, 7/ € (k*)"~! implies that (b,...,b,) € T(g) as wanted. That
is, with this substitution we can apply induction hypothesis and find the desired root.

e Suppose now that, for each 7, 1 < i < n, fb(:zl, e sYis -y Zp) = 0. In order to
follow with the induction step, recall that f(zt=?) = ft=/® 4 o(t 7)), Write

J?b:(ﬂfl*71)’6@2*%)“'(%*%)Q(Sﬂla--w n);q(11, T )7’50

Making here the same substitution b1 as in the previous case would destroy
the structure needed to ensure induction. To avoid this, let A = (z1 — btk (g —
Dot~ b2y (2, — bt~ bnYG(2at2, . .. 2ntP) # 0, where g(x2,...,r,) is any polynomial
such that ¢ = q(z2,...,2,)t° 4+ o(t"). Note that hy = f and that h(bit~", ') = 0.
Hence f(xt~t) — h(mt ) = ht=FOFe L o0+ 0 < ec T, h € klzy,...,x,). We
substitute 21 by by 4 t2¢ instead. In this way

Fort0, 2ty — byt ™, 2/t 7YY = iy, 2 )t IO T 4 o F )+

but, as
R((by + t28)t 70 2/t ™) = 15 (w9 — byt %2) -+ (n — bt ") G((b1 + 27), @, . . ., @),
moreover ¢((by + t27),#') = q(v1, 2')t° + o(t2), so h(bit™0, 2/t7V)y =
= flont ™, 2t )y =t T OFE (g — y9) - (@ — )a(m,2) + ot IO ),
Thus, let §(z') = f((by + t28 )t~ 2') and let us write as before b = (by, ..., by), 7 =
(72, -+,7Vn). From the previous computations, gy (7') = 0. Hence, (bo,...,b,) € (g)
and we can apply induction. O
Example 1.17. Take the polynomial
]7: —3t2 + 3tz — t2y + toy — Byt + (¢ +O)yt + 2°

over the field of Puiseux series,

f=(=2) + (~D)a+ (<2 + (~Day + (—3)ay* + (~4)y' + 25 =

=max{—-2,—-1+z,-2+y,—1+z+y,—3+x+4y,—4+4y,0+ 5z}

Let b = (—1,0) € 7(f), flte,y) = (=3 + 3z —y + xy)t2 + o(t*). Thus, f = —3 + 3z —
y + xy, fp(1,—3) = 0. By Theorem 1.16, there is a root in (K*)? whose principal term
is (t,—3).
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It happens that ﬁ,(l,y) = ﬁ(m, —3) = 0, so we are in the second case of the
Theorem. Perform the substitution z =t 4 ¢2 in f.

Flt+t2y) = gly) = 3t3 + 1% + 5t5 + 107 + 105 + 5¢° + 10 + 13y,

g(y) = (=3) + (=3)y. In this case g(y) # f(—1,y) = (=2) + (=2)y + (—4)y*, but even
now, as proved in the Theorem, 0 € 7(g). Now we are in the conditions of classical
Newton-Puiseux method to compute a root of g(y) whose principal term is —3, this
point is:

(z,y) = (t+ 3, =3 —t2 — 5t> — 10t* — 10> — 5¢5 — ¢7)

Using these concepts, we can make abstraction and work with tropical hypersurfaces
without having a concrete lift. For general varieties, this is not so easy. Even if abstract
tropical varieties can be defined without the need of an ambient space, our objective
is to work in the plane. So we are always working in a context of hypersurfaces and
points and we may define a planar tropical curve as the set of zeroes of a bivariate
tropical polynomial.

As in the algebraic torus case, multiplying a tropical polynomial by a monomial does
not change the set of zeroes of f = “> . ; a;z?”. Thus, multiplying by an appropriate
monomial, we can always assume that our polynomials are not Laurent polynomials,
that is, every exponent in the variables is non negative. Moreover, we can suppose that
for each variable x; there is an index ¢ such that z; appear with exponent 0 in the
monomial a;z’.

Another aspect we have to take into account is that different tropical polynomi-
als may yield the same tropical hypersurface. For example, take the support I =
{(0,0),(2,0),(0,2),(1,0)} and the set of polynomials “0+ az + 022+ 0y?” where a < 0.
All of them define the same tropical curve in the plane, this is the set of three rays
emerging from the point (0,0) and directions (—1,0),(0,—1),(1,1). So, in contrast
with the algebraic case, it is not true that different Laurent polynomials define the
same hypersurface if and only if they differ by the multiplication of a monomial. The
previous variety is also defined by the polynomial “0 + 0z2 4+ 0y?”. So, tropical poly-
nomials with different support can also define the same hypersurface. Next, we define
a notion of a canonical polynomial of given support defining a tropical hypersurface V.
The approach chosen is using concave polynomialsas in [Mik05].

Definition 1.18. To a given tropical polynomial f = “3"._; a;x?”, we may associate

the function ¢ : I C Z™ — T, given by (i) = a;. We say that ¢ is concave if for any
(possibly non distinct) 4o, ...,i, € I C Z™ and any to,...,t, > 0 with Y ;¢ = 1
and » ;. trix € I we have

@ ( > tkik) > trp(bi),
k=0 k=0

note that necessarily ¢ € Q C IT', so the sum on the right-hand side is well defined. In
this case, we say that f is a concave polynomial.
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Fixed the support I and a tropical hypersurface V defined by a polynomial g of
support I, there is (up to a multiplicative constant) a unique concave tropical poly-
nomial f of support I such that 7(f) = V. Sometimes, it will be convenient to take
precisely, the concave polynomial defining a hypersurface.

1.2.2 The Newton Polytope

Let I be the support of a tropical polynomial f, the convex hull A = A(I) of I in R"
is the Newton Polytope of f. This object is strongly connected with the set of zeroes
of f. Every tropical polynomial f defines a regular subdivision of its Newton polytope
A. The topological closure of 7(f) in R™ has naturally a structure of piecewise affine
polyhedral complex. This complex is dual to the subdivision induced to A. To achieve
this duality we have first to define the subdivision of A.

Let A’ be the convex hull of the set {(i,t)]i € I,t < a;} € R*""!. The upper convex
hull of A’, that is, the set of boundary maximal cells whose outgoing normal vector
has its last coordinate positive, projects onto A by deleting the last coordinate. This
projection defines the regular subdivision of A associated to f (cf. [Mik05]).

Proposition 1.19. The subdivision of A associated to f is dual to the set of zeroes of
f. There is a bijection between the cells of Subdiv(A) and the cells of T(f) such that:

e Every k-dimensional cell A of A corresponds to a cell VA of T(f) of dimension
n — k such that the affine linear space generated by V™ is orthogonal to A. (In
the case where k = 0, the corresponding dual cell is a connected component of

R\ T(f))
o If Ay # Ay, then VAN VA2 =

e If Ay C Ay, then VA2 c VAL

e 7(f)= U VA where the union is disjoint.
0£dim(A)

o VA is not bounded if and only if A C OA.

From this, we deduce that, given a fixed support I, there are finitely many combi-
natorial types of tropical curves with support I. These different types are in bijection
with the different regular subdivisions of A.

One of the first problems encountered in Tropical Geometry is that the Projective
Geometry intuition is no longer valid. If we define a tropical line as the set of zeroes
of a polynomial “ax + by + ¢”, then two different lines always intersect at least in a
point. The problem is that sometimes they intersect in more than one point. The usual
answer to deal with this problem is using the notion of stable intersection.

Let Cy, Cy be the set of zeroes of two tropical polynomials f and g respectively.
Let P be the intersection of the curves, P = Cy N Cy. It is possible that P can
not be lifted to an algebraic variety P. We want to associate, to each ¢ € P an
intersection multiplicity. We will follow the notions of [RGST05] and we will compare
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them with the subdivisions of the associated Newton polygons of the curves in terms
of mixed volumes. See [Stu02] to precise the comparison between mixed volumes and
intersection of algebraic curves.

Let Crqy = CyUCy. It is easy to check that the union of the two tropical curves
is the set of zeroes of the product “fg”. The Newton polygon Ay, of Cy U Cy is the
Minkowski sum of Ay and A,. That is:

Apg={z+y|zeApyec Ay}

The subdivision of Ay, dual to Cy, is a subdivision induced by the subdivisions of
Ay, Ay. More concretely, let g be a point in Cyg, let {i1,...,i,} be the monomials
of f where f(q) is attained and let {ji,...,jm} be the monomials of g where g(g) is
attained. Then n > 2 or m > 2. The monomials where “fg” attains it maximum
are {i,js|1 < r <n,1 <s < m}. The Newton polygon of these monomials is the
Minkowski sum of the Newton polygons of {i1,...,i,} and {ji,...,Jm}, each one of
these Newton polygons is the cell dual to the cell containing ¢ in Afy, Ay and A,
respectively. This process covers every cell of dimension 1 and 2 of Ay,. The zero
dimensional cells correspond to points g belong neither to Cy nor to Cy. Let 4, j be
the monomials of f and g where the value at ¢ is attained. Then the monomial of
“fg” where (“fg”)(q) is attained is ij. To sum up, every cell of A, in naturally the
Minkowski sum of a cell u of f and a cell v of g. The possible combination of dimensions
(dim(u), dim(v), dim(u 4 v)) are:

(0,0,0), these cells do not correspond to points of Cy,.

(1,0,1), these are edges of C, that correspond to a maximal segment contained
in an edge of Cy that does not intersect C.

e (2,0,2), correspond to the vertices of C, that are vertices of Cy that do not
belong to Cj.

e (1,1,2), this combination defines a vertex of C't, which is the unique intersection
point of an edge of C'y with an edge of C,.

e (1,1,1) are the edges of Cy, that are the infinite intersection of an edge of Cf
and an edge of (.

e (1,2,2) corresponds with the vertices of C'y4 that are a vertex of C, belonging to
an edge of Cf.

® (2,2,2) This is a vertex of C't, which is a common vertex of Cy and Cy.

and the obvious symmetric cases (0,1,1), (0,2,2) and (2,1,2).

If the relative position of Cy, Uy is generic, then Cf, cannot contain any cell of
type (1,1,1), (1,2,2) and (2,2,2). That is, the intersection points ¢ of C¢ and Cj are
always the unique intersection point of an edge of Cy and an edge of Cy. This is the
transversal case. The definition of intersection multiplicity, as presented in [RGST05]
for these cells (1,1,2) is the following:
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Definition 1.20. Let ¢ be an intersection point of two tropical curves C; and Cj.
Suppose that ¢ is the unique intersection line of an edge r of C'y and an edge s of C,.
Let 7 the primitive vector in Z? of the support line of r. Let 5 be the corresponding
primitive vector of s. Let u be the dual edge of r in Ay and let v be the dual edge of
s in Ay, we call m, = #(uNZ?) — 1 and m, = #(0N Z?) — 1 the weight of the edges
r and s respectively. The intersection multiplicity is

7) 7)

X

mult(q) = |mymy | =7 Y
Sz Sy

the absolute value of the determinant of the primitive vectors times the weight of the
edges.

If the curves are not in a generic relative position, let us perform a infinitesimal
translation in C in a generic direction, every cell of Ay, of type (0,0,0), (1,0,1),
(2,0,2), (1,1,2) stays invariant. The cells of type (1,1, 1) are subdivided into cells of
type (0,0,0) and (0,1,1). That is, if two edges intersect in infinitely many points, after
the translation, every intersection point will disappear. Note that the mixed volume of
the cells of type (1, 1, 1) is always 0, so these points are always of multiplicity zero (they
are not proper intersection points in the sense of perturbations). If ¢ is an intersection
point corresponding to a cell of type (2,1,2) or (2,2,2), after the perturbation, this
cell is subdivided into cells of type (0,0,0), (1,0,1), (1,1,2), (2,0,2). That is, no
intersection point is a vertex of f or g. However, some transversal intersection points
appear instead (of type (1,1,2)) in a neighbourhood of q. The intersection multiplicity of
q is, in this case, the sum of the intersection multiplicities of the transversal intersection
points.

Now we provide the notion of stable intersection of curves (See [RGST05]).

Definition 1.21. Let Cy, Cy be two tropical curves. Let C’}, Cyg be two small generic
perturbations of C'y, C, such that their intersection is finite. The stable intersection of
Cy and Cy is the limit set of intersection points of the perturbed curves lime_.o(C3NCY).

From the previous comments it is clear that

Proposition 1.22. Let Cy, Cy be two tropical curves, then the stable intersection of
Cy and Cy is the set of intersection points with positive multiplicity.

This stable intersection has very nice properties. From the definition, it follows
that it is continuous under small perturbations on the curves. Moreover, it verifies a
Berstein-Koushnirenko Theorem for tropical curves.

Theorem 1.23. Let Cy, Cy be two tropical curves of Newton Polygons Ay, Ag. Then
the number of stable intersection points, counted with multiplicity is the mized volumes
of the Newton polygons of the curves

Y mlg) = M(Af, Ay) = vol(Af + Ag) — vol(As) — vol(Ay)
qGCfﬁsth
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Proof. See [RGSTO05] O

In particular, we have the following alternative definition of intersection multiplicity
for plane curves:

Corollary 1.24. Let f, g be two tropical polynomials of Newton Polygons Ay, A,
respectively. Let ¢ € T(f) N7 (g) be an intersection point. Let Ay, Ay be the cells of
Subdiv(Ay), Subdiv(Ag) dual to the cell in the curve containing q respectively, then,
the tropical intersection multiplicity of q is:

mult(q) = M(Ay, Ay) = vol(Af + Ay) — vol(Ay) — vol(Ay).

Proof. From the classification of intersection points, ¢ is an intersection point of mul-
tiplicity zero if and only if it belongs to a cell of type (1,1,1) in Cf,. In this case
M(Ag,Ay) = vol(Af + Ag) —vol(Ay) — vol(Ay) = 0, because an edge have no area. If
g is a stable intersection point, let f = “ ZieAf a;x Yy’ g = “ ZjeAg bjxlty’2” | let
fo = “Dic A @', gg = ") ic A, bj2?” be truncated polynomials. It follows from
the definition that the intersection multiplicity of ¢ only depends in the behaviour or
the mixed cell Ay + Ay in the dual subdivision of Ay,. That is, the intersection multi-
plicity of ¢ as intersection of C'y and Cy equals the intersection multiplicity of ¢ as an
intersection point of 7(f,;) and 7 (gq). But, by construction, the unique stable inter-
section point of 7(f,) and 7 (gq) is ¢ itself. Hence, by Theorem 1.23, the intersection
multiplicity of ¢ is

M(Af,Ay) =vol(Af + Ay) —vol(Ag) — vol(Ay).
0

This stability approach to solve the intersection problem behaves reasonably well:
two different lines always intersect in only one stable intersection point. Even in the
most degenerate case that both lines are the same there is still only one stable inter-
section point. Analogously we would like to define a unique line through two different
points. More generally, given a support I = {i,...,i5} and 6 — 1 sufficiently generic
points in the algebraic case, there is only one curve of support I passing through them.
So, given § — 1 points, we would like to define the tropical curve of support I passing
through them. Again, this problem is not well defined, as long as there are sets of § — 1
points such that there are infinitely many curves of support I. Disallowing these sets
of points as a valid choice to define a curve of support I is not well suited with the
kind of problems we will face in the following Chapters. But, again, among the family
of curves of support I passing through a set of points, there is always a distinguished
curve that can be continuously deformed as we perturb our original set of points. This
yields the notion of stable curve through a set of points.

Let I = {i1,...,is} be a support, iy = (i},i3) and P = {q1,...,q5-1} a set of
tropical points. We may identify the polynomials of support I with the affine tropical
space T°~! by the correspondence

« 19 . . .
g a;x"” = [ai, iyt g

icl
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Thus, we are identifying the polynomials that only differ by a multiplicative constant
c € T. Each point ¢; = (qjl-, q]2) defines a hyperplane in T™ of equation
Hoy =T (“yi, () (@) + .+ 135 (g)) 5 (D)5 7).

Then g; belong to 7 (f) if and only if [a;, : ... : a;;] belong to the variety H,,. Then,
the intersection of the § — 1 hyperplanes Hy,, ..., Hy, , is the curve passing through
the set of points. As in the case of the intersection of curves, the intersection of § — 1
hyperplanes on T°~! may contain more than one point. Still (cf. [RGSTO05]) there is
only one distinguished point that is stable under perturbations of the hyperplanes and
correspond to a curve g of support I that passes through the set of points and can be
continuously deformed by small translations of the points. Hence, we can define:

Definition 1.25. Let [ be a support. § = 6(I). Let ¢1,...,gs—1 be tropical points.
Let Hy, = T(“ yil(qjl.)’} (q?)i% + .o+ Yig (q})irli(q]z)i? ”) be the associated hyperplanes

in the space T°~!. Let [a;, : ... : a;;] be the stable intersection of the hyperplanes
Hy,...,Hy . The curve defined by “3 . ; aixilyiz” is called the stable curve of
support I passing through {q1, ..., ¢s—1}. Moreover, this defining polynomial is concave

in the sense of Definition 1.18.

However, this stable approach is not free from problems, let a = (0,0), b = (—=2,1),
¢ = (—1,3) be three points in the tropical plane. Let I; be the stable line (support
{(0,0),(1,0),(0,1)}) through a and b, and let Iy be the stable line through a, ¢. In
fact {1 is the only line through a and b and [l5 is the unique line through a and c. Let
p be the stable intersection point of Iy, l3. Then, in this case, I} = “lx + Oy + 17,
lo = “3z + 0y + 3" and, finally, p = (0,1) # a. But, in Projective geometry, if a, b,,
¢ are three non collinear points, then Iy, lo are well defined and their intersection is
exactly a. So there are no solution for the problem:

Are there four points a, b, ¢, p and two lines l1, ly such that

abpel, a6pel,
T(@) = a,T(b) = b,T(@) = ¢, T(h) = 1, T(la) = I, T(p) = p?

This is an example of a tropical realization of an incidence structure that is not the
projection of an algebraic realization of the same incidence structure. Contrary to
the previous example, the problem here cannot be avoided by perturbations of the
elements a, b, c (because 1,12, p are defined from them). This is the kind of problems
we are trying to solve in next Section.

1.3 Incidence Structures

The classical definition of incidence structure (see [Dem68]) is used to formalize finite
geometries. Intuitively, an incidence structure is a set of points, a set of lines and a
set of incidence relations of type point p belongs to line L. In our context, we are not
only dealing with lines, but with arbitrary curves in the plane. Still we will control
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Figure 1.1: A realization of Desargues Theorem

which curves are acepted in an incidence structure. A first approach could be fixing
the Newton polygon of the curves. However, without further effort in the proofs, we
can fix the support of the curves. Hence, we introduce the notion of support in the
plane.

Definition 1.26. The support of a hypersurface is a finite subset of Z™ modulo a
translation by an integer vector in Z". That is, let P/(Z") be the set of finite subsets
of Z" and let ~ be the relation A ~ B if and only if there is an integer vector v € Z"
such that A = v + B. Then, the set of supports of Z™ is P (Z") / ~. Given a support
I C7Z" § = 6(I) denotes the number of elements of I. A = cv(I), the convex hull
of I in R™, is the Newton polytope of the hypersurface. Note that ¢ is invariant by
translations, so it is well defined and A is well defined up to translations.

1.3.1 Abstract Formulation

Definition 1.27. A finite incidence structure is a tuple G = (p, B, T, Sup), where
pNB =0, TCpxB

Sup : B —>Pf(22)/~

The elements of p are called points, the elements of 2B are blocks or curves and the
elements of J are flags or incidence relations. If x € B, Sup(x) Pz / ~ is the
support of x.

Every incidence structure G = (p,*B, T, Sup) is naturally identifiable with a labelled
graph, the Levi graph of the incidence structure. This is the bipartite graph whose
vertices are the elements of p U B and its edges are the elements of J. Each element
x € B has as label Sup(z). These two notions of incidence structures will be used
indistinctly.
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Figure 1.2: The graph of Desargues configuration

Example 1.28. Desargues Theorem states that two triangles are in perspective with
respect to a point if and only they are perspective with respect to a line. Desargues
configuration consists in ten points and ten lines. Its incidence structure is:

p = {A? B) C7 A’I7 Bl? Cl? P7 Q? R7 0}7

B = {A4A'0, BB'O,CC'O, ABP,A'B'P, ACQ, A'C'Q, BCR, B'C'R, PQRY},
J = {(X1, X1 X2X3), (X2, X1 X2X3), (X3, X1X2X3) | X1X2X3 € B}.

As every curve in the structure is a line, the support map is constant

Sup(’B) = {(07 0)7 (17 0)7 (07 1)}

Figure 1.1 shows an instance of Desargues configuration. Figure 1.2 represents the
incidence graph G of Desargues configuration.

1.3.2 Tropical and Algebraic Realization

Definition 1.29. Let G = (p,B, T, Sup) be an incidence structure. Denote by ny, ng
the cardinality of p, 9B respectively. For each y € B, let §, = §(Sup(y)) the cardinal of
the associated support. The algebraic support of G is the space

Se = H(K*)2 x H (K*>6y71.
TEP yeB
The tropical support of G is the space

St =T < [T "

TEP yeB
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We identify the space (K*)%~1 (resp. T%~1) with the space of algebraic curves (resp.
tropical curves) of support Sup(y) (dehomogenizing the equation of the curve by a
monomial). The dimension of S is 2ny + -, cgs(dy — 1).

An algebraic realization (resp. tropical realization) of G is a point

(@1, Ty Y1, - Yne) € S (SG)

such that, for every edge (z;,y;) € J we have that z; € y;, identifying y; with the plane
(tropical) curve it represents. The set of algebraic realizations of G is an algebraic set
R¢ of S (resp. RL C SE).

A first problem we face at this level is that, in general, T(Rg) # RL. This yields
the following questions.

e When does T(R¢) equal RL?

e Given, r € R.,, determine if z belongs to T(R¢). In the affirmative case, compute
a preimage T in Rq.

In particular, we try to answer these questions using the graph information of G.

This question could be approached using the notion of tropical basis. It would
consist in taking the equations defining the variety Rg. A tropical basis can be com-
puted from these defining equations (cf. [BJST07]), the projection of this basis is a set
defining T'(R¢), so it would only rest to check if this basis defines R}, or not. This
approach does not answer the problem of computing a preimage.

An alternative is to use the graph structure of G' and, sometimes, we will not work
with the hole variety Rg, but with a meaningful subset of it. This restriction in the
set RY, will be clearer in the context of geometric constructions in Chapter 4. For the
moment, we can derive some information from the graph structure alone.

1.4 Lifting of an Acyclic Graph

The main result in this Chapter is a complete solution when the incidence graph G is
acyclic. In this case, every tropical realization of G can be lifted to the algebraic case.

Theorem 1.30. Let G be an incidence structure such that its associated graph is
acyclic. Then, Rg = RL,. That is, for every tropical realization = of G, there is an
algebraic realization T of G that projects correctly T(Z) = x.

Proof. Let G be the acyclic incidence graph. Reasoning on each connected component
of G, we suppose, without loss of generality that G is a tree. Let xy be any node of
G and let 7y be any lift of = to the algebraic context. The rest of the nodes can be
inductively lifted from this one. Let y be an adjacent node to a node x that has already
been lifted to z. We distinguish two cases:

ez € B and y € p. In this case = is a tropical curve,  is an algebraic curve
projecting onto x and y is point in x. These are the conditions of Theorem 1.16.
Thus, starting from y we can compute a point i belonging to Z and projecting
onto y.
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e x is a point and y is a curve of support I = Sup(y). y is a tropical curve of
equation “) 7, ; a;z"”, with variables z = (21, 22). The point T defines, in the
configuration space of ¥ the hypersurface H, of curves of support I containing 7.
Its equation is ) ;. ; a;x*, where the unknowns are the variables a;. Moreover y
belongs to the tropicalization of H,. Thus, applying again Theorem 1.16, it can
be computed a lift § of y passing through .

O]

With this Theorem we present a partial answer to the question proposed. How-
ever, acyclic graphs are rather unattractive, because they cannot model many common
situations. Even they cannot deal with the intersection of two conics, because there
will be four intersection points (counted with multiplicities) connected to both curves
and, hence a cycle in G. In next Chapters we will present some tools and a deeper
understanding of the stable intersection of curves and the stable curve passing through
a set of points. With these tools and the notion of geometric construction in Chapter 4
we will be able to extend the answer of Theorem 1.30



Chapter 2

Cramer’s Rule and Points in
General Position

Suppose given a support I = {i1,...,is}, i = (Zjl,z?), a set of 6 — 1 tropical points
P ={q,...,q5-1} and a lift P = {¢1,...,g5-1} of the points in P to the algebraic
torus (K*)2. Let C be the stable tropical curve of support I passing through P and let
C be an algebraic curve of support I passing through P. This Chapter deals with the
problem of determining the relationship of C' and C~', paying special attention to the
characterisation of sufficient conditions on the points P that ensure that C projects
onto C.

Let us state the problem. Let I be a support, let ¢; = (¢}, ¢?) € T?, ¢; = (¢},¢?) €
(K*)2, be tropical and algebraic points. The equations of a tropical and algebraic curve

of support I are:
C =« Z aileyﬂn C = Zail,zlyz?
icl icl
If moreover we impose that g; € C' (resp q; € 6), then the coefficients a; (resp. a;)
verify that:

(aiss i) € T(*D2i(a))™ (@)) 1<j<0-1 (2.1)
i€l
S a@) @ =0, 1<j<i-1. (2.2)
el

The coefficients a; and a; of the curves C and C are the solution of a linear system of
equations in their respective framework. Hence, the comparison of the curves T(a ) and
C can be given in terms of the comparison of two linear system of equations. Namely,
the coefficients of the algebraic curve C can be computed solving an homogeneous
linear system of 6 — 1 equations in § unknowns. In the generic case, the homogeneous
solution [a;, : ... : ;] is unique. It is known (see [RGSTO05]) that a tropical version of
Cramer’s rule can also be used to compute the coordinate vector [a;, : ... : a;;] of the

stable tropical curve C. With this notation, the problem is to determine whether

[T(a“) St T(&za)] = [ail PR aié].
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Although it is always the case that T'(C') is a tropical curve of support I passing through
P, it may happen that T(C') # C. The contribution in this Chapter is a description
of sufficient conditions for the equality T(é) = (. These sufficient conditions are
expressed in terms of the principal coefficient of the coefficients a; in k* of a polynomial
of support I defining C. Besides, we will prove that, if the principal coefficients of
the points in P are generic in (k*)?, then C is a curve described as the zero set of
a polynomial of support I and residually generic coefficients that projects onto C.
Related to this problem, it will also be proposed a notion of families of tropical points
in general position inside a tropical curve.

2.1 Matrices, Determinants and Pseudodeterminants
In this Section we present the basics relating algebraic and tropical determinants.

Definition 2.1. A tropical matriz of dimension n X m is a matrix with coefficients in
T. The tropical determinant of a square matrix is defined as:

11 ... Tin

== 3 ot Tt = o)+ T
xnl . xnn ; O’ESn

where S, is the permutation group of n elements. A square tropical matrix is called
singular if the value of its tropical determinant is attained for at least two different
permutations ¢ and 7. In other case it is called regular.

In the algebraic case, if A = (aij) is a n x n + 1 matrix defining a determined ho-
mogeneous system of equations, let A denote the matrix obtaining from A by deleting
its i-th column. Then

Y] —[A2] s (—1)n| AT+

is the unique projective solution of the system. In [RGSTO05], it is proved that the same
fact happens with Cramer’s rule and the stable tropical curve passing through a set of
tropical points. More concretely

Theorem 2.2. Let A = (a; ;) be an x n+ 1 tropical matriz, consider the hyperplanes
defined by the homogeneous equations H; = ¢ Z;Lié a;x;”. Let x be the point given by

homogeneous coordinates in T"
x=[ A [A%]p: .. |AMTY, ]

Then, x is the stable intersection of the hyperplanes Hy, ..., H,. Furthermore, x is
the unique intersection point of the hyperplanes H; if and only if each matriz |A*| is
reqular.

Next, some notation needed to state the main results is provided.



Chapter 2. Cramer’s Rule and Points in General Position 25

Definition 2.3. Let A = (a;;) be a n x n tropical matrix. Let B = (b;;) be an xn
matrix with coefficients over any ring R. Let |A|; be the tropical determinant of A.
We define:

AA(B) = Z (_1)i(a)bla(1) T bna(n)
oEY,
“alo-(l)~~~an,o'(n)”:‘A|t

the pseudodeterminant of B with respect to weight A.

This notation tries to capture the principal coefficient in k of the determinant of a
matrix with entries in K.

Lemma 2.4. Let A = (a;j) be a n x n tropical matriz, let A= (aij) be a n x n matriz
with coefficients in K such that T(A) = A and let Pc(A) = (cij) be the matriz of
principal coefficients of A. That is, ajj = oyt % + ... Then, T(|A]) = |Al; if and
only if Ag(Pc(A)) # 0. In this case Ay(Pe(A)) = Pe(|A|).

Proof. In the expansion of the determinant of A we have that, for every permutation o €
Sny T(@15(1) " ** Ono(n)) = “@loy *** Gpg(n)” - The permutations o such that ais, -+ @y (n)
is maximal are exactly the permutations where the tropical determinant is attained.
Thus, the coefficient of the term t=14l in |A| is Ay(Pe(A)). If this coefficient is not
zero, then |A| projects onto |Al;. If the coefficient is zero, then T'(JA|) > |Al; and we
cannot conclude what Pc(|A|) is. O

2.2 Residual Conditions for the Compatibility of Linear
Systems

It has been shown that the pseudodeterminant explicits the residual condition for the
compatibility of a determinant with tropicalization. Thus, computing the residual
condition provided by the pseudodeterminant on every component of a linear system
of equations provides residual conditions for the compatibility of the solution of a linear
system of equations in K with tropicalization.

Definition 2.5. Let A = (aj;) be a n x (n+1) tropical matrix. Let B = (b;;) be a
matrix with coefficients in a ring R with the same dimension as A. We denote

CramA(B) = (Sl’ ) Sn+1)

where S; = A 4i(B%) and A’ (respectively, B?) denotes the corresponding submatrix
obtained by deleting the i-th column in A (respectively, B).

In the definition, B is a n x (n+1) matrix. Each component of Cramy4(B) is a
pseudodeterminant of the matrices obtained from A and B by deleting the i-th column.
The pseudodeterminant A 4:(B?) is described by a set of permutations in the labels of
the columns, {1,...,i—1,i+1,...,n+1}. In order to have a homogeneous notation on
Cramy (B) we will describe the pseudodeterminants by the permutations of the labels
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{1,...,n+1}. The permutations o allowed in the description of the pseudodeterminant
of the submatrix B" are those such that o(n + 1) = i. With this notation, the term of
the pseudodeterminant A 4:(B?) is the term (—1)%?) [1j=1 bj0(j) and i(c) denotes the
parity of o restricted to {1,...,i—1,i+1,...,n—1}.

Lemma 2.6. Suppose we are given a system of n linear homogeneous equations in n+l
variables in the semiring T. Let A be the coefficient matriz of the system. Let A be
any matriz such that T(A) A. Let B be the matriz of principal coefficients ofA If
no element of Crama(B) vanishes, then the linear system defined by A has only one
projective solution and its tropicalization equals the stable solution [|AY; : ... : |A™ Y]

Proof. Apply Lemma 2.4 to every component of the projective solution. O

If one pseudodeterminant A 4:(B?) = 0, there is a lack of information of what the
principal coefficient of the determinant |A?| is and, more seriously, the control on the
tropicalization T'(|A?|) is lost. A careful look at these badly behaved systems yields the
following:

Proposition 2.7. Let A be a n x n+ 1 tropical matriz. Let x = [ |Aly - [A%|;: ... :
|A"FY, ] be the stable solution of the linear system of equations defined by A. Let A be
any matriz in K* projecting onto A and B = Pc(A). Let Crama(B) = (S1,...,Sn+1)-
Then:

e [f every tropical determinant |A%|; is reqular, then S; # 0, the homogeneous linear
system defined by A has only one solution T and it projects onto x, T(Z) = x.

o IfS; = 0 and there is an index ¢ such that S; # 0, then the homogeneous linear
system A has only one projective solution x, that never tropicalizes correctly:

T(Z) # x.

e IfS; =0 for all i, we do not have any information. The linear system defined
by A may be either determined or undetermined. If T is a solution of the system,
both possibilities T(z) = x and T(x) # = can occur, even if the solution T is
unique.

Proof. If A®is regular, then |A?|; = “ayj, -+ any,” is attained for only one permutation.
It follows that As(B) = bij, - -bnj, # 0 € k* for any matrix B with entries in
k*. Hence, the algebraic system is determined, because at least the i-th projective
coefficient |A?| is not zero. Moreover, in this case it will always happen that T'(|A?|) =
| A?|;. If every tropical matrix A’ is regular, then we have the first item.
For the second item, if S; = 0, then T(|AI|) < |Ad|,. It is even possible that
T(A7) = —c0. But, as S; # 0, then T(|AY]) = |A’J;, so the coefficient i can be used
to dehomogenize. If follows that 7 is well defined (because |A?| # 0), but it cannot
projects into z because they will always differ in the term j.
Finally, in the case where S; = 0 for every S we cannot decide if the system is
determined without further information. This depends on the terms of higher order of
the elements of A. For an illustrative example, let K be the field of Puiseux series, let
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000 P 111
A= (0 0 0) A= <1 1 1)
i (it L+t2 14+ Fo [(1+t 142t 143t
2 1 1 1 5 1 1 1

The three matrices Ay, AVQ, As projects into A. All of them satisfy that

Cramy(Pc(A)) = (0,0,0).

The tropical stable solution of the tropical system is the point [0 : 0 : 0]. The first
algebraic system A; is undetermined and it contains points such that £ = [1: 1 : —2]
that projects correctly onto [0 : 0 : 0] and other points such that = [1 : ¢ : —1 1] that
does not. The second system A is a determined system such that its unique solution
7 =[t2—t3: —t+13: t—1t] does not project into z. The last system A3 is a determined
one. Its solution is [—¢: 2t : —t] = [—1:2: —1], that projects correctly. O

2.3 Residual Conditions for the Tropical Compatibility of
the Curve Through a Set of Points

Before establishing the relationship of the algebraic and tropical curve, let us check
some properties of the pseudodeterminants. From Lemma 2.6, it follows that if the
entries of the matrix B are indeterminates, then no pseudodeterminant A 4(B) vanishes
and the algebraic determinant projects correctly. However, when working with the
algebraic system of equations (2.2), it may happen that the entries of the matrix B
are algebraically dependent elements. For example, if the curve is a conic agzz? +
ayyy2 + azyxy + azx + ayy + a1, and we impose that it passes through a point (b1, ba),
the terms b2, b2, biby will appear in the system of equations. These monomials are
not algebraically independent. Nevertheless, in order to apply Lemma 2.6, it is only
needed that the involved pseudodeterminants do not vanish. Now it is proved that,
if the residual coefficients (1,72) of the points (q1,g2) are indeterminates (or generic
elements), then, the pseudodeterminants are never zero. The next is a rather technical
Lemma that proves a stronger property.

Lemma 2.8. Let C; = {c},.. .,cgi}, 1 < i < r be disjoint sets of variables. Suppose
that we have F,, = {fL, ..., 71 Ck[UI_, Cil, 1 < u < n sets of polynomials in the
variables c}. Suppose also that the following properties hold:

e For a fired set F,, f., with 1 <1< n+ 1 are multihomogeneous polynomials in
the sets of variables Cy1, ..., Cysu with the same multidegree.

o Ifu+#wv then Fy, F, involve different sets of variables C;.

o In a family F,, if | # m then the monomials of f. are all different from the
monomials of f*.
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Let us construct the n x (n+1) matriz

Let A be any n x (n+1) tropical matriz. Write
S = Crama(B) = (S1,.-.,Sn+1)-
Then

1. S1,...,Sh+1 are non identically zero multihomogeneous polynomials in the sets
of variables C1, ..., C, with the same multidegree.

2. If o,7 are different permutations in X1 which appear in the expansion of S
(and, therefore o(n + 1) = 7(n + 1) = 1), then all resulting monomials in

HZZI(AZ)Z(u) are different from the monomials in HZZI(AZ)Z(U)
3. Ifl #m, then S;, Sy, have no common monomials.

Proof. First we prove 2. If we have two different permutations o, 7, there is a natural
number v, 1 < v < n where the permutations differ, then the monomials in f (v), fo ©)
are all different and these polynomials are the only factors of the products []"_, (Al)z(u)7

HZZI(Al)Z(u) where we find the variables which appear in the family F,,. It follows that
these products cannot share any monomial. In particular, in the sum of several of these
products, there is no cancellation of monomials, proving item 1. So, in fact, we obtain
that different minors share no monomial and we obtain immediately 3. All those minors
must have the same multidegree, which is just the concatenation of the multidegree of
the family Fi,..., F,, by construction. O

Example 2.9. At this point it may be helpful to give an example of the Lemma.
Consider the sets

Cr = {way}a Coy = {Z}, Cs = {mvn}a Cy= {0>p> Q}, Cs = {T}

Fy = {2%yz + 32,232, 20y° 2}
Fy = {mnor?, m?or? + mnpr?, n?or? + m?pr? + n’pr?}

Every polynomial in F is multihomogeneous in C7, Co with multidegree (3,1).
Every polynomial in F5 is multihomogeneous in C3, Cy, C5 with multidegree (2,1, 2).
All the monomials in the polynomial are different.

Then, the matrix

2

B— <a;2yz + 3z 3z 2wy )

mnor? m2or? + mnpr2 n2or? + m2pr2 + n2pr2

We take as matrix A in Cramy(B), A = <(1) ?, g)

S1 = (m?or? + mnpr?)(2xy?z) = 2xy?z2m2or? + 2xy? zmnpr?
Sy = (22yz+y32) (n2or2+m2pr2+n?pr?)+(mnor?) (2zy?2) = 2?yzn?or? +a%yzm2pr+
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2 2

x2yzn2pr2 + y3zn or? + y?’zmzpr2 + y3zn2pr2 + 2:L‘y2zmn0r
S = (22yz+y32)(m2or? +mnpr?) = z2yzm2or? +2%yzmnpr? + 2 zm2or? + 3 zmnpr?.
Finally, we check that the polynomials Si, So, S5 share no monomial and are multiho-
mogeneous in C, Co, C3, Cy, C5 with multidegree (3,1,2,1,2).

2

In the case of computing the curve C through a set of points ﬁ, suppose that the
points ¢; are given in homogeneous coordinates with generic principal coefficients and
tropicalization [q} : ¢? : ¢}].

~ _ 1 _ 42 _ 3
qi = hilt 4G4 ... ;%,275 4; —i—---:”y?t q; _|_]
Suppose also that the defining equation of C is homogenized adding a new variable z,

~ e
CEE a;xt yt 2T

el

Let A be the matrix of this homogenized linear systems and B = Pc¢(A). We claim
that the matrix B is in the conditions of Lemma 2.8. The j-th row of B is

e A CH i NN CHRICH K CH )

Hence, in the hypothesis of Lemma 2.8, C; = {’y]l,’y]?,’yj?’}, each polynomial f! is a
different homogeneous monomial. So, the hypothesis holds. Thus, we conclude that
for this homogenized system, the vector Cram4(B), that contains a representative of
the residues of the vector of coefficients of C, belongs to the torus, Cramy (B) € (k*).
It follows that [a; : ... : as] € K*. Finally, as every coefficient of every point ¢; and
[a1 : ... : ag] is nonzero, we can dehomogenize everything. The pseudodeterminants
A 4i(Pc(AY)) are nonzero provided that Pe(g;) = (*yil,*y]?) are generic. To sum up, we
have the following.

Theorem 2.10. Let I be a support, 6 = 0(I), P = {q1,...,q5-1}, ¢ = (qjl»,q?) a set
of tropical points, P= {q1,...,q5-1} a set of algebraic points such that q; = (q~J1, @?) =

(v}t_q} + ..., ]zt—qf +...). Let C be the stable tropical curve of support I passing
through P computed using Cramer’s rule. Let

~ .1 )

A= (@) (@)  A=(@)"@")

be the matrices of the linear system defining C' and C. For simplicity, it is assumed
that the columns of A are indexed by the set I. Then, the pseudodeterminants are
non identically zero polynomials in the set {7},1 <j<o6-1,1 <i <2} If the
pseudodeterminants verify that

Ai(Pe(AD) #£0, iel.

then, there is only one curve C passing through P and T(é) = C. That 1is, the pseu-
dodeterminants provide residual sufficient conditions for the equality T'(C) = C.
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In this case, let f: Yicr ?il-w"lyi2 be the polynomial of support I defining C com-
puted by Cramer’s rule, suppose that this polynomial is dehomogenized with respect to
the index ig (a;, = 1), then, the principal coefficients of a; are

Agn (Pe(AM)) Ay (Pe(A¥)) )

(et Pet@s)) = <AAZ-0 (Pe(A19) """ Dy (Pe(A0))

Proof. If no pseudodeterminant A 4 (Pc(A")) vanishes, then T'(|A?]) = |A’|,. In partic-
ular, no determinant |A?| is zero. Let

C =Y Ay =0}

il

be the unique algebraic curve of support I passing through P and projecting onto C,
the curve defined by “> . ; |A¥|;z?1y%2” | i.e. the stable tropical curve through P.
Note that if no pseudodeterminant vanishes, the coordinates of C belongs to the
algebraic torus in homogeneous coordinates (PK*)?. Thus, if one wants an affine rep-
resentation of the coordinates of the curve, it can be dehomogenized with respect to
any index ig € I and still the result will project correctly into the (dehomogenized)
equation of the tropical curve C. Furthermore, taking principal coefficients commutes
with dehomogenization in (PK*)?, so the last claim holds. O

2.4 Genericity of the Curve Through a Set of Points

We have shown sufficient conditions for the compatibility of the algebraic and tropical
curve through a set of corresponding points. If the lifts of points P are residually
generic, the algebraic curve C passing through them is unique. We know that this
curve projects onto the stable curve through the tropical points, but it is not clear
what is the residual relationship of its coefficients. This is important in the context of
incidence configurations. Proofs such as the one in Theorem 1.30 are done recursively in
the graph of the configuration. So, if using residually generic coefficients is an argument
to Theorems such as 2.10 and we want to use this Theorem in an induction scheme,
we should establish the residual genericity of the coefficients of the curve C. This is
the aim of this Section. We prove that if the points ¢; are residually generic, then the
coefficients of C are also residually generic.

Theorem 2.11. Let I = {l1,...,ls}, lx = (ix, jr) be a support. Let P = {qi,...,q5-1}
be a set of tropical points. Let C be the stable tropical curve of support I passing through
P. Let P = {G1,..,q5-1}, Pe(@) = (v},7?) and C the algebraic curve of support
I passing through P. Let j? = Z(iyj)elﬁi,jxiyj be the algebraic curve representing
C dehomogenized with respect to the index ly = (i0, jo). Let y1 = {vi,...,vi 1},
o ={~},...,73_,} Consider the map

Cramer: k¥-2 — ko1

A 1y (Pe(A)) A 15 (Pe(Al)) )

. _ (Gt i
(non2) = Cramer(,92) = 32 @) By (Pecio))
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that represents the principal coefficients of f in terms of the principal coefficients of
P (provided that the pseudodeterminants of Theorem 2.10 do not vanish). Then, the
map Cramer is dominant, that is, if the principal coefficients ofﬁ are generic, then
the polynomial f is generic among the polynomials of support I dehomogenized with
respect to lg.

Proof. Write ¢ = (qll,q?), C=T(“ Zij aijz'y’”). Then, C is the curve defined by the
stable solution of:
“>" aiilg) ()" 1<I<N
(i,5)el

and the lifts of C' verify the relations
> @)@ =0,1<1<N

Take the equations

~ — R R
fi=) agalylteui a1 <1< N,
(i,5)€l

which correspond to a (tropical) translation of the problem to the point 0. We de-
homogenize the tropical equation of C' (a4, = 0), and the algebraic equation of C
( @ipjo = 1) with respect to a term (ig,j0) € I. The conditions on the principal
coefficients a;; of a;; are:

fi=Y ai (W) (Y, 1< U< N,
Jy

where J; C I are the monomials such that —a;; — iqll — qu2 is minimized. Notice that,
by construction, each J; has at least two terms. Write o = {o;|(4,5) # (i0,j0)},
Y1 =1{1, -, 1} 2 ={"3....72_,}. Each residual equation f; is affine in the set
of variables «, and the coefficients of this affine equations are monomials in {711, 712}
Moreover, we know that there are nonzero solutions to this system. Without loss
of generality, every polynomial f; can be saturated with respect to the coordinate
hyperplanes (that is, we eliminate redundant 7). These polynomials are still denoted
by f;. Thus, we have a system of equations in 30 — 3 unknowns.
Let V be the Zariski closure of the image of the map:

k26—2 k3(5—3

—

(71,72) (71,72, Cramer(y1,72))

It is clear that this is a birational map between the space k2°=2 and V. Let 7 be the
ideal of V. T is a prime ideal that contains the polynomials (f1,..., fs—1) in k[a, 71, 72].
By construction, the field of rational functions of the variety L is the field of fractions
of the integer domain

L = Frac (W) = k(71,72)
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In particular, v1,72 is a transcendence basis of & C L and the dimension of L is
20 — 2. For each f, if the variable ’yll does not appear in f;, then ’ylz is an element of
L which is algebraic over k(a,’yll). Analogously, if 712 does not appear in f;, then 711
is algebraic over k(a, 712) If both variables appear in f;, then just choose %j algebraic
over k(a,ylg*j). In this way, the set ¢ = aU {%373" 1 <1< —1}is such that L is
algebraic over k(g). As #g = 20 — 2, we conclude that g is a transcendence basis of
k C LL. In particular, the set « is algebraically independent over k. This means that:

INkla)=ZNk[y,v2] =0 (2.3)

Hence, the projection of V over the space of coordinates a is dense in k°~1. But
the image of the projection is the image of k2°~2 by the map Cramer, so Cramer is
dominant. O

2.5 Points in Generic Position in a Curve

In this Section we want to face the problem of determining points in general position
in a curve. First, an adequate notion of tropical points in general position must be
provided. There are slightly different approaches to this definition in the literature. All
of them share the same idea, but apply to different problems, see for example [Mik05],
[Mar06], or [GMO7]. These notions are adequate for the enumerative problems, but not
for the incidence structures we study. Moreover, we want to provide a notion of generic
points in a fixed curve C'. Informally, a set of points P is in general position inside a
curve C' if C is the unique curve of its type that contains P. Again, to formalize this
we use the notion of stability:

Definition 2.12. Let C be a tropical curve of support I. A set of points q1,...,qn, n <
d(I)—11is in generic position with respect to C' if there are tropical points gp+1,- - -, ¢s—1
such that C' is the stable curve of support I passing through q1,...,¢qs_1.

One would like to characterise the points in general position in a curve C' because,
in general, it is not easy to check the Definition. A first result is the following:

Lemma 2.13. Let C be a curve of support I = Z?> N A, where A is a convex polygon.
Suppose that the dual subdivision induced by C in A is a triangulation that has all
points in A NI as vertices. Let qi,...,q5_1 be different points in C such that every
point q; lies in the relative interior of an edge of C and two different points do not lie in
the same edge. Let I' be the graph contained in the subdivision of A consisting of those
edges such that their dual contains a point q;. Then I' is a mazimal tree contained in
Subdiv(A), the vertices of T' are exactly the points of I and C' is the unique curve of

support I passing through q1,...,q5_1. In particular, q1,...,q5_1 are points in general
position in C
Proof. We refer to [Mik05]. O

This Lemma only works for very special curves, because of the restriction on the
support of the curve and the induced subdivision in A.
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Definition 2.14. Let C be a tropical curve of support I and Newton Polygon A. Let
I be the skeleton of Subdiv(A) associated to C' (the set of cells of dimension 0 and
1. This is always a connected graph). We modify I'y as follows. We add to I'y every
point in I \ Iy as follows.

If z,...,z, € I are the points of I lying in the interior of an edge e of I'g, then
we add these points as 2-valent vertices of I'y splitting the edge e into r + 1 edges. If
x € I lies in the relative interior of a polygon A, of the subdivision, then x is added to
I'p as an isolated point. In this case, the resulting graph is no longer connected. The
resulting graph is denoted by I'.

Let g be a point in C. If ¢ lies in an edge of C, let A, be the dual edge in I'g, then
Aq =e1U...Ueq is refined as a union of edges in I'. An assignment of ¢ is a choice
of one of the edges ey, ..., e4. In the case where ¢ is a vertex of C', the dual cell A, of
this vertex is a polygon. Let S be the set of isolated points of I in A, and e1,...,¢eq
be the set of refined edges in the boundary I' N 0A,. An assignment of ¢ is a choice of
an element in SU {e1,...,eq}.

If ¢1,...,q, are points (possibly repeated) in C, an assignment of the points is an
assignment of each point ¢; such that:

e Let ¢;,,...q;, be the points lying in the same edge of C, let A; =e; U...Ueq be
the refined dual edge in T'. It is required that the assignment of ¢;; is different
from the assignment of ¢;, whenever j # k (even in the case that ¢;; = ¢;, is a
repeated point).

e Letg,,...,q, bepoints identified with a vertex (that is, a vertex with multiplicity
r). Let A4 be the polygon dual to the vertex. Let [ = #{A,NI}. It is required
that at most [ points are assigned to different points in S and that the r — [ other
points are mapped to different refined edges of the boundary of A,.

e The set of refined edges of I' such that have assigned a point ¢; form an acyclic
subgraph of I'.

Lemma 2.15. Let C' be a curve of support I. Let qi,...,q5_1 be a list of points such
that there exists an assignment in I'. Then

e Every point of I that lies in the relative interior of a polygon A, of Subdiv(A) is
assigned to a point g;.

o The set of assigned edges is a mazimal tree in I' that contains as vertices every
non isolated vertex of T.

Proof. The proof is inspired in the properties of lattice subdivisions of tropical curves
presented in [Mik05]. Let S be the set of points of I lying in the relative interior of a
polygon in Subdiv(A) and let | be the number of these points. Let » = § — [ be the
number of non isolated vertices of I'. Then, at most [ points ¢; are assigned to a point
in S and at least § — 1 — [ = r — 1 points are assigned to an edge on I'. Then, from
the property that the set of assigned edges of I is an acyclic graph. It follows that the
number of assigned edges must be smaller than the number of vertices. That is, the
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number of assigned edges must be exactly » — 1. It follows that the graph of assigned
edges is connected, i.e. a tree. Moreover, this tree is maximal, because it attains every
non isolated vertex of I'. Finally, the number of isolated points of I' assigned to a point
is [ (every isolated point has been assigned). O

Lemma 2.16. Let C be a tropical curve of support I and Newton polygon A. Let T be
the refinement of I'g. Let q1,...,q5_1 be points in the curve. Suppose that if a vertex v
of C coincides with r points q;, then the dual polygon A, contains exactly r point of I
in its interior. Suppose that there is an assignment of the points. Then, C' is the stable
curve passing through qi,...,q5-1-

Proof. Let g; be lifts of the points ¢; whose residual coefficients v; = ('yjl-,'yJQ-) are

sufficiently generic. In order to define a curve 5, we have to compute lifts of the
coefficients a@; of the polynomials defining C. Let f be the concave polynomial of
support I defining C' (see Definition 1.18), f = “ . ; aixilyiQ” dehomogenized with
respect to a vertex 7o of the polygon A (a;, = 0). Notice that, if g = “>,; bimily’q”
is any tropical polynomial of support I such that b; = a; if i is a vertex of Subdiv(C)
and b; < a; in other case, then f and g represents the same piecewise affine function
and 7 (g) = C. We will compute a polynomial g with this characteristics.

Given an edge e of Subdiv(A), let e = e; U... U e4_1 be the refinement in T,
ek = [ik,ix+1). If there were two different edges ey, e;, k < [ that are not assigned to
any point gj, then, if k£ + 1 = [ then the vertex i;1 would be a vertex of I' that is not
attained by A, if £ 4+ 1 < [ then either A does not attain a vertex of I' (if eg41,...,¢€;
are not assigned) or A is not connected (if at least one e; is assigned with k < j <),
contrary to the results in Lemma 2.15. Hence, for the case of an edge A, = e1U...Uey,
at most one of the refined edges e;, is not assigned to any point. The residual values «;
for a point ¢ of I contained in an edge of Subdiv(A) are computed recursively, starting
from «;, = 1. By the maximal tree structure of A we can always suppose that we are
in one of the following two cases:

1)The edge is e = [iy,...1q], we only know the value of o, and there are exactly
d — 1 points ¢j,,...¢qj, , in the dual edge V¢ C C. The non homogeneous residual
system of equations associated to the points is:

e ai g =0
(2
a7y o+ @y =0
ailry;rll—l o F Oéid’}/;'j_l =0
in the unknowns {a,,...,a;,} and ’y;l = ('yjll)il1 ('yJQl)le This system is determined, to

show this, we may homogenize each row of the monomial matrix () by a new variable
713¢ , hence, we obtain a matrix that is in the hypothesis of Lemma 2.8 we conclude that
its minors is a non identically zero multihomogeneous polynomial that will remain non
identically zero after dehomogenizing each variable 72 = 1. The determination of «;,
is just a dehomogenization of the solution. Hence, we conclude that there is only one
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solution {a,, ..., a;,} of this linear system in the algebraic torus over the residual field
(k*)4=1. Notice that, using induction, each @, is a non zero rational function in a4, and
~. Applying this steps recursively we can compute the values of every edge of integer
length d — 1 and d — 1 assigned points. Notice that, in particular, we can compute the
values of every «; associated to a vertex of Subdiv(A) and that they are non zero.

2) The edge is e = [a;,,...,a;,] and the values of a;, and «;, have been already
computed. Necessarily, there are exactly d — 2 points g;,,...,qj, , in the dual edge of
e, because if there where more points, there would be a cycle in the graph A, contrary
to the hypothesis, and if there where less points, A would not be a maximal tree. The
residual conditions on the unknowns {ao,...,aq—1} for a non homogeneous system of
d — 2 linear equations in d — 2 unknowns with a similar structure of the previous case.
So, if the coefficients of 7; are generic, there is only one solution (this time in k%2
because the determination of the values of «;, and «;, do not correspond to just a
dehomogenization). Again, applying induction, each «; is rational function of «;, and
5.

Thus, if the coefficients v are generic, all the values «; corresponding to an index
¢ that is not an isolated vertex of I' can be computed from « and «;, and its value is
unique. It only rest to compute the values «; corresponding to indices in I belonging
to the relative interior of a polygon in Subdiv(A). In this case, the corresponding point
¢; lie in a vertex v € C. Let A, be its dual polygon in Subdiv(A). Every coefficient
corresponding to A, N I has been already computed. Let {j1,...,7,} = 0A, NI and
{k1,...,ks} = int(A,) N I. There are s points ¢; identified to v. The residual system
of equations corresponding to these points is:

k ks Ji J
ok et ooy =y T gy
k ks _ J1 Jr
Ozkl’)/l; +---+ Ak, = —Qn7, T Qg
k‘ ks _ jl jr
O‘kl’}’l: L €7 e el €7 7R i ¢ 0
in the unknowns {ag,, ..., ax, }. Again, if the values of v are generic, there is only one

solution in k°.

So, starting from the value «;, = 1 the rest of the values are determined from +.
Let @; be any element of K* such that if a; # 0 then Pt(a;) = a;t~%, and, if a; = 0,
then Pt(a;) = t~%+. Let § = Yicr Ziixilylg. Let C the algebraic curve defined by g,
its projection T (5’) is the curve C. But it may happen that C does not contains the
points ¢;, because the computations have been done in the residual field. Anyway, by
construction, the principal terms of g; are in the hypothesis of applying Theorem 1.16,
we can compute points ¢, lying in C such that Pt(q;) = Pt(g;). That is, there is a curve
C passing through a set of lifts ¢ of ¢; with generic residual coefficients in the sense of
Theorem 2.10. Hence, C = T(é’) is the stable curve passing through qi1,...,¢5-1. O

Theorem 2.17. Let C be a curve of support I and Newton polygon A, let I' be the
refinement of the subdivision A. Let q1,...,qs_1 be points in the curve. If there is an
assignment of q1,...,q5-1, then C is the stable curve of support I passing through the
points.
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Proof. For each vertex v of C' containing points ¢;,, ..., qj,, let ¢;.,,,...q;, be the points
assigned to and edge of I' and let eq,...e, be those edges. Perturb the point ¢;, in C
translating it along the dual edge of e;. Denote this point by qu For the rest of points,
take qéj = ¢i;. The points ¢y,...q5_, are points in C' in the conditions of Lemma 2.16.
Hence, C' is the stable curve through {q},...,¢s—1}. Making a limit process on each
perturbed point qé-i — ¢j,, the stable curve C' trough the points {¢],...,¢s—1} stays
invariant along the process. By the continuity of the stable curve through a set of
points, we conclude that C is the stable curve through ¢1,...,¢s_1. O

It is conjectured that the conditions imposed in the preceding Theorem are also
necessary in order to have the genericity of the points inside the curve. That is, we
claim that given C' a tropical curve and q1,...,q5_1 € C, C is the stable curve through
the points if and only if there is an assignment of the points. In many concrete examples
it can be easily shown that this condition is a complete characterisation of a set of points
in general position in a curve. But the problem is still open for an arbitrary curve.



Chapter 3

Tropical Resultants and the
Stable Intersection of Curves

This Chapter deals with the study of the intersection of two tropical curves. As we have
shown in Chapter 1, two different curves may share an infinite number of points. But, if
one wants to relate Tropical and Algebraic Geometry, it is desirable to introduce a new
concept of “intersection” such that two different curves without a common component
only have a finite number of common points.

One approach towards this notion is through the notion of stable intersection as
described in 1.21. Another potential solution is the following: given two tropical curves
f and g, take two algebraic curves f and g projecting onto the tropical curves. Then,
the intersection of the two algebraic curves fng will project into the intersection of the
tropical curves, T(fﬂ@ C fNg. Hence, one could define the intersection of f and g as
T(fﬂ g). This lifting approach is better suited in the context of comparison between
tropical and algebraic configurations, because it relates directly the intersection with
the lifts. But this is not a good definition because, for different elections of the algebraic
curves f, g, the projection of the intersection points may differ. This is a problem that
has been faced in Chapter 2 when dealing with the curve passing through a set of
points. If the lifting of the points are not generic, the algebraic curve the points define
can project into a non stable tropical curve through the original points.

On the other hand, regarding the definition of curves through lifts, one should
expect that, for the case of two generic lifts of the curves f and g, their intersection
should project into a well defined tropical set. In this Chapter, we will prove that this
intersection (via lifting) coincides with the stable intersection of the curves.

In order to prove this result, a similar scheme as in Chapter 2 is chosen. The main
obstacle now is that, contrary to the case of the curve passing through a set of points,
this is not a linear system any more, in the sense that there is not a linear system
determining the coordinates of the points. Even more, a single intersection point of
the given algebraic curves cannot be explicitly expressed in terms of the coefficients of
the curves. This problem is partially avoided with the use of resultants.

For the case of planar curves, the univariate resultant of two defining equations
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codifies the projection of the intersection points of the curves on one coordinate line
(see, for example, [vdWO03a]).

The main original result of the Chapter is a notion of tropical resultant with the
same geometric properties of the classical one. Second, it is proved that, for two generic
lifts of two tropical curves, its intersection projects onto the tropical stable intersection
and that there is a correspondence with the tropical multiplicity (see Corollary 1.24) of
a stable intersection point g and the algebraic points in the intersection projecting into
it. With all this information, it is derived a formula relating the algebraic and tropical
intersection multiplicity.

3.1 Univariate Resultants

Let us start with the notion of tropical resultant of two univariate polynomials. In
algebraic geometry, the resultant of two univariate polynomials is a polynomial that
solves the decision problem of determining if both polynomials have a common root.

Definition 3.1. Let f = S gaint, g = >0 bjzd € K[z], where K is an algebraically
closed field. For simplicity, we assume that aga,boby, # 0. Let p(K) be the prime filed
of K. Then, there is a unique polynomial in p(K)[a;, b;] up to a constant factor, called

the resultant, such that it vanishes if and only if f and g have a common root.

In the definition, it is asked the polynomials to be of effective degree n and m,
this is in order to avoid the specialization problems that usually appear when using
resultants. But the polynomials are also asked to have order zero. This restriction
is demanded for convenience with tropicalization. Recall that the intersection of the
varieties with the coordinate hyperplanes is always neglected. Hence, the definition of
resultant will take this into account. Moreover, as the polynomials are always described
by its support, the resultant will not be defined by the degree of the polynomials, but
by their support. This approach will be convenient in the next Section, when there will
be provided a notion of resultant for bivariate polynomials.

Definition 3.2. Let I, J be two finite subsets of N of cardinality at least 2 such that
0 € INJ. That is, the support of two polynomials that do not have zero as a root. Let
R(I, J,K) be the resultant of two polynomials with variable coefficients, f = . ; a;x’,
g =>_jcybja’ over the field K.

R(I,J,K) € Z/(pZ)]a, b],

where p is the characteristic of the field K). Let R:(I,J,K) be the tropicalization of
R(I,J,K). This is a polynomial in T[a,b], which is called the tropical resultant of
supports I and J over K.

So, our approach is to define the tropical resultant polynomial as the projection of
the algebraic polynomial. In this point, one may obtain, for the same support sets I
and J, different tropical resultants, one for each possible characteristic of K. This is not
good, in the sense that tropical geometry should not be determined by the characteristic
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of the field we have used to define the projection. Hence, one has to take care of what
is the common information of these polynomials. The answer is complete: the tropical
variety they define is always the same. This variety is the image of any resultant variety
over a field K, so it will code the pairs of polynomials with fixed support that have a
comimon root.

Lemma 3.3. The tropical variety T (R:(I,J,K)) does not depend on the field K, but
only on the sets I and J.

Proof. Let N be the Newton Polytope of the resultant defined over a field IL of charac-
teristic zero, N' C R"*™*2, It is known that the monomials of R([, J, 1) corresponding
to vertices of A/ (extreme monomials) have always as coefficient +1 (See, for example,
[GKZ90] or [Stu94]). Hence, the extreme monomials in R(I, J,K) are independent of
the characteristic of the field K and so is V. If z is a monomial of R(I, J,K) that does
not correspond to a vertex of N, then z = > A\jv;, 0 < \; < 1, where v; are vertices
of N. T(coeff(v;)) = T(£1) = 0 and, as coeff(x) is an integer (or an integer mod p),
it is contained in the valuation ring, that is 0 > T'(coeff(x)) € TU {—oc}. T'(coeff(x))
is finite and not zero if and only we are dealing with a p-adic valuation and p divides
coeff(x). It is —oo if and only if the characteristic of K divides the coefficient. So, the
subdivision of the cell containing the monomials v; induced by R;(I,J,K) described in
Proposition 1.19 never contains x as a vertex, no matter what K is. We conclude that
the subdivision of N dual to 7 (R:(I, J,K)) is N itself. So 7 (R:(I, J,K)) is always the
polyhedral complex dual to N centered at the origin. This complex is independent of
K. O

Now it is proved that the resultant variety Ri(I,J,K) has the same geometric
meaning than the algebraic resultant variety R(I, J,K).

Lemma 3.4. Let I,.J be two support subsets as before. Let f = “> . ; a;x?”, g =
“ ZTGJ bjz?” be two univariate tropical polynomials of support I and J. Then, f and
g have a common tropical root if and only if the point (a;, b;) belongs to the variety
defined by Ri(1, J,K).

Proof. Suppose that (a;, b;) belongs to Ry(, J,K). By Theorem 1.16, we can compute
an element (Ei,gj) in the variety defined by R(I,J,K). In this case, f = Sier @izt
and g = Zje Jgja:j are lifts of f and g. Moreover, their coefficients belong to the
algebraic resultant, so the algebraic polynomials have a common root ¢ that is non
zero by construction (0 € I N J). Projecting to the tropical space, f and g have a
common root T'(q). Conversely, if f and g have a common root g. Then these three
elements are the realization of an acyclic incidence configuration in the line T. We can
adopt the proof of Theorem 1.30 to compute an algebraic lift. Namely, We may take
any lift f of f, then lift ¢ to a point § € V(f) using Theorem 1.16 and, finally, lift
g to a polynomial g having ¢ as a root. By construction, f, g share a common root
q, hence, their coefficients (Zii,gj) belong to the algebraic resultant variety. Projecting
again, the coefficient vector (a;, b;) of f and g belong to the tropical resultant. O
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This Lemma about the geometric meaning of the resultant also shows that the
variety defined by R;(I,J,K) does not depend on the field K. At least as a set of
points, because the tropical characterization of two polynomials having a common root
does not depend of the field K.

Example 3.5. Consider the easiest nonlinear case, I = J = {0, 1,2}, the resultant of
two quadratic polynomials. If f = a+bx+ca?, g = d+ex+ fz2, the algebraic resultant
in characteristic zero is Ry = f2a® — 2facd + c2d*> — e fba — ebed + ce?a + dfb* and, over
a characteristic 2 field it is Ry = f2a% +c?d? +efba+ ebed 4 ce?a+df b2, 1f char(k) # 2,
the tropical polynomial is P, = “0f2a?+0facd+0c?d? +0efba+0ebcd+0ce?a+0df b7 .
If char(K) = 0 and char(k) = 2, the tropical polynomial is Py = “0f2a? + (—1) facd +
0c2d? + Oefba + Oebed + Oce?a + 0dfb?”. Finally, if char(k) = char(K) = 2 then the
tropical polynomial is Py = “0f2a?+40c%d?+0e fba+0ebcd +0ce?a+0dfb*” . The unique
difference among these polynomials is the term facd. This monomial lies in the convex
hull of the monomials f2a? and c?d? and it does not define a subdivision because its
tropical coefficient is always < 0. The piecewise affine functions max{2f + 2a, f +a +
c+d,2c+2d}, max{2f +2a,—1+ f +a+c+d,2c+ 2d} and max{2f + 2a, 2c + ad}
are the same. So the three polynomials define the same tropical variety.

3.2 Resultant of Two Curves

In this Section, the notion of univariate resultant is extended to the case where the
polynomials are bivariate.

Definition 3.6. Let f and g be two bivariate polynomials. In order to compute the
algebraic resultant with respect to x, we can rewrite them as polynomials in z.

F=> R, G=> gyal,
icl jeJ
where
" n; mj
f’L — Z Aiktil/ikyk, g] = Z qut*m’qu
k=o; q=rj

and A, Bj, are elements of valuation zero. Let p be the characteristic of K, let
P(a;,bj,K) = R(I, J,K) € Z/(pZ)|a;, bj] be the algebraic univariate resultant of sup-

ports I, J. The algebraic resultant of f and g is the polynomial P(ﬁ,aj,K) € Klyl.

Analogously, let f =T(f), g =T(9), f = “Lie; i)z, 9= “3;c; 9i(y)2’", where

n; m;
k
Fi= ) vay™, g5 = migy™.
k=o; q=r;

Let Pi(ai, b, K) = Ri(1, J,K) € T[a;, b;] be the tropical resultant of supports I and J.
Then, the polynomial P;(f;, g;,K) € T[y] is the tropical resultant of f and g.
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Again, we have different tropical resultant polynomials, one for each possible char-
acteristic of the fields. We want to check that this notion of tropical resultant also has
a geometric meaning. In the algebraic setting, the roots of the resultant P(f;, g;, K) are

the possible y-th values of the intersection points V(f) NV (g). This is not the case of
the tropical resultant, because P;(f;, gj, K) only has finitely many tropical roots, while
the intersection 7 (f)N7 (g) may have infinitely many points and there may be infinitely
many possible values of the y-th coordinates. Again, this indetermination is avoided
with the notion of stable intersection. We will prove that the roots of P;(f;, g;, K) are
the possible y-th values of the stable intersection 7 (f) Ns 7 (g). This will be made in
several steps, the first one is to check that T'(V(P(f;, 9;,K))) = T (P(fi, 95, K)), pro-
vided that A;;, Bj, are residually generic. Sometimes, for technical reasons, it is better
to work with an affine representation of the resultant (For example, if f = ier aixil yi2,
g= szJ bja:jlij we can suppose that a;, = bj, = 1). We prove that this dehomog-
enization process is also compatible with tropicalization. That is, if we divide each
algebraic coefficient A;,t™"* and Bj,t~"e by A; .t~ "ok and Bjyg,t™ ot respectively
and substitute each coefficient vy, njq by vik — Vigky = “Vik/Vigko” a0d Nig — Nigqo
respectively, still we have that T(V (P(J;, 9;,K))) = T (P fi, 95, K)).

Lemma 3.7. Let [ = Yier fizt, § = Zjejgja:j € Klz,y], where the coefficients
are f; = Z;Ol At ™Vikyk gj = Z;”erj Bjgt™May? and let f = Y ,c; fily)z®, g =

Z'GJ gj(y)a;j, fi=¢ Z;O l/ikyk”, g = *“ Z"ﬁr niqy?" be the corresponding tropical
J i q=rj

polynomials. Suppose that A, Bjq are residually generic. Then T'(V (P(fi,g;,K))) =
T (P(fi, 95, K)).

Proof. First, we suppose that char(k) = 0. In general, the composition of polynomials
does not commute with tropicalization, because, in the algebraic case, there can be
a cancellation of terms when performing the substitution that does not occur in the
tropical case. Recall that, by the nature of tropical operations, a cancellation of terms
in the tropical development of the polynomial never happens. So, we have to check that
there is never a cancellation of terms in the algebraic setting. First, it is proved that
there is no cancellation of monomials when substituting the variables by polynomials
without dehomogenizing. P(a;,b;,K) is homogeneous in the set of variables a; and
in the set of variables b;. As the substitution is linear in the variables A;; and By,
P(ﬁjj,K) is homogeneous in A;; and Bj,. If we have two different terms 77, 15 of
P(a;i, b;,K), then there is a variable with different exponent in both terms. Assume
for simplicity that this variable is a; with degrees di and dy respectively. After the
substitution, the monomials obtained by expansion of T} are homogeneous of degree d;
in the set of variables A1 and the monomials coming from 75 are homogeneous of degree
ds in the variables Aq;. Thus, it is not possible to have a cancellation of terms and we
can conclude that the homogeneous polynomial projects onto the tropical homogeneous
polynomial.

In the case we dehomogenize f and § with respect to the incides (igko), (jogo) re-
spectively. By the homogeneous case, we can suppose that all the variables a; # a;,
and b; # bj, in P(a;,b;, K) have already been substituted by the polynomials ﬁ and
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g;j respectively. The only possibility to have a cancellation of terms is if there are
two monomials of the form Xa{*b%, Xaf*bt with dy + dy = d3 + ds and X is a
monomial in the variables A;;, Bj,. But, as the polynomial is multihomogeneous in
A and B, it must happen that d; = d3 and ds = d4. That is, the original monomi-
als where the same. So, a cancellation of terms is not possible and the dehomoge-
nized polynomial projects into the dehomogenized tropical polynomial. In particular,
T(V(P(fi,95,K))) = T(B(fi, 95, K)).

Now suppose that char(k) = p > 0. In this case, it is not necessarily true that
the tropicalization of the algebraic resultant is the tropical resultant. But we are
going to check that the monomials where these two tropical polynomials differ do
not apport anything to the tropical variety 7 (f;, g;,K). So, we are going to compare
the monomials in P(f;, g;,K) and P;(fi,g;,K). The support of both polynomials is
contained in the support of P;(f;,g;,L), where L is an equicharacteristic zero field.
The first potential difference in the monomials are those obtained by expansion of
a monomial m of the univariate resultant P(a;,b;,K) = R(I,J,K) whose coefficient
has valuation in [—00,0). That is, p divides coeff(m). It happens that m is never a
extreme monomial. That is, m = >, \jv;, 0 < A; < 1 and v; are extreme monomials.
So, for every r, Coeﬁ(m) + m(fi(r)hgj(r)) < m(fi<r)7gj(r)) = Zl )‘lvl(fi(r)agj(r)) <
max{v;(fi(r),g;(r))}. Hence, the monomials of m(f;(y), g;(y)) never apport anything
to the tropical variety defined by P(ﬁ,ﬁj,K), because they are never greater than
the monomials that appear by the extreme monomials. The other source of potential
differences in the monomials is the decreasing of the tropicalizacion of some terms of
the power (3 ;" At y*)N due to some combinatorial coefficient (ﬁ ) divisible by
p. But, in the tropical context, it happens that

n; U
(u Z Vikykm)N — o« Z Vg]\gfykN”

k=o0; k=o0;

as piecewise affine functions. The rest of the terms in the expansion do not contribute
anything to the tropical variety. The only terms that may play a role are I/z-]Z , 17%[ .
So, even if the tropicalization of the polynomials P (I, J,K) depends on the algebraic
field K, the tropical variety they define is always the same and it is the tropical variety
defined by P;(f;, gj,K), including the weight of the cells. O

So, the previous Lemma provides a notion of tropical resultant for bivariate poly-
nomials with respect to one variable. They also prove that this polynomials define the
same variety as the projection of the algebraic resultant in the generic case. Our next
goal is to provide a geometric meaning to the roots of the tropical resultant in terms
of the stable intersection of the curves.

3.3 Computation of the Stable Intersection

Let f be a tropical polynomial of support I defining a curve, let Ay be the convex hull
of I. By Proposition 1.19, the coefficients of f induce a regular subdivision in Ay dual
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to f. This subdivision is essential in the definition of tropical multiplicity and stable
intersection given in Chapter 1. Next, it is proved that, for sufficiently generic lifts f
and g, their intersection points correspond with stable intersection points of f and g.

Lemma 3.8. Let f and g be two tropical polynomials in two variables. Let L be ils
stable intersection. Then, for any two lifts f, g such that their coefficients are residually
generic, the intersection of the algebraic curves projects into the stable intersection.

T(fNg) CT(f) N T(g)

Proof. If every intersection point of f and g is stable, then there is nothing to prove.
Let ¢ be a non stable intersection point. This means that ¢ belongs to the relative
interior of two parallel edges of 7 (f) and 7 (g). The residual polynomials JA“,; and g, can
be written (after multiplication by a suitable monomial) as fq =30 gai(z"y®), gy =
Z;.”:O Bi(xys). If ]?, g have a common point projecting into ¢ then there is an algebraic
relation among their residual coefficients. Namely, the resultant of the polynomials
Z?:o ;2 E;‘n:() Biz? with respect to z must vanish. If the residual coefficients of

f, g do not belong to the resultant defined by each non stable intersection cell, the
intersection in the torus of f, g projects into the stable intersection of f and g. O

So, there is a natural relation between the stable intersection of two tropical curves
and the intersection of two generic lifts of the curves. On the other hand, the inter-
section of two generic lifts can be determined by the algebraic resultant of the defining
polynomials. Applying tropicalization, this relationship links the notion of stable in-
tersection with the resultants. To achieve a true bijection between the roots of the
resultant and the intersection points of the curves, it is used the relationship between
the tropical and algebraic resultants. So, one needs to concrete the generality condi-
tions for the values values A;, Bj, that makes Lemma 3.7 and Proposition 3.7 hold.
Next Lemma shows how to compute the residually conditions for the compatibility of
the resultant.

Lemma 3.9. Let ]?, g € Klz,y]. Then, there is a finite set of nonzero polynomials in
the principal coefficients of the coefficients of f, ¢, that depends only on the tropical-
ization f and g such that, if no one of them vanishes, then

T(Reso(f.9)) = T(R(I, J,K)(f. 9)).

Where R(1,J,K)(f,g) is the evaluation of the tropical resultant of supports I and J in
the coefficients of f and g as polynomials over .

Proof. Write f = ¢ zzkalkxzyk” g="“ qugjqxqu Pe(@y) = g, Pc(b biq) = Bijq

T(a;,) = ai, T'(bjq) = bjq, f = Zlkazkx’yk”, g= Zj,q bjgx’y?”. Let I, J be the
support of f and g with respect to x. Consider both resultants

R(I,J,K)(f,9) = Zhry and R,(I,J,K)(f,9) —“Zhry
r=0
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It happens that T(R«) < h, and the equality holds if and only if the term 7, (a, 3)t "
of h, is different from 0. As in the generic case the resultant projects correctly by
Lemma 3.7, the polynomials -, corresponding to two consecutive points in the Newton
diagram of “3°N  h,y™” (see Definition 1.7) are non zero polynomials in k[, Bjq]. If
no one of them vanish, the resultant tropicalizes correctly. O

Theorem 3.10. Let f, g € K[z,y]. Then, it can be computed a finite set of polynomials
in the principal coefficients of f, g depending only on their tropicalization f, g such
that, if no one of them vanish, the tropicalization of the intersection of f, g is exactly
the stable intersection of f and g. Moreover, the multiplicities are conserved.

Z mult(q) = multy(q)
e fng
T(q)=q

Proof. Lemma 3.9 provides a set S of polynomials in the principal coefficients of f
and g such that, if no one vanishes, the algebraic resultants Res,(f,g) and Res,( 1, g)
define the same tropical varieties as Res;(f,g) and Res,(f,g). These two resultants
define a finite set P that contains the stable intersection. The problem is that, in the
tropical case, it is possible that the intersection of P with both curves may be strictly
larger than the stable intersection of the curves, see Example 3.11. So, we need another
polynomial in order to discriminate the points in this intersection that are not stable
points. Take a, any natural number such that the affine function z — ay is injective in
the finite set . Make the monomial change of coordinates z = zy~“. The polynomial
Resy(f(zy ), §(zy% y)) = R(z) = R(zy~®) encodes the values 2y~ of the common
roots of f and g. We add to the set S the restrictions in the principal coefficients of
this resultant to be compatible with tropicalization according to Lemma 3.9. These
values zy~® of the algebraic intersection points correspond with the possible values
x — ay of the tropicalization of the roots. As the linear function is injective in P, then
T(f)NT (9)NT (Resz(f, 9))NT (Resy(f, 9))NT (R(“zy~*")) is exactly the tropicalization
of the intersection points of any system (f ,g) Verlfying the restrictions of S. By,
Lemma 3.8, this set is contained in the stable intersection of f and g.

To prove that the multiplicities are conserved, consider the field K = C((t*)) of
generalized Puiseux series, in this case

Z mult(q) < mult,(q).

gefng

T(q)=q
because the sum on the left is bounded by the mixed volume of the residual polynomials
fq Gq over g by Bernstein-Koushnirenko Theorem (c.f. [Ber75] [Kus76] [Roj99]). This
mixed volume is, by definition, the tropical multiplicity of ¢ on the right. On the other
hand, the sum on the left is, over any field, the sum of the multiplicities of the algebraic
roots of E(a:y*“) projecting onto ¢q. By the previous results on the correct projection
of the resultant, this multiplicity does not depend on K, because it is the degree minus
the order of the residual polynomial R(xy~%)q,—aq,, O, equivalently, the multiplicity
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of ¢ as a root of T(R(xy~®)). Moreover, this multiplicity is the mixed volume of the
residual polynomials over ¢q. That is, the inequality

Z mult(q) < mult(q)
aefng
T(q)=q
holds for any field. The total number of roots of f and g counted with multiplicities

in the torus equals the sum of multiplicities of the stable roots of f and g, because, in
both cases, this is the degree minus the order of R(xy~¢). From this, we conclude that

Z mult(q) = mult(q)
qefng
T(q)=q

Hence, the projection of the intersection of J?and g is exactly the stable intersection. [

Example 3.11. Consider f = g = “0+ 1z + 1y + lzy + 022 + 0y”, two conics. Their
stable intersection is the set {(—1,—1), (0,1), (1,0), (0,0)}. Compute the resultants:
Res;(f,9) = “0+ 1y + 1y? + 13> + 0y*”, by symmetry Res,(f,g) = “0 + 1z + 122 +
122 + 02%”. Their roots are the lines y = -1, y = 0, y = l and ¢ = —1, z =
0, x = 1 respectively. In both cases the multiplicity of the roots —1 and 1 is 1,
while the multiplicity of 0 is 2. The intersection of this lines and the two curves
gives the four stable points plus (—1,1) and (1,—1). We need another resultant that
discriminates the points. See Figure 3.1. Take x — 3y, the first affine function x — ay
that is injective over these points. f(“zy3”,y) = “0+ 1y + 0y + 1y32 + 1y*z + 090227,
Resy (f(“24%7,y), g(“24%7,y)) = “6284+929+92194-8211 +62127. Tts roots are 0, 1,2, —3,
all with multiplicity 1. It is easy to check now that the intersection of the two curves
and the three resultants is exactly the stable intersection. The two extra points take the
values -4, 4 in the monomial “zy~3”, moreover, every point has intersection multiplicity
equal to one.
Two generic lifts of the cubics are of the form:

f: a + axtfla: + aytfly + axytflfzy + ag[;xa:2 + ayyy2

g=c1+cot e+ cyt_ly + cxyt_1$y + Cpt? + cyyy2

The residual conditions for the compatibility of the algebraic and tropical resultant
with respect to x are:

2 2
Yoy Vex Czy Qyy —Vay Czy Qzx Vyy +'Vgcy Ozz Qyy +Yyy Yoz Azyy Yz Yoz Oz O1 — Vo O Ogg
2 2 2 2
Y1 +Y1 Vax Of FOza Vi O1, Vy Yoz Xy Vo Vex Oz Oy +0zz Vi Oy — Vo Oz gz Yy, — Yoy Qay
2 2
Ozz Yy Ty Yoz Qzy ~ Yoy Yoz Qay Qy +’7my Qg Oy

For the resultant with respect to y, the compatibility conditions are:
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2 2 2 2
Yy Vyy Qy Q1 =Yy Oy Qyy V1 71 Vyy O Ty Qyy Q15 Vo Vyy Qy —Vy Qy Qyy Yo T, Qyy Qg
2 2
Yy Vyy Xy Oz Viy Cyy Oz +Vz Vyy Ozy — Yoy Vyy Qoy Oz — Yoy Qoy Cyy Yo, —Voy Yoo Cay Oyy
2 2
~Vay Oy Oza Vyy TVay Qax Qyy +Vyy Yoz Qgy-

Finally, the third resultant is a degree twelve polynomial in the variable z. The
residual conditions for its compatibility with the tropical resultant are:

2’753/ Yax O‘iy Qyy Ty Xy V1 Qzx Yoy _7531 73;5 O‘iy Qyy Yy Oy 71 —27511 Qgy ’ng O‘gzcx 0‘3 Y1 Cyy
+7;1y aia: Yyy a:?/y a; 24! _’y;:ly aiz Yyy azy Qy Ty 1 +’y§y a?:y Qyy ’yj aia: /7%14 ai _'ng /7%1
Gy Oy Yy Oy V1 Yy Qay Vay O Oy Yy 01 275, Vag Oy Yoy Oy Yy Qyy 1 —27y Vag
O‘?gy Yoy 0@ 71 Qyy _ng V2o aiy Yyy azy Qy Yy Q1 +73y Vo a?:y Yyy O‘Zy 045 i! _4’773y Vo aiy
’ng Qzz Oy Yy Qyy Q1 —2%yy ’Yg%ac aiy Vay agz;y 73 a1 +2'Y§y Ay ’ng agm Qy Yy Quy Q1 +279,
Vow Cay Yoy Qay Vy Oy V1 Yy Yoz OFy Y2y Qoy Vg Qur @1 FVpy Vaw Oy O N Yy Vao
ai’y 'V%y ag2;y Yy Czx Oy Y1 _’ng 7:%1 aiy Ay Ty Q1 +2'Y§y Vaxx O‘iy Qy Yy Qzx Yoy A1 _2'7§’y Vaz
aiy ag2; M Czx Yay _723/ agy aim ,-ng Ay Yy A1 +7’3y a?:y aim 73;} OZZ 71 J'Jygy ’ng aiy agy 75
a1 _'ng a?gy Qg Vy 0‘92595 'Yg%y Qy Y1 _2'7531 Yz aiy gz Yoy Oyy '75 (e5] +'7§y '731 O‘iy Qyyyy '75 &5}
_7;13/ O‘ix O‘:jy Ty Cy Y1 +47§y Vaz O‘iy ’Y%y gy O‘g Y1 Cyy +’Y;ly a;2c;c Oégy 75 aq +2’72y Ozx Vrx
Czy Yyy aiy Qy Yy 1 _27314 AUzx VYzz Czy Vyy azy ai Y1 _2'733/ VYzz Czy Qzz Oézy ’75 oy +2'7§’y
Yoz Czy Czx aZy Ty Qy Y1 T2Vyy Oy ’ng O‘ix O‘iy Yy Cy V1,

ey Vaw Qay Yy X N —3Vay Vaw Vay Yy Oy Q1 —Vay Coy Yy Oy N 375, a2, vy a2y ar M
oy e Oy Yy 1 Sy Vap Qay O Y1 HOYD, Qs Yy Ve Q2 @ Y1 =375, Q2y Yy Qay O M
=672, Qo Yy Vew Oy O 1 +37Va, A2, VD Qay 02 01 75, a3, o 1 =393, aZ, o a2, oy
Qi *Q’Yiy Yoz Qzy Xz O‘g M +2%2y Yz O‘iy 72 Qzz Oy 71 77%@; o, '72 O‘iy Ay V1 —2Yay Vaa
Uy Yy Oaw 01 +275y Vox Cay Oaw O Ty 01 =Yy Via Oy Oy Yy 01 F72, 05y Yy 01 +377, 72,
aiy '75 ayz; aq _G'Vg%y Ay ’Y; Vaxx aiy ayz; 71 +6'7§y Az 73 Vaxx O‘iy Qy Q1 _S'Va%y 73m aiy Yy O‘z
4! +7§y a?v;v 7;1 agy Qag,

Yoy Qo Vo O 0 M Ve Vie 0oy OF Yy 01 U Vor O3y O Wy 01 Y3y 0G4 05 Yy Oy N Y2
gy %y 'ng O‘g V1 +2%2y Vau O‘iy Yo O ’Y; Qy Q1 +27§y g Vo O 73 Qzy Q1 +4'ng QAzz Va
Yz O‘?g P)/y aa:y a; 71 —‘Wgy Oy Vo Vax ai '75 amy ay aq _2’\/§y aiz Yz ai az ’Yy 71 +2’7§y O[%z
Vo 02 ay V2 a1 =3, 02, V2w 2y 01 —Ya Vie Ay 02 Y2 Qy Y1 FYay Vi 02, V2 0 0 T
Yoy Yoz Cay Vo Qo Oy Yy Q1 +272 Vay Qoy Yy O M Q=275 Yoy Oy Vg Oy Q@1 273 Yaw
O‘iy Yy 0‘2 V1 Qzz =273 Vaa O‘iy Yy 0412; Ty Qzx Q1 +Vay Vo aiy % '75 Oy M +73 Ay az, ’Yiy
a2 Yy a1 429 Yer Q2 Vay @2 Vo Qe Oy V1 —2V0 Yex Oy Yoy O Vo Qga 01 —492 Yau 02,
Vey Qx Yy O V1 Qe T4Y7 Yaw Oy Yoy O Vg Oy Qg 01 +2Y2 Quy Vo Qo O Q2 Yy 71 =275
Quy 'ng ag ay az, '7,5 a1 _27%7; Oz Vi Vox O Oy ag 71 +2’Y§y Qe Vi Vow Oz Qay 0‘; Ty Q1
Y YR O, 8 YL =R, 02, OB VS =292, Qaw Yaw OO Y Oy V1 Qay —Vay Vew Oy O Ve
a1 =27y 7396 aiy Yz O‘i Yy O{Z Y1 —Va aazcac ’Y%y O{g ’Y; Qzy Oy Y1 +Vz O‘iz 'ng agzg 72 gy Q1,5
6 7Zp Owa Vi OF Yy O VL Vaa 00 VZ O Yy 01 —Vip 02 Yy o1 =672, e VF 0l ) ay o
6720 02, V2 Yy OF ay 1 —0F, V2 Oy M T 00 Yy Oy V1 F3Vas Qa7 02 0 Yy a1 Y5,
ai Ve @y m T, 98 oy vy an —ad, 8 aF vy ay Y1 +3Y5, Qur Ve O Yy 1 —6%ae @2, V2 Yy
i g 290, O Yo vy y 01 =270, 0 Ve Yy O M1 0%, VF aF Yy a1 =392, us Yh OF o)
Y1 3V Qhp Vo Cw O Y1 —3Vaw O2y Vo QO Yy Q1 =372, QawYe O Vo Oy N1 —3Vaw Aoy
Vo ol vp an =203, vy o vy on 208, ) vy 0 1 A30e 05, Y QD Yy ay T,

303, Ve a2 a1 7F 375, ap 2 of s, ab Af 4ald, A8 of =393, of e 9T a1 497 02,
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Figure 3.1: Three resultants are needed to compute the stable intersection.

'7;8 Ol al el +37$Jf ax;c ’YJ: a 71 +37xx Oéxx ’Yx a 041 3awz ’YJL al al At 972;8 Ay 73 Oéi’ B!
al _S’me gy 711? Oé 71 _371% azz FYx g al +97xz Ogy 795 z /yl aq _aiz 73 042 ’7% _73:1: ai

rY:c al 972?2" aa:x ’Yx Oé ’71 aq

3.4 Genericity of Intersection Points

Analogously to Section 2.5, it is studied in this Section the problem of determining
the independence of the intersection points of two curves. Even stronger, the residual
independence of the intersection points of two curves. Of course, it is not true in
general that the intersection points of two curves are points in general position. A
classical example is the intersection set P of two generic cubics in the plane. In this
case, P has 9 points and all of them lie on two different cubics. As there is only one
cubic passing through 9 points in general position, it follows that P cannot be a set of
points in general position. Actually eight of the points determine the ninth ([EGH96])
However, taking strict subsets of P, it is expected that these sets of points are in general
position. This is the aspect we want to explore. The election of appropriate subsets
of the intersection points is done by geometric properties of the corresponding tropical
intersection points.

Theorem 3.12. Let Cy, Cy be two curves of support Iy, Is and Newton polytopes
Ay, Ay respectively. Let ¢ = {qi,...,qn} be a set of points contained in the stable
intersection of C1 and Cy such that it is in general position (Definition 2.12) with
respect to both curves. Let Cy, (respectively 02) be a lift of Cy (resp. Cs), expressed by
a polynomial f, (resp. g) of support Iy, (resp. Iy) and dehomogenized with respect to
an indez ig, (resp. jo) that is a vertex of the Newton Polygon Ay, (resp. Asg). Suppose
that the residual coefficients of the polynomials range over a dense Zariski open subset
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of k91922 gnd let §; be lifts of the points q; to the intersection of the algebraic curves.
Then, the tuple of possible values of (Pc(q1), . .., Pc(qn)) contains an open dense subset
of k>"=2. That is, if the residual coefficients of f and § are generic, so they are the
tuple of coefficients of q;.

Proof. Let
fl — o« Z aixhyign f2 — « Z bjx]jyjzn
(i1yi2)€N (J1.J2)€l2
be two tropical polynomials defining C; and Cs and let

}71 _ Z aixilyig ﬁ — Z ijjly]é

(i1,92)€ (J1,J2)€l2

be the lifts of the curves. Without loss of generality, it is supposed that both polyno-
mials are dehomogenized with respect to two monomials that are vertices of A; and

Ay respectively. Let a; = Pc(a;), 55 = Pc(bj), (v, v21) = Pe(q), o = {eu}, B ={5;},
~v = {7k }- As the points are in general position, it must be the case n < min{d;,do} —1
The proof mimics the reasoning of Theorem 2.11. So, a parametrization of the resid-
ual coefficients of the curves and the points g; is needed. The local equations (f1)g;,
(]?2)% form a linear system of equations in the residual coefficients of the points where
the unknowns are the residual coefficients of the curves. This is a linear system of 2n
equations in at most d; + d2 — 2 unknowns of full rank. It follows that we may take
ap = {aiy, ..., 61—71,—1} residual coefficients of f; as parameters such that the remain-
ing system is determined. Analogously, we may take Gy = {0;,,..., [ 52%71} residual
coefficients such that the remaining system of equations in determined. It follows that
the remaining variables oy, 3; are rational functions of ag, By and . These rational
functions define the parametrization

k51+5272 — k51+52+2n72

(040,50:7) = (Oé,/B,’Y)

of a variety V that can be identified with the vectors of principal coefficients (C1, Ca, q).
Let L be the field of fractions of V. It is clear that every class ~; is algebraic over
k(a, 3) C L and that L = k(ag, fo,) by the parametrization. Thus, {ag, 50,7} and
{a, B} are transcendence bases of the field of rational functions of V. It follows that
kla, B,7] N k[y] = 0, that is, the set of possible tuples of residual coefficients of the
points g; contains a dense Zariski open set. O

Example 3.13. Consider the case of two conics C; = “(—11)+2z+2y-+2xy+0z2+0y>”,
Cy = “0+ 8z + 14y + 20zy + 1222 + 14y?”, their stable intersection is the set of points
{(2,-6),(—4,2),(—13,-14),(—6,—6)}. These four points are in general position with
respect to C7 and Cy so, for any generic lifts of C1, Co, the residual coefficients of
their intersection points are generic. However, consider now the case of two conics
C1 = “0+ (=10)x + (—=10)y + (—10)zy + 022 + 0y*” and Cy = “0+ (—10)z + (—=10)y +
(=10)xy + 122 + 2327, They have only one intersection point of multiplicity 4, taking
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the point three or four times yields to a set which is not in general position in none
of the curves. Hence, the maximal number of intersection points that are in general
position in both curves is 2. So, the drawback of this theorem is that the number n of
points in general position in both curves is not uniform with respect to the supports.
The following is a uniform result that holds for every pair of curves with prescribed
support.

Theorem 3.14. Suppose given two tropical curves Ci, Co with support I and Is
respectively. Let 51, Cs be two lifts of the curves whose principal coefficients are generic
and let ¢ be one stable intersection point. Then, the principal coefficients of ¢ are
generic. That is, if we impose polynomial conditions F' £ 0 to the coefficients of C;
then the possible coefficients of the point ¢ contains a dense constructible set of k2.

Proof. One point ¢ is always in genera position with respect to any curve, so we are in
the hypothesis of Theorem 3.12 O

3.5 Some Remarks

As a consequence of Theorem 3.10, a new proof of Bernstein-Koushnirenko Theorem
for plane curves over an arbitrary algebraically closed field can be derived from the
classic Theorem over C ([Ber75], [Kus76]).

Corollary 3.15. Let ]?, g be two polynomials over K, an algebraically closed. Let
Ay, Ay be the Newton Polygon of the polynomials f and g respectively. Then, if the
coefficients of f and g are generic, then the number of common roots of the curves in
(K*)? counted with multiplicities is the mized volume of the Newton Polygons

M(Af, Ay) =vol(Ay + Ay) —vol(Ay) — vol(Ay)

Proof. If the coefficients of the polynomials are generic, the number of roots in the
torus counted with multiplicities is the degree minus the order of the resultant of the
two polynomials with respect to one of the variables. This number does only depend
on the support of the polynomials, and it is equal to the mixed volume of the Newton
Polygons, because this is the number of stable intersection points of two tropical curves
of Newton polygons Ay, Ay. O

Remark 3.16. Another application of the techniques developed in this report is the
computation of tropical bases. Theorem 1.16 proves that for a hypersurface f, the
projection T({f = 0}) = T (f). This is not true for general ideals. IfZ = (fi,..., fm) C
K[z1,...,z,] and V is the variety it defines in (K*)",

m

TO) < (T,

i=1

but it is possible that both sets are different. A tropical basis is a set of generators
G1s- .., 0r of T such that T(V) = (;_; 7 (gr). In [BJST07], it is proved that every ideal
has a tropical basis and it is provided an algorithm for the case of a prime ideal Z.
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An alternative for the computation of a tropical basis of a zero dimensional ideal
in two variables is the following. Let 7 = ( f g) be a zero dimensional ideal in two
variables. Let Rx, R be the resultants with respect to x and y of the curves. Let P be
the intersection of the projections R, and R,. This is always a finite set that contains
the projection of the intersection of J?, g. It may happen that P if not contained in the
stable intersection of the corresponding tropical curves f and g, though. Let a be a
natural number such that x — ay is injective in P. Let R, = Resy(f(zy ), 9(zy*,y))
be another resultant. Then, it follows that ( f g, R, Ry7 R ») is a tropical basis of the
ideal (f, 7).

Remark 3.17. Along the Chapter, the notion of tropical resultant has been defined
as the projection of the algebraic resultant. It is needed a precomputation of the
algebraic resultant in order to tropicalize it. For the case of plane curves, it would be
preferable to have a determinantal formula. That is, to prove that the determinant
of the Sylvester matrix of two polynomials define the resultant variety. But the proof
of the properties is achieved by a careful look to the polynomials involved, paying
special attention to the cancellation of terms. In the case of the determinant of the
Sylvester matrix, the tropical determinant of the Sylvester matrix is the projection
of the permanent of the algebraic determinant. There are cancellation of terms even
in the equicharacteristic zero case. It is conjectured that still the determinant of the
Sylvester matrix is a tropical polynomial that defines the same tropical variety as the
resultant does. The author has checked that it is the case for polynomials up to degree
four with full support.



Chapter 4

Geometric Constructions

In this Chapter the notion of geometric construction is introduced. A geometric con-
struction can be regarded as an abstract procedure that produces realizations (either
tropical or algebraic) of an incidence configuration. If ¢ is a point in a configuration G
restricted to belong to two different curves Cy, C, it is natural to define ¢ as an inter-
section point of C7 and Cs. The main advantage of this approach is that it allows an
easy comparison between algebraic and tropical realizations of an incidence structure
G using the results in the previous Chapters.

4.1 The Notion of Geometric Construction

A geometric construction will be defined as an abstract procedure that provides an
incidence structure G together with an orientation of G. Hence, we recall some notation
for oriented (directed) graphs.

A directed graph is a graph such that each edge {z1, 22} has a defined orientation
(x1,x2) = 1 — x2. Double orientations in the edges x; — x9 and x9 — x7 are not
allowed. For an oriented edge x1 — x2, we say that z is a direct predecessor of xs
and that xo is a direct successor of x1. An oriented path is a chain of oriented edges
r1 — Tg9g — ... — Ty. If there is an oriented path from z; to x,, we say that zq is
a predecessor of x,, and that x,, is a successor of x1. An oriented cycle is an oriented
path such that its starting node equals its ending node, z1 = x,. A directed graph
without oriented cycles is called a directed acyclic graph (DAG). If G is a DAG, the
nodes = of G that are not the successor of any other node are called sources. Any node
x of a DAG G has associated a depth. If x is a source then its depth is 0. If z is not a
source, let y1,...,y, be the direct predecessors of x. The depth of x is defined as:

depth(z) = 1 + max{depth(y1),...,depth(y,)}
The depth of a DAG G is the maximal depth of its nodes.

Definition 4.1. A geometric construction is an abstract procedure consisting in:
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e Input elements: two finite subsets pg, Bo such that po N By = @ and a support
map
Sup : By =P /o

The set of incidence relations is the empty set J = ().
e Steps of the construction, a finite sequence of different steps:

— Given a support I with §() = n > 2 and n — 1 points {q1,...,qn—1} we
add a new curve C' of support I to 8, we also add new oriented incidence
conditions ¢; — C, 1 <i<n—1.

— Given two curves C1, Cy of support I, Is and Newton Polygons A, As
respectively, we add M = M(A(I),A(I2)) new points g1, ..., qy. We add
the oriented incidence conditions C; — ¢;, Co — ¢;, 1 < < M.

e Output: an incidence graph G provided with an orientation.

A tropical realization of a geometric construction € is a tropical realization of its
associated graph G such that:

e If x € B is a curve and it is not an input element, let I be its support and let
{y1,- .-, ys(r)—1} be the direct predecessors of x. Then x is exactly the stable
curve of support I passing through the set of points {yi, ... s Ys( 1),1}.

e If x € p and it is not an input point, let y1, y2 be the direct predecessors of x and
let {z1,...,2z,} be the common direct successors of y; and yo. Then, {x1,...,2,}
are exactly the stable intersection of y; and yo, counted with multiplicities.

An algebraic realization of a geometric construction € is an algebraic realization of
its associated graph G such that:

o If z € B\ By, let I be its support and let {y1,...,ys)—1} be the direct prede-
cessors of x. Then, x is the unique curve of support I that passes through the

points {y1, ..., ¥s)—1}

e If x € p and it is not an input point, let y1, yo be the direct predecessors of x and
let {z1,...,2,}, n = M(A1,A2) be the common direct successor of y; and ys.
Then, the curves y;, yo intersect exactly in the finite set of points {x1,...,z,}
where the points are counted with multiplicities.

Given an algebraic (resp. tropical) realization of the input elements of a geometric
construction €, there can only be finitely many realizations of € with these input
elements, because the realizations of the rest of the elements are fixed by the input
elements and the steps of the construction. The only possibility to have different
realizations of € with the same input elements is a permutation of the labels of the
intersection (resp. stable intersection) of two curves yi, y2 and the consequent changes
in the successor elements of y1,ys in the construction.
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It is clear that, in the tropical plane, every step of a construction can be performed.
That is, given two curves C, Co, we can always define the set of M(A;, Ay) intersection
points (counted with multiplicities). Analogously, the computation of the stable curve
through a set of points is always well defined. Thus, in the tropical context, given
a tropical realization of the input elements of €, there is always a realization of &€
with these input elements. However, this is not the case in the algebraic case. Two
different curves C1, Cy may share a common component. Here, we cannot define a finite
intersection set with the nice properties the tropical stable intersection has. Even if
the intersection set of the curves is finite, there may not be enough intersection points
in the torus. For example, the lines 3x 4+ 2y +4, 5x + y + 2 do not have any intersection
point in the torus. These degenerate cases should be avoided. So, we need a notion
of a well defined construction. A geometric construction is well defined if it is well
defined for a generic realization of the input elements. That is, let Ry be the space of
algebraic realizations of the input elements pgUBg. In this case, as the set of incidence
conditions is empty, the realization space equals the support space, Ry = Sp. Let L
be the set of configurations such that every step of the construction € is well defined
(that is, the projection into Ry of the algebraic realizations of €). The construction G
is well defined if L is dense in Ry.

It is clear that the oriented graph G of a geometric construction € never has an
oriented cycle, so G is always a directed acyclic graph (DAG). The input elements are
exactly the sources and every node of G has defined a depth. Usually, proofs are made
by induction on the depth of G.

4.2 Relation of the Constructions and the Configurations

In practice, many interesting incidence configurations can be defined as a subgraph
of the graph of a geometric construction. Sometimes we will have to add additional
elements to fit the incidence configuration into the definition of geometric construc-
tion. Hence, we present a characterisation of the incidence graphs G that appear as a
subgraph of the graph of a geometric construction.

Proposition 4.2. Let G be an incidence graph provided with an orientation. Then it
18 the subgraph of the graph of a geometric construction if and only if

e G is a directed acyclic graph, (DAG).

o If x is a vertex of type p, then it has at most two direct predecessor.

If x is a curve of support I, then x has at most §(I) — 1 direct predecessors.

If xz,y are two curves with a common direct successor, then they have at most
M(Az, Ay) common direct successors.

If x and y are two curves with the same support I and both curves have exactly
d(I) direct predecessor, then the sets of direct predecessors are different.
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Moreover, G is exactly the graph of a geometric construction if and only if the previous
inequalities are equalities for every node different from a source.

Proof. Let G be a graph satisfying all these conditions, a construction € can be defined
such that it contains G as a subgraph. Every source of G is defined as an input element.
Suppose defined the construction of every element of depth up to ¢, the definition of
the depth 7 4+ 1 elements is as follows. Let x be a point of depth i + 1, if it has two
predecessors y, z, then they have at most M(A,, A,) common direct successors. If
there are not enough intersection points, we add points of depth i+1 up to M(A,, Ay)
and define all of them (in particular x) as the intersection of y and z. If = is a point of
depth ¢ + 1 that has only one direct predecessor y, we add a line z as an input curve
(a curve of support {(0,0),(1,0),(0,1)}) as a direct predecessor of x and proceed as
in the previous case. In the case where = is a curve of support I and depth i + 1,
there are at most §(/) — 1 predecessors of . Add to the construction € as many input
points as necessary up to §(I) — 1 and define = as the curve passing through these
points. Note that the last condition of the hypothesis disallow the construction to have
repeated steps. If two curves z and y of the same support I have both §(I) direct
predecessors, then the set of direct predecessors is different, so x and y are curves
obtained by different steps.

This method defines a construction € that contains G as a subgraph. It is clear
that G is exactly the graph of € if and only if the equalities in the hypothesis hold. [

One might be tempted to add additional allowed steps to a construction besides
the two steps defined in 4.1. In particular, a common step in Classical Geometry is
to choose a point in a curve. Proposition 4.2 proves that this step does not increase
the expressivity of the constructions. If € is a geometric construction such that the
additional steps of taking a curve through a point or taking a point inside a curve
are allowed, then the graph of € is the subgraph of another construction €; without
these additional steps. So, in practice, we may work with this additional step with the
agreement that “choosing a point in a curve is essentially equivalent to add an input line
(curve of support {(0,0),(1,0),(0,1)}) to our construction, intersect the line with the
curve and choose an intersection point.” See for example Theorem 5.6 for an example
of this technique of adding additional elements to a familiar incidence configuration in
order to obtain a geometric construction.

The advantage of the construction method over a direct approach to the study
of incidence configurations is that the problem is reduced to lifting the steps of the
construction. This problem that has been solved in Chapters 2 and 3

4.3 Lift of a Construction

Let € be a geometric construction of graph . This Section deals with the problem of
lifting a tropical instance of GG obtained by the construction to an algebraic instance.
Let Hg be the set of input elements of € and h a tropical realization of Hy. The
steps of the construction define a tropical realization p of G. On the other hand, let
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h= T~1(h) be any algebraic realization of Hy that projects onto h (recall that this lift
is not unique). Then, there are two potential problems. First, it is possible that € is
not well defined in h. Second, if the construction is well defined and p is the algebraic
realization of G obtained from h, it is possible that T'(p) # p. In this Section we study
conditions for the lift 77!(h) such that the following Diagram commutes:

(K*)2 T2
Input h A Input A 41

Output p z, Output p

A first step is, given an instance of a geometric construction, define sufficient resid-
ual conditions on the lifts h of the input h for the compatibility 7'(p) = p. In order to

do this, let {C1,...,Ch,q1,...,qn} be the input elements of a geometric construction
¢, curve C; of support I;, point ¢; € (T*)%2. Take N = 2m + > 1 ,(6(I;) — 1) and
let {f1,.-., fn,@1,s---,Gm} be a set of lifts of a concrete tropical instance of the input,

fi = Z(k,l)eli "dl('kl)xkyl, g = (@;,@?) We are going to compute a constructible set
G C (k*)N , not always empty, that encodes the residual conditions for the compati-
bility of the algebraic and tropical construction. We are going to define two auxiliary
sets T and V first. The set T is defined adding the residual restrictions obtained by
Theorems 2.10 and 3.10 that ensure that each step of the construction is compatible
with tropicalization. Let

fi = Z aélﬁl)xkyl”a 1 < 1 < n,
(k,hel;

¢ =(gj,4}),1<j<m
be the tropical input elements. Take a generic lift of the input

fi= > Gty 1<i<n,
(kD)el;

G=(G.¢)1<j<m

and Vp = {O‘ék,l)’Vg} is a set of indeterminates where Pc(a’fkvl)) = afk,l)? Pc(@}) = fy;
These indeterminates will describe &. Perform the construction with this data as
follows.

Start defining the constructible set T = (k*)N = {x € kN]a€k7l) # 0,7 #0,1 <
1 <n,1 <j<m}and V =Vy. We are going to redefine 7" and V inductively at each
step of the construction. Suppose that we have defined V and the constructible set
T C (k*)V for the construction up to a construction step. We redefine T after the step
as follows: For the case of the computation of the curve C' of support I passing through
0(I) — 1 points, we have to solve a system of linear equations. The coefficients of C are
rational functions of the variables V. Theorem 2.10 provides sufficient conditions in
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the variables V for the system being compatible with tropicalization. This conditions
are A i(Pc(A") where A is the tropical matrix of the system of linear equations.
We add to V §(I) — 1 new variables si,...,55_1 and we consider T C (k*)K+0-1,
We add the conditions A AZ(PC(AZ)) # 0 to the definition of 7" and the equations
A i (Pe(AD)) = 5;A 4io (Pe(A0)) = 0, where g is a dehomogenization variable of C'. We
follow the construction with C among our available objects.

Suppose now that our construction step consists in the intersection of two curves
[, g of support Iy, I, respectively. This stable intersection can be determined using
the technique of resultants presented in Chapter 3. That is, let R, (x) = Resy(f 9),
Ry( ) = Resy( £.G) be the algebraic resultants of the two algebraic curves. Let R, (x),
R, (y) be the tropical resultants of the curves. Let a be a natural number such that
x—ay is injective in the finite set fNgNR(x)NR(y), as in the conditions of Theorem 3.10.
Let R.(z) = Resy(f(zy ,9),9(zy",y)). If ¢, are the variables of V' corresponding with
the principal coefficients of f , g, Theorem 3.10 provides sufficient conditions of the form
u(t;) # 0 that ensures that the algebraic and tropical resultants are compatible. We
add these polynomials u(t,) # 0 to the definition of 7. In the tropical context, there
are M = M(Ay, Ay) stable intersection points b; = (b;, b?) We add 2M new variables
5]1-, s?, 1 <j <M toV. Consider T contained in (k*)%+2M_ For each tropical point
bj, let s;,,...,sj, be the algebraic points projecting into b;. We take the following
equations:

(Ex)b]l = H(m - Sglr)v (Ey)b2 - H(y - 8?7“)7
r=1 r=1
(EZ)“b]l(b?)*“” = H(z —55,(55.)7%).
r=1

In this way, the coefficients of (Ry),1, (]Aéy)bz and (Ez)ubl(bz)fa” are identified with sym-
J J JINT

31 , s?r and s}r(si)*“ respectively. We add these identifications
to the definition of 7. In this way, we ensure that there is a bijection between the

roots of the resultants and the variables s;. We also add the residual conditions of the

metric functions in s

curves over the intersection points fb (s} 0, g, (s S j) = 0, and the conditions of

,57) =
the points being in the torus s; 52 £ 0. JWé continue the construction with the points
(s}t b , s%t b ). Notice that we are only defining the principal terms of the elements,
because this is all the information needed for the Theorem. After the whole construc-
tion, we have defined a constructible set T" that characterizes the possible principal
term of every element in the construction. Finally, & is defined as the projection of
the set defined by T into the space of variables V.

Definition 4.3. The set & previously defined is called the set of valid principal coef-
ficients of the input elements.

Theorem 4.4. Let {C1,...,Ch,q1,...,qm} be the input elements of a geometric con-
struction €, curve C; of support I;, point q; € (T*)2. Take N =2m + > 1 (6(L;) — 1)
and let {fl, .. fn,ql, ..y Gm} be a set of lifts of a concrete tropical instance of the
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input, fi = Xner, U@ G = (@), PHAyy) = afyyt o, PHT) = 7t
Let & C (K*)N be the set of valid principal coefficients of the input. Then, if the vector

(a%k;,l)v e aa?m)a%la e 7’772n) € (k*)N

of principal coefficients lies in &, the algebraic construction is well defined and the
result projects onto the tropical construction.

Proof. Suppose that the vector (O‘%k:,l)’ ce a?w), Y,...,72,) belongs to &. We are
going to construct suitable algebraic data. Perform the steps of the construction. For
the curve passing through a number of points, the set & imposes that there is only one
solution of the linear system we have to solve and that this solution projects correctly.
For the case of the intersection of two curves, the resultants R, R,, R, are compatible
with projection. So, the curves intersects in finitely many points in the torus and these
points projects correctly onto the tropical points. So this step is also compatible with
the tropicalization. ]

In this theorem, it is not claimed that there is always a possible lift, as Theorem 1.30
does. It is possible that the set & is empty. In this case, the theorem do not yield to
any conclusion. In Section 4.7 we will discuss what can be said if & is empty.

4.4 Admissible Constructions

This Section deals with the search of sufficient conditions for a construction € that assert
that the set G is non empty for every realization h of the input. For example, let € be
a depth 1 construction. There are only two kind of elements, input elements and depth
1 elements. If the realization h of the input elements is generic, by Theorems 2.10
and 3.10, every depth 1 element is well defined and projects correctly. Thus, every
depth 1 construction can be lifted to the algebraic plane. Furthermore, if the vector of
coefficients of the depth 1 elements is generic, we would be able to construct some other
depth 2 elements from them. By Theorems 2.11 and 3.14, we already know that every
single depth 1 element is generic. However, it may happen that there are algebraic
relations among the set of depth 1 elements that do not allow to apply induction in
further steps. So, in order to use an induction scheme over the construction, we need to
ensure that in future steps of the construction we will only use elements that are generic.
Next Definition describes constructions such that this genericity of the elements always
holds, whatever the input elements are.

Definition 4.5. Let € be a geometric construction. Let GG be the incidence graph with
the orientation induced by the construction. The construction € is admissible if, for
every two nodes A, B of GG, there is at most one oriented path from A to B. In the
case where the construction is not admissible, let A, B two elements such that there is
at least two paths from A to B. This is denoted by A = B.

The main Theorem of the Chapter proves that if € is an admissible geometric
construction, then every tropical realization of € can be lifted to a compatible algebraic
realization.
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Theorem 4.6. Let € be an admissible geometric construction. Then, for every tropical
instance of the construction, the set & defined in Theorem 4.4 is nonempty and dense
in (k*)N. Moreover, for every element X of the construction, its possible values, as
the input elements range over &, contains a dense open subset of its support space. In
particular, every tropical instance of the construction € can be lifted to the algebraic
plane (K*)2.

Proof. We prove the Theorem by induction in the depth of the construction. If the
construction is of depth 0, then there is nothing to prove, because the set of steps
is empty and & = (k*)" which is dense and the values of each element are dense in
their respective space of configurations. Suppose the Theorem proved for admissible
constructions of depth smaller or equal to ¢. Let € be any admissible construction of
depth 7+ 1. For each element X of depth i+ 1, let Y7,...,Y,, be the direct predecessors
of X. By induction hypothesis, the set of possible values of Y; contains a dense open set
in its space of configurations. As the construction is admissible, the set of predecessors
of Y; is disjoint from the set of predecessors of Y}, if i # j. Because if both elements
had a common predecessor A, there would be a double path A = X, contrary to
the hypothesis. Hence, the coefficients Y7, ...,Y, are completely independent and the
possible tuples (Y7, ..., Y},) are just the concatenation of possible values of coefficients
of each element Y;. By the results in the Theorems 2.11 and 3.14, as the elements Y
are generic, so is X. That is, the possible values of X contains a dense open set of its
support space. The conditions imposed by the definition of X to the auxiliary set T in
Theorem 4.4 are a set of inequalities in the tuples (Y7,...,Y,,) that are verified on an
open set. Likewise, the restrictions in the elements Y impose other restrictions to the
its predecessors. Again, this restrictions are verified in an open set, we are explaining
this with more detail:

If Y; is constructed from elements Zj;, there is a set of restrictions fs(Z;;) # 0,5 € S
that ensure that Y; is well defined and it is compatible with tropicalization. Let
g(Y1,...,Y,) # 0, 1 € L be the polynomials imposed by X to be well defined and
compatible with tropicalization. In addition to this, if ¥; = (le, ... ,Y;”), each vari-
able Y] is algebraic over the field p(k)(Z;;), where p(k) is the prime field of k. If
we multiply each polynomial ¢;(Y1,...,Y,) by its conjugates in the normal closure
of p(k)(Zji) C p(k)(Zj;,Y:), we obtain some polynomials G;(Zj1, ..., Zj,). If neither
Gi(Z;j) nor fs(Z;;) are zero, then the elements Y; and X are well defined and are com-
patible with projection. These polynomials define possible valid principal coefficients
for the subconstruction Z;; — Y; — X. Applying this method recursively, we obtain
a set of conditions in the input elements. Let &; the set of good input elements for
every subconstruction of € consisting on the elements of depth up to ¢. By induction
hypothesis, &; is non empty and contains an open Zariski set. Intersecting this set
with the open sets induced by each element X of depth ¢ + 1 to be compatible with
tropicalization, we obtain that the required set &;41 contains a dense open Zariski
set. O

Now, we show an example of a non admissible construction € with a tropical real-
ization that cannot be lifted to the algebraic plane.
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Figure 4.1: The construction graph of p

Example 4.7. Recall the following example from Chapter 1: Suppose we are given
a, b, c three points in the plane. Let [ = ab, [y = ac be the lines through these points
and p = [ Nle. The construction of /1 and Iy is admissible, but not the construction of
p, because of the double path a = p.

So, after specialization, there may be some algebraic relations making & empty.
For example, take a = (0,0), b = (—2,1), ¢ = (—1,3). Tropically, the construction
yields i1 = “lz 4+ 0y + 17, lo = “3x + Oy + 3” and, finally, p = (0,1) # a. But, for
every lift of the points a, b, ¢ to the algebraic plane K such that the construction is well
defined, we will obtain that p = @, so no lift is ever compatible with tropicalization. If
we follow the proof of Theorem 4.4, the lifts of the input elements must be of the form:

@ =(ar,a), b= (B1t% Bat ™), T= (mit, 2t ?),
where terms of bigger order do not affect the result. In this case,

> —Bot™! + —aq + Git?
I = T+ y+1,
a1 fot™ — agfrt? a1t — agf1t?

~ —’}’Qti?) + ao —a1 + 7t
l2 = _3 xr _3 y
Q1Y2t7° + a1t a1yt ™° + azyit

Which tropicalize correctly to {1 and ls (as expected, because the construction graphs
of I3 and Iy are trees, hence admissible). Now, we want to construct p. If we try to
obtain the y-th coordinate of the root, we obtain that it has an order greater than —1.
Actually, as p must be a, the y-th coordinate must be of order 0.

We observe that the same lifting problem appears under small perturbations of
a, b and c¢. So this example is not an isolated case and it cannot be avoided by
perturbations of the input points as in the case of stable intersection. These bad
conditioned cases arrive frequently when we are working with non trivial constructions.
So, it is reasonable to work with more specific constructions, like admissible ones.
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4.5 Limits of the Construction Method

Tropical geometric constructions are a useful tool when dealing with non-trivial inci-
dence relations between varieties. It agrees naturally with the stable intersection of
the curves taken in consideration. Moreover, it permits to arrange the computations
focusing on the smaller set of input objects. This Section deals with the problem of
quantifying how well do a realization of a construction behaves well with respect to
tropicalization. In order to determine the potentially good situations, we focus on the
following concepts:

e An abstract tropical geometric construction. That is, we do not specify the
coordinates of the points, neither the concrete curves, only their support and the
steps of the construction. Moreover, we ask it to be well defined in both fields K
and k.

e The specialization of the input elements of the abstract construction to concrete
elements.

e A concrete lift of a given set of input elements.

These concepts are manipulated by adding quantifiers relating them in order to
obtain a statement like:
“K1 tropical construction Ko specialization of the input data K3 lift of these input data,
diagram 4.1 commutes”.
Where K, Ky, K3 € {V, 3}. We arrive naturally to the following problems:

Questions 4.8.

1. For all constructions, for all input tropical data and for all lifts of these tropical
data, diagram 4.1 commutes.

2. For all constructions and for all input tropical data there exists a lift of these
tropical data such that diagram 4.1 commutes.

3. For all construction, there is a choice of the input tropical data such that for all
lift of these tropical data, diagram 4.1 commutes.

4. There exists a construction such that for all input tropical data and for all lifts
of these tropical data, diagram 4.1 commutes.

5. For all constructions, there is a choice of input tropical data and there is a lift of
these tropical data such that diagram 4.1 commutes.

6. There exists a construction such that for all input tropical data there is a lift of
these tropical data such that diagram 4.1 commutes.

7. There exists a construction and there is suitable input tropical data such that for
all lifts of these tropical data, diagram 4.1 commutes.
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8. There exists a construction, particular input tropical data and a suitable lift of
these tropical data such that diagram 4.1 commutes.

Clearly, these relations are not independent, ranking (non linearly) from item 1,
which is the strongest, to item 8, the weakest one. Checking this problems gives an
overview of the typical problems we find when dealing with incidence conditions in
Tropical Geometry. The only statements that hold are items 5, 6, 7 and 8. For the
sake of brevity, we will consider mostly the case where our curves are lines on the plane.

Proposition 4.9. The only items of problem 4.8 that hold are 5, 6, 7 and 8.

Proof.

e Take two tropical lines in the plane that intersects in only one point. Then,
for all lifts of this two lines, the intersection point always tropicalizes to the tropical
intersection. So statement 4.8.7 holds and, from this, we derive that 4.8.8 also does.

e Choose two curves that intersect in an infinite number of points. In Theorem 1.4,
we are given a way to compute lifts that intersects in non stable points. So the property
of agreement with tropicalization is not universal for the non transversal cases. This
simple example shows that statement 4.8.1 does not hold. Using duality, we observe
also that the concept of stable curve through a set of points does not work for every
input data and every lift (ie. there will always be exceptional cases). Thus, since every
tropical geometric construction consists of a sequence of these two steps (computing
the stable curve through a set of points, or computing the stable intersection of two
curves), we deduce that statement 4.8.4 neither holds. In particular, if we are able to
find a construction such that for all input data we arrive to these exceptional cases, we
will find a counterexample to question 4.8.3. An example of such a construction is as
follows:

Input: Points a, b, ¢, d, e
Depth 1: Compute I := ab, ly := @c, I3 := ad, I, := ae
Depth 2: p1a =1 N2, p13 = L1 N3, p1a = LNy, pa3 = la N3, paa = loNly, pga = 13Ny

First, we compute four tropical lines through one fixed point a. If point a is exactly
the vertex of one of the lines, then two of the input points are the same and there is
an infinite number of lines passing through these two points. On the other hand, if
a is never the center of the lines, it must be in one of the three rays. There are only
three possibilities for the rays, the directions (—1,0) (0,—1) and (1,1). As there are
four lines involved, two of the branches must have the same directions, so these two
lines intersect in an infinite number of points and we are done.

e To go further in the analysis, it is necessary to have more tools that takes care
of more complicated constructions. Theorem 4.6 establishes that for an admissible
construction and for all realization of the input elements, there always exists a lift
of these elements such that all the steps of both constructions are coherent with the
tropicalization. In particular, we have the validity of question 4.8.6 for every admissible
construction.
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e Also, a counterexample to 4.8.2 is given in Example 4.7. Take three points a,
b, ¢. Construct the lines I; = ab, l = a@c and the point p = I N ly. If we perform
this construction in the projective plane with three points not in the same line, we
will always find that p = a. But in the tropical case, taking a = (0,0), b = (—=2,1),
¢ = (—1,3), we arrive to p = (0,—1) # a. This simple example shows a concrete
construction and input data such that for all lifts of the input elements, diagram 4.1
does not commute. Note that in this case there are double paths in the construction
graph. If we follow the method exposed in Theorem 4.4, then, for all lifts, we arrive
that the constructible set & is contained in 0 # 0. That is, the set of valid principal
coefficients is empty.

e Finally, let us prove 4.8.5. This case of course cannot be restricted to the linear
case. Suppose given a geometric construction, we choose as input data the most de-
generate case possible: if we have a point, we choose the point to be py := (0,0) and if
we have a curve with prescribed support, we take all its coefficients equal to zero. As a
set, it consist in some rays emerging from the origin (0,0) in perpendicular directions
to the edges of the Newton polygon of the curve. The stable intersection of any two
such curves is always the isolated point py with the convenient multiplicity. The stable
curve with prescribed polytope taking all elements equal to the origin is the one with all
coefficient equal to zero. It only rests to check that there is a lift compatible with this
tropical construction. As the construction is well defined, it is realizable for the generic
input in (k*)?. This construction can be embedded in (K*)? with all the elements of
order 0. O

4.6 Extension of the Results

As an application of the construction method and Theorem 4.6, we are able to extend
Theorem 1.30 to a wider set of incidence configurations.

Theorem 4.10. Let G be an incidence structure, suppose that we have a tropical
realization p of G such that, for every curve C, the set of points incident to C are in
generic position with respect to C. Then, the tropical realization can be lifted to an
algebraic realization.

Proof. For each curve C of support I, let ¢1,...,q, be the set of points incident to
C. By definition of points in general position, we can extend this set to a set of
points qi, ..., gs)—1 such that C' is the stable curve through these points. Add to
the configuration G these additional points for every curve C'. We obtain in this
way an incidence configuration GG1 that contains G as a substructure and such that
every curve C of support [ is exactly the stable curve passing through the points
q1,---,4s(r)—1- Hence, by Proposition 4.2, G is the graph of a geometric construction
€. The input elements are the set of points ¢; and every curve is the stable curve
through {q1,...,gsr)—1}. This construction is admissible, because it is of depth 1. By
Theorem 4.6, every tropical instance p; of € can be lifted to an algebraic instance p;
of €. In particular, the instance p of G we started from can be lifted to the algebraic
plane. O
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This Theorem shows how the notion of points in general position helps to the
problem of lifting an incidence configuration. Our next goal is to apply this notion to
more complex configurations coming from geometric constructions. The key idea for
this application is that points in general position with respect to a curve C' behave like
generic points for the purposes of Theorem 4.6.

Theorem 4.11. Suppose that we are given a non admissible geometric construction €
but such that, the only obstacle to be an admissible construction is that we have two
curves C1, Co with intersection Q = {q1,...,qn} such that Q is used twice to define
some successor element x. That is, every double path A = B in &€ can be restricted to
a double path from both curves passing through @,

Ci=Q=Band Co =Q = B.

Suppose we have an instance p of this construction. If, for every element x which is
the end of a double path, the set Q, = {q; € Q | ¢ — =} is in general position in
C1 and Cy, then the tropical instance can be lifted to an algebraic realization p of the
construction. More concretely, the set © of Theorem 4.4 associated to p contains an
open dense subset of (k*)N.

Proof. First, we are proving that, for any single node = of €, its construction can be
lifted. Let x be a node of €. Let €, be the minimal subconstruction of € such that
it contains every input element of € and the element x. This minimal subconstruction
can be defined as follows. First, we consider as nodes of €, the input elements of €, the
node x and every predecessor of x. The incidence conditions will be those induced by €.
Second, we complete it with the necessary nodes of € as in the proof of Proposition 4.2.
Actually, the only nodes we have to add are the intersection points of two curves ¥,
y2 that have to be intersected (necessarily, these curves will be predecessors of x). Let
&, be the set of valid input elements of the construction €. By the definition of &,

So, if every &, contains a non empty open Zariski set of (£*)V, the same occurs for &.

If ¢, is admissible, then &, contains a non empty Zariski set by Theorem 4.6. If
¢, is not admissible, the set (), contains at least two elements. Moreover, for every
node y in €, it happens that @, C Q.

Consider now the minimal subconstruction €. containing every input element and
the set Q. This construction is admissible, so Gl is dense. On the other hand, the
possible principal coefficients of the set (), form a dense set of its space of configurations
by Theorem 3.12. Let ¢2 the subconstruction obtained from €, by deleting every
predecessor of the points in @, and the intersection of C7; and C3 not in Q.. This
construction is also admissible, because the curves C7, Cy have been deleted among
other objects. Hence G2 is also dense. The projections of the set &1 and &2 into the
support space of ), contains an open dense subset, their intersection also contains a
non empty dense subset. This means that there are values of the principal coefficients
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of Q. that are generic and compatible either with €. and €2. It follows that for a
residually generic lift of the input elements of €,, very step will be well defined and
compatible with tropicalization. Thus, &, is contains a dense subset of (k*)V. O

In contrast to Theorem 4.6, this Theorem does not work for tropical realization of a
particular construction €, because it is stated in terms of the realization. It needs some
additional hypothesis in the construction (some points are in general position) that
depend on the concrete realization. It still has its applications, such as Theorem 5.9.

4.7 Impossibility for the Existence of a Lift

This Section deals with non admissible constructions, suppose that we have a non
admissible geometric construction € and a tropical instance of it such that the con-
structible set & is empty. Then, we would still like to know if it is possible to lift
the construction. The only result that affirms that it is impossible to have a lift is
Proposition 2.7. We can provide a similar notion for the stable intersection of curves.

Proposition 4.12. Let f,g be two tropical curves, let {y1,...,7} be the residual
conditions for the compatibility of the algebraic and tropical resultant R(x) described
in Lemma 3.9. These are the residual conditions vy; # 0 such that i is part of two
consecutive points in the Newton diagram (Definition 1.7) Then:

o [If every polynomial ~y; is a monomial, then, the algebraic resultant is always com-

patible with tropicalization T(R(z)) = T (R(x)).

o If one polynomial v; is a monomial and it is, then the algebraic resultant ﬁ(w)
is compatible with tropicalization if and only if the rest of the polynomials vy; are
non zero.

o If every polynomial ; is zero, we cannot derive any information about the com-
patibility.

Proof. R(z) = Yoo hiat, R(z) = g hiz®. If 7; # 0 then the principal term of hy is
exactly ~;t~". The conditions searched for the compatibility of the resultants is that
the elements ~; associated to an index ¢ such that it is part of two consecutive points
in the Newton diagram of the polynomial do not vanish. If one y; is a monomial, then
it will never evaluate to zero. So the Newton diagram will not change if and only if the
rest of the 7, do not evaluate to zero. Hence we have the first two items. On the other
hand, if every ; evaluates to zero, we cannot know how the Newton diagram of ﬁ(x)
is, it may change or not. O

Definition 4.13. Let € be a construction and p a tropical realization of it. Let x be
a node of €. We say that z is a fized element of € if:

e 1 is an input element of €.
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e z is the curve of support I passing through {yi,..., Ys( -1} and at least one of
the pseudodeterminants associated to the linear system defining x is regular (See
Proposition 2.7).

e 1 is an intersection point of y; and w9 and, if C7, Cy are the tropical realization
of curves y1, yo2, then, at least one the residual conditions ~;, (z), vi,(y) and
Vi (xy~*) of each resultant R(z), R(y), R(zy~*) defined in Theorem 3.10 is a
monomial.

Let € be a geometric construction and p a tropical realization of €. Suppose that
the set & associated to the tropical realization is empty. Then, during the definition
of the auxiliary set T" in Theorem 4.4, there will be a step such that 1" was not empty
before the step, but the restrictions added in this step forces T' to be empty. This step
consists in defining an element x. Let hq,..., A, be the residual polynomials codifying
the compatibility of this algebraic step with tropicalization defined using Theorem 2.10
and 3.10. Suppose that at least one of the polynomials h; does not evaluate to zero.
Then:

e [f every predecessor of z is fixed, by Propositions 2.7 and 4.12, there cannot be any
lift of the tropical realization of €. Because for every lift of the input elements,
every lift of the predecessors of x will tropicalize correctly, but the element x
either is not well defined, or it will never tropicalizes correctly.

o If at least one predecessor of x is not fixed, then, there might be a lift of the
tropical realization of € or not. But at least, there cannot be any lift with
residually generic input elements. There must be some algebraic relations among
the residual coefficients of the algebraic input elements of €.

On the other hand, if every residual polynomial h; evaluates to zero. We cannot
conclude anything, there might be a lift of the realization or not. And this lift may
work for the generic input or not. In this case the residual coefficient approach is not
enough to answer the question.

For most geometric constructions the remarks above are enough. That is, if for one
tropical realization its associated set & is empty, then either we can deduce that for the
generic lift of the input elements the algebraic construction will not project correctly.
Or even that there will be no lift at all. In fact, for every geometric construction
that we have faced during the development of this theory, every instance of every
construction fell in this two cases. It is difficult to find a construction and an instance
of the construction such that the construction method and the set & does not provide
any information. The following is the only one example of this peculiar behaviour.

Example 4.14. In this example, for convenience with the geometric language, we
will think that the algebraic torus (K*)? is contained in the affine plane and this one
contained in the projective plane. With this in mind, we can talk about concepts such
at horizontal line (line of support {1,y}) or the line at the infinity. This is intended
only to simplify notations and use a more natural language, but it does not interfere
with the result itself.
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ine at infinity

Figure 4.2: How to construct a parallel line through one point

First, we need a specific construction. Given a point a and a line . We look for
a geometric construction such that, in the algebraic plane, it defines the parallel of [
passing through a. The difficulty is to define it with the restricted allowed steps of
Definition 4.1.

I'=Parallel(a,l,q)

Input:
points  a,q
line 1
Depth 1:

curve  v1  ofsupport {1,z} passing through a
curve U2  ofsupport {1,z} passing through ¢
curve  h; ofsupport {1,y} passing through ¢
curve 11 ofsupport {1, z,y} passing through {a,q}

Depth 2:
point pir=INmr
point  po =1I1Nwoy

Depth 3:

curve  hy  ofsupport {1,y} passing through p1
Depth 4:

point  p3 = ho Ny
Depth 5:

curve 72 of support {1, z, y} passing through {p2, ps}
Depth 6:
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point  pg =1roNhy

Depth 7:
curve [’  ofsupport {1, z,y} passing through {a,ps}

In the algebraic case, if the input elements a,x,l are generic, then the construction
yields a realization of the hypothesis of Pappus Theorem with one of the lines being
the line at infinity and two of the points are points with projective coordinates [0 : 1 : 0]
and [1: 0 : 0], see Figure 4.2. Hence, by Pappus theorem, the lines [, I’ intersects at the
line at infinity. Thus, I’ is the parallel to [ passing through a. The same approach work
if we replace [ (a curve of support {1, z,y}) by a line passing through the affine origin
of coordinates (curve of support {z,y}). We will use this construction as an auxiliary
for the following;:

Take as input points a, b, ¢, g, let 0 = (0,0) be the origin of coordinates in the affine
plane K2, a line through a point p and o is just the curve through p of support {z,y}.
Consider the following construction:

Depth 1: I{ = oa, Iy :%7 l3 =oc

Depth 2-8: Iy = Parallel(a,ls, q), l5 = Parallel(b,ly,q)
Depth 9: d=14N15

Depth 10: lg = od

Depth 11-17: Iy = Parallel(d,ls, q), ls = Parallel(c,lg, q)
Depth 18: z =17 Nlg

Depth 19: lg =az

In the affine plane, we have constructed the parallelograms oadb and odzc. Hence,
if a = (a1,a2), b = (b1,b2) and ¢ = (c1,¢2), then d = (a1 + by,as + b2) and z =
(a1 +b1+c1,a2+ba+c2). Notice that this construction if far from being an admissible
one.

Take the following tropical input elements of this construction, a = (0,0), b =
(—=1,-1), ¢ = (—2,—2) and ¢ = (2,—1). For this input, we have that z = (0,0) and
lg = “Oz 4+ 0y + 0”. The constructible set & associated to this input is empty. Lifts of
the input elements are

A= (o14...,00+...),b= (Bt +...,0t+...),
c= (71t2+...,72t2+...),a: (nlt_2—|—...,772t+...)
The algebraic computations of Z leads to the point
5:(0514-...,0424-...).

That is, the principal term of a and z are the same. So, we cannot compute the
algebraic line lg neither we cannot deduce if the generic lift of the input will work or
if there will be a lift at all. However, it can be checked that the set &, associated to
the subconstruction that defines z is nonempty and dense {82 — n2 # 0, ae 31 — a1 32 #
0, —a1y2 + y100 # 0} N (k*)g
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In fact, for this construction and this tropical realization, the generic lift works and
it is compatible with tropicalization. To explain this, we know that z = a + b+ e
If @ = (a),d,),b = (Vyt,bht), ¢ = (12, t?), q = (@it~ 2 Gyt), where az,bl, c;, q; are
clements of valuation zero. Then Z = (@) + byt + &%, dy + byt + &t?) and Iy =
(6/275 +5’2£2)$ + (—bllt —51t2)y+ (5§b& —Zillbé)t + (5’2511 —Zill%)tQ =0. If ag81 — a1 09 75 0
then T'(lg) = “(—1)z + (—1)y + (—1)” = “Ox + 0y + 0” = lo.

As a negative example, take the same construction but we take as input element
b = (—1,-2), then we will arrive to the same situation of undecidability as above,
the set & is again empty. If we take as before generlc lifts of the input elements,
but this time b = (b}t, b’tz). Now, z = (a; + bht + &t2,d, (b’ + &)t and Iy =
(b + c2)tx + (—b, — &)y +abb), + (@, — b’ —a)cy)t. Then T(lg) “(=1)z+0y+r7,
where r > 0. So it never tropicalizes Correctly.



Chapter 5

Application: A Transfer
Technique in Tropical Geometry

5.1 Notion of Constructible Theorem

In this Chapter we present the main application of the tools and results obtained so far.
Many classical theorems in Projective Geometry deal with properties of configurations
of points and curves. Thus, we can use the relationship between the algebraic and
tropical configurations in order to transfer a Theorem from Classical Geometry to
Tropical Geometry. So, we need a notion of “Theorem” is terms of configurations. We
propose the following notion.

Definition 5.1. A constructible incidence statement is a triple (G, H, z) such that G
is an incidence structure, H is a geometric construction, called the hypothesis, such
that, considered as an incidence configuration, H is a full substructure of G, H C G.
Moreover,

{raUBc}\ {pr UDBH} = {z},

there is only one vertex = of G which is not a vertex of H, this is called the thesis node.

Let Hy be the set of input elements of H as a construction. Let K be an algebraically
closed field. The incidence theorem holds in K or it is a constructible incidence theorem
over K if it holds for the generic realization of Hy. That is, if there is a non empty
open set L defined in the support space of Hy, L C Sp, such that:

e For every he L, the construction H is well defined.

o If p € Ry is the realization of H constructed from 7L, then there is an element x
such that (p, ) is a realization of G.

In the tropical context, the construction H is always well defined. Every realization
h of the input of H defines a realization p of H by the construction. So, a constructible
statement holds in the tropical plane or it is a tropical constructible incidence theorem
if, for each realization p of H obtained by the construction, there is a tropical element
x such that (p,z) is a tropical realization of G.
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Figure 5.1: Constructible incidence theorem

Example 5.2. There are many straightforward theorems that fit in this definition.
For example, let Hy = {p1, p2, 1}, where p1, ps are points and [; is a line. Let € be the
construction consisting in computing the line I3 through p; and ps. Let x be the thesis
node representing a point and impose the conditions that = belongs to both lines I3
and lo. The vertices of G are {p1,p2,l1,l2}. The edges (incidence conditions) of G are
those of H, {(p1,12), (p2,l2)} plus the edges connecting the thesis node {(x, 1), (z,l2)}.
This statement only asserts that [, [ have a common point. So it holds in every field
K and also in the tropical plane T2.

Of course, this notion is interesting if the thesis node x and the elements linked to it
hi,...,h, form an incidence structure Gy that is not realizable whenever the elements
hi,...,hy, are generic. For instance, the case where z is a line containing three points
h1, ho and hs. Now we prove a transfer result for constructible incidence theorems.

Theorem 5.3. Let Z = (G, H, x) be a constructible incidence statement. Suppose that
the construction H is admissible. If Z holds in a concrete algebraically closed field K,
then it holds for every tropical plane T?.

Proof. First, suppose that T is the value group of the algebraically closed field K such
that Z holds. Let h be a tropical realization of the input elements of the hypothesis
H. Let p be the tropical realization of H constructed from h. As H is an admissible
construction, by Theorem 4.6, the set & defined in (k:*)vN associated to h contains a
non empty open set. It follows that there is always a lift h of h belonging to L and such
that its principal coefficients belong to the set &. Then, we can lift p to an algebraic
realization p of H constructed from h. As Z holds in K, there is an element T such that
(p, Z) is a realization of G. It follows that its projection (p,x) is a tropical realization
of G and Z holds in T.

For the general case, the set L of good input elements of H is definable in the first
order language of the prime field of K. So, if the theorem holds in an algebraically
closed field, it holds over any algebraically closed field of the same characteristic (see
[Rob56]). In particular, fixed a tropical semifield T, there is an algebraically closed
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1 2 3

Figure 5.2: The configuration of Fano plane

valued field IL of the same characteristic as K and whose valuation group is T. Thus,
if Z holds in K, then it also holds in I and hence, it holds in T. ]

5.2 Examples of Theorems

In this Section, some examples of constructible incidence theorems are shown. They
are all classic, but they are rewritten as constructible incidence theorems. There is
an additional problem when expressing the theorems in this way. Usually, it is not
enough to provide a naive construction of the hypothesis, because it is very likely that
the resulting construction is not admissible and Theorem 5.3 does not apply. So, the
presentation of the theorems might seem strange at first sight.

5.2.1 Fano Plane Configuration Theorem

This first example shows the dependence of the characteristic of the field K in order
to derive the validity of a constructible incidence theorem in the tropical context. The
classical Theorem deals with the configuration of points and lines in Fano plane, the
projective plane over the field Fy. The configuration of Fano plane consists in 7 lines
and 7 points as represented in Figure 5.2. This configuration cannot be realized over a
plane of characteristic zero. Over any projective plane over any field of characteristic 2,
if seven points 1,2, 3,4, 5, 6, 7 verifies that the triples (1,2,3), (1,4,7), (3,6,7), (1,5,6),
(2,5,7), (1,4,7) are collinear, then the points (2,4, 6) are also collinear. This Theorem
holds in a field K if and only if the field is of characteristic 2. About the tropicalization
of this Theorem, it was proved to hold in the T? by M. Vigeland using specific techniques
([Vig06]). See also [DSS05] for an application of this configuration to the comparison
of different notions of the tropical rank of a tropical matrix.

Theorem 5.4 (Fano plane configuration Theorem).
Construction of the hypothesis H :
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Input:
points  1,3,5,7
Depth 1:
lines a=13 b=15 c=17
d=35 e =37 J =57
Depth 2:
points  2=anf 4=cNnd 6=>bnNe

Thesis node:  linel
Thesis:  points 2, 4, 6 are collinear (belong to 1)

The construction of the hypothesis is admissible, so we can derive that the theorem
holds in the tropical plane. In brief, this Theorem proves that, if we start with any set
of points 1, 3, 5, 7 in which even we allow repetitions and we perform the construction
steps above, then three mew points 2,4,6 will be obtained, and these three new points
will necessarily lie on a common line [.

5.2.2 Pappus Theorem

This classical theorem was studied from a tropical perspective in [RGST05]. There,
the authors showed that a direct translation of the usual hypothesis of the theorem
does not imply the thesis in the tropical context. On the other hand, they proposed
a constructive version of this Theorem. We proved this constructive version of this
Theorem in [Tab05] using a precursor technique of our construction method.

Theorem 5.5 (Pappus Theorem).
Construction of the hypothesis H :

Input:
points 1, 2, 83, 4, 5
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Depth 1:
lines a=14 b=24 c=34
a =15 b =25 d =35
Depth 2:
points  6=>bNc T=dNec 8=and
Depth 3:
lines a’ =16 b =27 ' =38

Thesis node: — point p
Thesis:  lines a”, b", ", are concurrent (pass through p).

5.2.3 Converse Pascal Theorem

Let 1,2, 3,1, 2/, 3 be six points in the plane, let 7 = 12/N1/2, 8 = 13'N1’3, 8 = 23'/N2/3.
Converse Pascal Theorem proves that if 7,8 and 9 are collinear, then 1,2,3,1’,2/,3’
belong to a conic. The dimension of the space of realizations of a Pascal configuration is
11: 5 degrees of freedom comes from the conic and each point 1,2,3,1’,2', 3’ belonging
to the conic adds one degree of freedom each. If we want to define a constructible
theorem such that the thesis node is the conic, then the algebraic elements of the
construction of the hypothesis can only be points and lines. By the nature of the
steps of a construction, any construction that only uses points and lines will provide
configurations whose realization space has even dimension (as it equals the dimension
of the support space of the input elements). It follows that the dimension of the
support space of any potential construction of a Pascal configuration H is even. So, we
cannot obtain such a construction for this theorem. However, we can define a bigger
construction such that it contains Pascal configuration as a substructure. Namely,
we can add three arbitrary points points Xi, X, X3 belonging to AB’, BC', CA’
respectively, see Figure 5.4. Hence our configuration G is Pascal configuration with
three additional marked points X7, Xo, X3. Its dimension is now 14. This is a example
of how an additional step “choose a line through A” can be modeled by adding the
additional free point X; and then defining the line AX7.

Theorem 5.6 (Converse Pascal Theorem).
Construction of the hypothesis H :

Input:
points A,B,C, X1, X2, X3
line l
Depth 1:
lines LAB’ :T)(l LBC’ :T& LC’A’ :Ci)(g,
Depth 2:
points P = Lag NI Q = Lgcr Nl R=Lca NI
Depth 3:
lines LAC’ :TR LBA’ :ﬁ LCB’ :CiQ
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Xl BC’

A LCA/

Figure 5.4: Converse Pascal Theorem

Depth 4:
points A" = Loy N Lpa B' = Lap N Lep C'= Lac N Lper

Thesis node:  conic R
Thesis:  points A, B, C, A’, B, C' belong to conic R.

5.2.4 Chasles Theorem

Chasles Theorem (c.f. [EGH96]) states that if {qi,...,q9} are the intersection points
of two cubics, then any cubic passing through {q, ..., ¢s} also passes through gg. This
implies that given another free point g, there is always a cubic through {qo, q1, ..., g9}
This version can be easily translated to the tropical context.

Theorem 5.7 (Chasles Theorem).
Construction of the hypothesis H :

Input:
cubics C1,Ca
point do

Depth 1:

points  {q1,...,q9} = C1 NCoy

Thesis node:  cubic R
Thesis:  points {qo,q1,---,q9} belong to cubic R.

It is not true that every cubic passing through eight of the intersection points passes
through the ninth. See Figures 5.5 and 5.6. Let f = “O+1x+1y+ 12?4+ 3zy+1y? +023 +
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Figure 5.5: Tropical Chasles

12y +1xy? +0y3, g = 194 142+ 20xy + 24y + 722 + 1222y + 232y? + 28y> + 023 + 31437,

fNstg= {(_L —3), (07 _3)7 (17 —3),
(=1,—-4), (0,—4), (1,-4),
(_L —5), (07 _5)7 (17 _5) }
Take h = “0+ 1z + 5y + %azy + 122 + 99% + 522y + 9zy? + 023 + 12937, This is a cubic
passing through 8 of the stable intersection points of f and g but not through the nine.

An alternative to the Chasles Theorem that also holds in the tropical plane is
the following. Take as 8 + n points {qi1,...,qs3}, {z1,...,2n}, n > 3. All the steps
are computing the cubic C; passing through {qi,...,¢s,2;}, 1 < i < n. The thesis
node is a point x and the thesis is that x belongs to C;, 1 < i < n. The difference
with the previous version of Chasles theorem is that, by construction, the eight points
{q1,...,qs} are always in general position in every cubic C;. In our example, the points
are not in general position neither in 7 (f) nor 7 (g).

An immediate generalization of Chasles Theorem is the following.

5.2.5 Cayley- Bacharach Theorem

The generalization of Chasles Theorem (cf [EGH96]) we discuss here is the following:
let C, Cy be plane curves of degrees d and e respectively, intersecting in de distinct
points Q@ = {p1,...,p4e}. If C is any plane curve of degree d + e — 3 containing all
but one point of (), then C contains every point of ). The second version of Chasles
Theorem given does not fit well to this theorem, but the generalization of the first
version of Chasles Theorem is immediate, note that a curve of d + e — 3 is determined
by w points:
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Figure 5.6: A cubic through 8 but not 9 points

Let d, e > 3 natural numbers, [ =1 + w

Theorem 5.8 (Cayley-Bacharach Theorem).
Construction of the hypothesis H :

Input:
degree d curve  C}
degree e curve  Cy
points  P1,---,Dl

Depth 1:
points  {qi1,...,q43.} = C1 NCy

Thesis node:  curve of degree d+e— 3, R
Thesis:  points {q1,...,qde} U{p1,...,p} belong to curve R.

5.2.6 Weak Pascal Theorem

This Theorem is not in the context of Theorem 5.3 because the construction involved
is not admissible. Nevertheless, for some tropical realization of the hypothesis, we will
be in the context of Theorem 4.11. So this Theorem does not hold for every tropical
input, we have to add conditions in the tropical realization.

Theorem 5.9 (Weak Pascal Theorem).
Consider the following construction:
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Input:
conic 4
lines L1, La, L3
Depth 1:
points {A,B'}=RNL,{B,C'} =RNLy,{C, A’} = RN Ly
Depth 2:
lines Ly= AC" Ls = BA’ Lg=CB
Depth 3:

points P =LiNL;s Q=LNLg R=L3sN1Ly4

If a tropical instance of this construction is such that each set of points {A,C'}, {B, A’}
and {C, B'} is in generic position with respect to Z, then there is a line L (thesis node)
that contains the P, Q and R.

Proof. This construction, in the algebraic context, provides instances of Pascal the-
orem. Hence, if the input is generic, then points P, @, R are collinear. But this
construction is not admissible, so Theorem 5.3 does not apply. Nevertheless, this con-
struction is in the context of Theorem 4.11. The minimal multiples paths are Z = Ly,
Z = Ls and Z =% Lg. By Theorem 4.11, if each one of these three sets is in general
position with respect to R, then this tropical instance can be lifted to the a generic
instance in the algebraic framework. As Pascal Theorem holds in K. P Q and R are
collinear. So P, @ and R are collinear. O

Example 5.10. Let Z = “3y + 5+ 3y> + 022 + 4o + 0xy” Ly = “ly + 0z + 0" Ly =
“Oy + 0z +2” Ly = “(9/2)y + 0x + 3”7, then A = (3,2), B’ =(1,0), B=C" = (2,3/2),
C=(1,-3/2), A =(4,-1/2), Ly = “3y+ 2z + (9/2)”, Ls = (3/2)x + 4y + (11/2),
Le=0zx+1y+1, P=(5/2,3/2), Q= (2,1), R = (5/2,—3/2). The points p, @ and R
are not collinear, in this example, the set {C, B’} is not in generic position in Z.

However, for these input elements, the election of the points in the depth 1 steps
is arbitrary. If we now take A = (1,0), B’ = (3,2), B=C" = (3/2,2), C = (4,-1/2)
and A" = (1,-3/2), now Ly = “2y + (3/2)z + (5/2)”, Ls = “2y + (3/2)z + (5/2)”,
Lg = “4y+2x 46", P=(1,0), Q@ = (2,2), R = (1,—3/2). In this case, the three sets
of points are in generic position in Z, it can be checked that the three points belong to
the tropical line of equation L = “2z + 2y + 3”.
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Chapter 6

Preliminaires

6.1 Fields of Definition and Zariski Topologies

In this Chapter we present the working context for the rest of the report. The general
problem is the following. Let K C K(a) be an algebraic extension of fields. Let V be
a variety defined as the zero set of a set of polynomials whose coefficients are in K(«).
We want to decide if the variety can be defined by a set of polynomials with coefficients
in K. Moreover, we want to study the geometric properties of V with respect to the
ground field K and the algebraic extension K(«). In particular, if V is a parametric
variety (we are specially interested in the case of curves) given by a parametrization
with coefficients in K(«), we want to solve the analogous problems working with the
parametrization alone.

Hence, we do not work in the familiar context of Algebraic Geometry over an
algebraically closed fields. So, we have to rewrite the usual definitions and properties
of varieties in this new, restricted, context. The result of this Chapter are natural.
However, due to the generality of the Fields involved, the proofs are rather technical.
We start with the basic definitions of algebraic variety and ideal associated to a variety.
From now on, we will always suppose that all our fields are of characteristic zero.

Definition 6.1. Let K C I be an extension of fields of characteristic zero and I an
ideal of K[x1,...,x,]. The algebraic variety defined by I is:

V(1) ={v=(v1,...,0,) eL" |Vf eI f(vi,...,v,) =0}

We say that V is a variety defined over K of a K-variety and that K is a field of definition
of V.

Definition 6.2. Let K C IL be an extension of fields and V C L™ an arbitrary subset
of IL™. The ideal of V with respect to K is

Ik(V) ={f €Klz1,...,an] | V(v1,...,00) €V, f(v1,...,vn) =0}

With these notions we have the following familiar properties
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Proposition 6.3. Let K C 1L be a extension of fields. Let V, W be arbitrary subsets
of L™, and let I, J be ideals in K[xy,...,x,]. Then:

1 1CJ= D) C V()

2.V CW = JgW) C Tx(V)

3. VL) Ii) = ; Du(li)

4. Ix(U; Vi) = N Ix (Vi)

5. (1N J) = Dy (1.]) = V(1) U DBy (J)

6. (V1) D I and 3 (VL(1)) is a radical ideal.

7. If V CL" is any subset, then VL (Jx(V)) 2V and the equality holds if and only
if V is a K-variety

8. (Hilbert’s Nullstellensatz) If L is algebraically closed field, then Jx (U (1)) = V1.

Proof. Straightforward. O

Definition 6.4. The family of the K-varieties in IL” are the closed sets of a topology,
the K-Zariski topology of ", it is denoted by 7g. The topological closure of a set V
with respect to the topology 7k is denoted by VK.

Remark 6.5. We recall here some properties of the K-Zariski topology that can be
checked in [ZS75b] and will be helpful along the text.

1. L™ is a compact space that is never Hausdorff for n > 0, the intersection of two
nonempty open sets is never empty. That is, it is an irreducible topological space.
It follows that every nonempty open set is dense.

2. f K CL CF, then F" is equipped with the topologies 7x and 71,. In this case
™® € 7L

3. If V C L™ is any set, then VK = 0 (Tg(V)).

4. The topology 7k is not, in general, a T} topology, because there are indistinguish-
able elements. For example, in C with the Q-topology, the closure of /2 and the
4mi 27 4mi
closure of ¥/2¢73 are both the set {V/2, J2es %GT}.

As in our context the extension of fields are fundamental, we will study a little
bit deeper the different Zariski topologies of F", specially the differences between the
structure of a variety as changing the topology,

The following Lemma shows an easy to check but important fact about the set of
generators of an ideal with respect to a field of definition.
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Lemma 6.6. Let K C K(«) be a normal algebraic extension of fields, [K(«) : K] = d.
Let I = (f1,...,fr) € K(o)[z1,...,2p] be an ideal in K(a) defined over K, f; €
Klzi,...,2p], 1 <7 <r. Let

d—1
g= Zgio/ € K(a)[z1, ...,z
=0

be a polynomial, with g; € Klzx1,...,2,], 0 < i < d—1. Then g € I if and only if
gel,0<i<d-1.

Proof. The if implication is trivial. For the other one, Let @ = ag,...,aq be the
conjugates of @ in K(a). Let 01, ..., 04 be K-automorphisms of K(«) such that o;(a) =
aj, 1 < j < d. It is remarkable that they do not need to form a group. Denote by
oj(h) the polynomial obtained by applying the automorphism o; to the coefficients of
h.

If g €1, then g =37, h;fj and ou(g) = 3=, ou(hj)ou(f;) = 35— ou(hy)f; € 1.
On the other hand, 0;(g) = Z?;ol o1(at)g;. Take the linear system

g 1 o a? ad—1 9o
o209) | _[1 o2(e) 032(a?) ... oa(a®h) 9
oalo) 1 o4(@) oale?) .. oalah) \4 |

defined by a Vandermonde matrix. As the elements o;(«) are pairwise different, the lin-
ear system is regular and we can express each g; as a combination of g, 02(g),...,04(9g).
Hence,

(90,---,9a-1) = (9,02(9),...,0a(g)) € I
O

Given a K-variety V, we have two different ideals related to it, namely Jx (V) and
JL(V). In order to compare them, we need some more tools that we present next.

Definition 6.7. Let f : A — B be a ring homomorphism. Let I C A, J C B be two
ideals, the extension I€ of I is the ideal of B generated by f(I). The contraction J¢ of
the ideal J is the ideal f~1(.J).

Lemma 6.8. Let K be a characteristic zero field and 1L an extension of K. Consider the
inclusion of rings Klz1,...,z,) C Llxy,...,2z,], Let I,J be two ideals in Klxq,. .., zy].
Then:

o [¢¢ =1, every ideal is a contracted ideal.
e (INJ)=1I°NnJe
o (I:))¢=1I¢:J°

o If I is radical, then I¢ is radical.
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o VT = (VI)
Proof. See, [ZS75b], Vol. II, Ch. VII, §11 O

Now, we present our first result concerning the relation of . and K varieties. More
concretely, what is the relation of the topologies 7x and 7y, in ™.

Proposition 6.9. Let K C L be a normal extension of fields. Then

VE= | o0V

o€ Aut(L|K)
where Aut(IL|K) is the set of K-automorphisms of L.

Proof. Write I = Jx(V). If f € L[z1,...,2,], v € L™ and o € Aut(L|K), let o(f) be
the polynomial obtained by applying o to the coefficients of f. Let o(v) be the point
in L™ obtained by applying ¢ to each component of v. Then

o(VE) = {o(v) | v e VE} = {o(v) | Vf € TL(V), f(v) =0}.

As o(f(v)) = o(f)(c(v)) and o(f(v)) = 0 if and only if f(v) = 0, the previous set can
be described as
{o(v) e L"| Vf € IL(V),0(f

={wel” |VfeIL(V), o
={wel" |Vfea(@L(V)), f(w)=0}=DTL(e(I(V)))

To sum up

o(VE) = Vi (a(IL(V))) (6.1)
On the other hand, as J1.(V) 2 I, then

a(IL(V)) 2 0(Ix(V)) = Tx(V)

because o is a K-automorphism and the polynomials over K stay invariant. Thus, for
each o € Aut(L|K), o(V¥) C V¥ and we have the containment V¥ 2 U, ¢ gy o(V5)-
This containment holds even if K C LL is not normal.

Let f1,..., fr € L{z1,...,x,] be generators of J1, (V). Let a € L be an element such
that the algebraic extension K C K(«) is normal and K(«) contains each coefficient of
fiyeooy fro Let o(TL(V)) = (o(f1),-..,0(fr)). The set {o(a) |0 € Aut(L|K)} is finite,
because its elements are the conjugates of . Moreover, as the extension is normal,
o(f;) belongs to K(a)[z]. The values of o(f;) determine the ideal o(Jr(V)), so the set
of ideals {o(IL(V))| 0 € Aut(L|K)} is also finite. Let @ = aup, ..., g be the conjugates
of @ in K(a) and let o1,...,04 be K-automorphisms of K(«) such that o;(a) = ay,
1 <1 < d. We may suppose without loss of generality that these automorphisms are
actually K-automorphisms of I and that oy is the identity. Now, [ J ¢ Aut(LIK) o(VL) is,
in fact, the finite union

D

d
o (VE) = o

=1

o1(IL(V)))

~

1
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where we have applied the Equality 6.1. For each [, 1 <1 < d, 0;(JL(V)) contains a set
of generators whose coefficients belong to K(«). By Lemma 6.8, as (I NJ)¢ = I°N.J¢,
the ideal J = (,_; 4 01(JL(V)) also has generators With coefficients in K(«). Let f € J
be one of these generators, f can be written as f = ZZ —o ' g;, where g; are polynomials
with coefficients in K. By Lemma 6.6

90, -, 9d—1 € J CIL(V).

As go,..-,94-1 € Klz1,..., 2], g0y---594-1 € Tg(V). Thus, we deduce that there
is a set of polynomials in K[xy,...,z,] that generates J. Thus, J C IL[z1,...,x,)].
Applying the operator U () we obtain that

VE =91(I) = Bp(IL[z1, ..., 2.)) CVL()) = |  o(VF)
o€ Aut(L|K)

and we have the other containment. O

Remark 6.10. We cannot eliminate, for this Proposition, the hypothesis of normality
for the extension K C IL, because, in this case, there may not be enough automorphisms
to cover every element of VK. Take, for example, K = Q, L = Q(v/3,4). Let V =
Uy, (22 —/3) = {V/3,—V/3}. Then, VQ = {V/3, —v/3,iv/3, —iv/3}. Let o be an arbitrary
Q-automorphism of L. Then, a(\f) € {\f —/3,iv/3, —Z\f} the roots of 28 — 3 in
Q(\8/§72> Hencev O—(ié/g) =+o (\[) € {\[ _\f} and VK D V= UaeAut (LK) U(V )

so Proposition 6.9 does not hold.

6.2 Irreducibility and Base Field

In this Section we explain some definitions and results usual in the context of algebraic
varieties related with the irreducibility of the varieties with respect to the extension of
fields.

Definition 6.11. Let K C LL be a extension of fields. A K-variety V C " is irreducible
with respect to K if the following condition holds: if Vi, Vs are K-varieties and V =
ViUVs, then V =V; or V = Vs.

Note that this notion of irreducibility depends on the fields K, L. This is a topo-
logical notion that depends on the Zariski topology considered. For example, let
L = Q(v2), the variety ‘I]Q(\/ﬁ)(:cz — 2y?) consists in the lines Doz (@ —V2y) U
RUNN (x ++/2y). This variety is not irreducible with respect to K = Q(+/2). How-
ever, 1t is irreducible with respect to K = Q; on the other hand, if K = L = Q, then
‘B@(x2 — 2y?) is just the point (0,0), which is irreducible.

Proposition 6.12. Let K C L be an extension of fields and V C L™ a K-variety.
Then, V is irreducible with respect to K if and only if I = Jx(V) is a prime ideal of
Klz1, ...,z
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Proof. Suppose that V is not irreducible with respect to K. Then, there are two K-
varieties Vi, Vo such that V = Vi U Vy, V # V; and V # V5. So, there are points
v1 € V\Vy, va € V\Va. Hence, there are two polynomials f; € Jg(V;) and fo € Tg(Va),
with fi(v1) # 0, fa(v2) # 0 and hence fi, fo ¢ Ix(V). But fifo € Ig(V), because it
vanishes at every point of V. We conclude that Jx (V) is not a prime ideal.

For the reciprocal, suppose that V is irreducible and let f and g be two polynomials
such that fg € I. Let Vi = Ux(I + f) C V, Vo = V(I +g) C V. If v € V, then
fg(v) =0,s0 f(v) =0o0r g(v) =0. Hence, V =V, UV, and, as V is irreducible, it must
coincide with one of them. Suppose that V = V;. Then, I = Jx(V) = Ix(Vx (I + f)) 2
I+ fand f €I, hence I is a prime ideal. O

We want to remark that this Proposition does not mean that if V = Uy,(I), where
I is a prime ideal of K[x1,...,x,], then V is irreducible. For example, let K =L =R
be the field of the reals. Let V = Ur(2z%(z — 1)? + %?). Then V = {(0,0)} U {(1,0)}
is not an irreducible variety, but (z2(z — 1)? 4+ y?)R[xz, 3] is a prime ideal, because the
polynomial is irreducible over R.

6.3 K-definability

In this Section we are looking for conditions that determines if a given field K is a field
of definition of a L-variety ¥V C F" from an ideal I that defines a variety V. Next, we
are proving that the ideal Jr()) contains the necessary information to deduce that a
field is a field of definition of a variety.

Proposition 6.13. Let K C F be a field extension, where F is algebraically closed.
Then K is a field of definition of a F-variety V if and only if the ideal TJr(V) can be
generated by elements of K[x1, ..., xy].

Proof. It 3p(V) = (f1,..., fr) C F[z1,...,2,], where fi,...,f, are polynomials in
Klz1,...,zy], then Dp(f1,..., fr) = Vr(Tr(V)) =V, so K is a field of definition of V
considering I = (f1,..., fr)-

For the reciprocal, let I = Jr(V) and suppose that J C Klz1, ..., x,] is an ideal such
that Ur(J) = V. We may suppose, without loss of generality, that J is a radical ideal.
Then, Up(J¢) =V, where J¢ is the extended ideal of J with respect to the canonical
inclusion K[z1,...,2,] < Flz1,...,2,]. By Hilbert’s Nullstellensatz, v/.J¢ = I, and,
by Lemma 6.8, J¢ is a radical ideal. Hence, I = v/J¢ = J¢ has a set of generators in
Klz1,...,zp]. O

Remark 6.14.

e Let V be an F-variety and consider the extension field K C F. Consider the ring
extension K[z1,...,2,] C Flx1,...,z,]. Then, from Definitions 6.1 and 6.2, we
have that

Ixk(V) ={f €eKlz1,...,x,] | V(v1,...,05) €V, f(v1,...,0,) =0} =
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=Jr(V)NK[z1,..., 2]

that is, Jx(V) is the contraction of the ideal Jp(V) by the inclusion of rings
Klzi, ..., 2] CFlx1,..., 2]

From Lemma 6.8, every ideal in K[z1,...,x,] is a contracted ideal with respect
to the extension K[z, ...,z,] C Flz1,...,2,]. In the language of Commutative
Algebra, Proposition 6.13 can be written as: A F-variety V is a K-variety if
and only is the ideal Jrp(V) is a extended ideal for the inclusion Kzy,..., z,] C
Flz1,...,zy], if and only if Ip(V) is the extended ideal of Jx (V) for the previous
inclusion.

The hypothesis that F is algebraically closed in Proposition 6.13 is necessary.
For example, let K = Q, F = Q(+/2). V = {V/2} is a Q-variety, because V =
Up(2® — 2). However, Jp(V) = (z — V/2) is an ideal that cannot be generated by
polynomials with coefficients in Q.

Recall that our fields are all of characteristic zero, so the algebraic extensions con-
sidered are always separable.

Definition 6.15. A extension of fields K C L is regular ([ZS75b], [Sam67]) if the
extension is separable and every element of I that is algebraic over K belongs to K.
That is, if K is algebraically closed in L.

This Theorem provides another characterisation of the fields of definition of a given
variety V.

Theorem 6.16. Let K be a field, F its algebraic closure, V an irreducible F-variety in
F™, let I = Jx(V) (I is a prime ideal, because it is the contraction of the prime ideal

Jr(V)). Let T be the field of fractions of

K[z, ... ,xn]'
I
They are equivalent:
1. K is a field of definition of V.
2. IF[xq,...,zy] is a prime ideal.
3. The extension K C T is regular.
4. For every field L, the extension ideal IL|x1,...,x,] is a prime ideal. In this case,

we say that I is absolutely prime

Proof. First, from [ZS75b], Theorem 39, page 230 we obtain the equivalence 3) < 4).
Let us prove the rest of the implications:

1)=2)

If K is a field of definition of V, by Proposition 6.13, Jr(V) is generated by polynomials
in K[zy,...,zy], so it is an extended ideal (with respect to the inclusion K[z1, ..., x,] —
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Flzy,...,2zy,]). As V is irreducible with respect to F, the ideal Jg()) is prime and 2)
holds.

2)= 3)

(c.f. [ZS75b]) As, I¢ = IF[xy,...,xy,] is a prime ideal, then we have the following
inclusion

Flxi, ...,z

T F —_—
e <IF[;U1, -

):F(xl FI° . a, + 1) (6.2)

that sends
(A(@)+1)/(B@) + 1) — (A(@) + 1°)/(B(z) + I°)

Note that, if A(Z) € K[z1,...,z,] and A(T) € I¢, so A(T) € I°® = I and the inclusion
6.2 is well defined. Let a € T and let

f) =y +ba 1y 4+ by +bo, b €K

be its minimal polynomial over K. Then, f splits in F[y] as

d

fw) =1Jw-»

i=1

and there are A(z), B(%) € K[z1,...,zy] such that a = (A(Z) + I)/(B(Z) + I); in
particular, B(Z) ¢ I. We can make substitution in the minimal polynomial of a,
eliminate denominators and compute the image of the result by the previous inclusion.
We obtain

d
[[(A@) +1%) = (uB(@) + 1)) = 0
=1
That is,
d
[[(A@) —vB@) e
=1

By hypothesis, I¢ is prime and, hence, it contains A(Z) — 7; B(T) for some i, we can
suppose that ¢ = 1. Let o; be a K-automorphism of F that send ~; to ;. This
automorphism extends naturally to F[z1,...,z,]| and, as IF[zy,...,x,] is generated by
polynomials in K, IF[z1,...,x,] is globally invariant for the automorphisms o;. We
deduce that

A(T) —’)/IB(T) S IIF[xl,.. . ,xn], l=1,...,d

Suppose now that d > 2. Then, A(Z) — v1B(z) € IF[z1,...,z,], A(T) — 72B(T) €
IF[x1,...,zy,]. Subtracting these polynomials and multiplying by a suitable constant,
B(T) € IF[z1,...,2,) C Jp(V). Hence, B(T) is a polynomial in K[z1,...,2,]NTp(V) =
I (see Remark 6.14). It follows that B(z) € I, which is a contradiction. So, d = 1
and the minimal polynomial of a over K is y — ;. That is, a € K and the extension is
regular.
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4)=1)
From Proposition 6.9,
Vp(IF[zy,...,z)) =VE= | ] o(V)
oeAut(F|K)
where the union is finite, it is enough to take a finite subset o1, ..., 04 of Aut(IF|K), so

d
VE = Ja(V)

By hypothesis, IF[z1,...,z,| is prime, so VX is an irreducible variety with respect to
[F that has been written as the union of finitely many F-varieties, so it must be one of
them. Hence, for an index [, VK = ¢;(V). So, V = o, 1(VX). But VK is a K-variety and
globally invariant by the K-automorphism o;. Thus, V = VK and V is a K-variety. [

This Theorem provides several criteria to decide if a field K is a field of definition
of a variety V. Now we show that, even if there may be many field of definition, there
is a minimum field of definition of any variety.

Theorem 6.17. Let V be a K-variety. Then, there is a minimum field of definition
of V. That is, there is a field K that is a field of definition of V and such that, if L is
another field of definition of V, then K C L.

Proof. Let F be an algebraic closure of K, I = Jp(V), let G be the reduced Grobner basis
of the ideal I with respect to any monomial ordering. Let 3 be the set of coefficients of
the polynomials of G. Then, we affirm that Q(X) is the minimum field of definition of
V. In fact, as every coeflicient of G is in Q(X) and G generates I, then Q(X) is a field
of definition of V. Let LL be any field of definition of V, then, there are polynomials
fi,-.., fr with coefficients in L. that generate I. If the reduced Grobner basis of I
is computed from this set of generators f1,..., f, for the same monomial ordering as
before, the result will be again G, because the reduced Grobner basis is unique for a

fixed ordering. Furthermore, this basis can be obtained by operations in the field L
alone. It follows that Q(X) C L and Q(X) is the minimum field of definition of V. [

6.4 K-birationality

The fundamental equivalence in the study of algebraic varieties is birationality. In
this Section we present the notion of K-birationality. This is given as a classical bira-
tional map that is defined by rational functions defined over K. Still, there are several
technical results that have to be solved.

Definition 6.18. Let K C L. C F be a chain of fields, let ¥V C F" be a L-variety
irreducible with respect to L, J1(V) is a prime ideal of L[z1,...,zy], then Jx(V) =
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JL(V) NKlzy,...,z,] is also a prime ideal of K[x1,...,x,] and we can construct the
integer domain
Klz1, ...,z
KV] = —F————
V) Ix(V)

This is the ring of K-polynomial functions of V. Its field of fractions K(V) is the field
of K-rational functions of V.

L is naturally included in L(V). The transcendence degree of L(V) over L is the
dimension of V. If V is not irreducible with respect to IL, the dimension of V is the
maximum of the dimensions of its L-components. This dimension does not depend on
the concrete field of definition L.

Let V C " be a variety irreducible with respect to F, and let K C F be an
extension of fields. By Remark 6.14, we have that Jx(V) = Jp(V)¢ in the extension
Klz1,...,zn] € Flz1,...,2,]. The map

KV —  F]]
f+I — f+T(V)

where I = Jg(V), is well defined and is injective. Hence, this map induces an inclusion
of the field of rational functions K(V) into F(V). By this map, every K-rational function
of V can be considered as a F-rational function of V that admits a representation by
polynomials in K[z1,...,z,].

Now we interpret the K-rational function ¢ € K(V) C F(V) as a map on a subset
of V.

Definition 6.19. Let V be a variety irreducible with respect to F. Let ¢ € K(V) be a
rational function. Then, the domain of ¢ denoted by Dom(¢) is the set:

Dom(¢) ={veV CF" |3 p/qg=¢ € F(V), q(v) # 0}
So the K-rational function can be interpreted as a map
¢ : Dom(¢p) — F

such that, if v € Dom(¢), let p/q be any representation of ¢ with g(v) # 0, we define
¢(v) = p(v)/q(v). This definition does not depend on the representation of ¢ chosen. If
p1/q1, p2/q2 are two representation of ¢ in F(V) such that g;(v) # 0, g2(v) # 0. Then,
p1g2 —p2q1 € Jr(V) so the polynomial vanishes at v, pi(v)g2(v) —pa(v)qi(v) = 0. From
this, p1(v)/q1(v) = p2(v)/q2(v) and ¢(v) is well defined.

If ¢ is a rational function, then there is a representation of ¢ as p/q. As q ¢ Jr(V),
there is at least a point v € V with ¢(v) # 0. In particular, Dom(¢) is never empty.
Moreover, if v € Dom(¢) and p/q is a representation of ¢ defined in v, then ¢ is defined
in VN (F"\ Vr(q)), a nonempty open set of V for the topology 7w. Hence, Dom(¢) is
a nonempty open subset of V.

Before showing the notion of K-birationality, we present a Lemma that is interesting
on its own.
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Lemma 6.20. Let V C F"™™ be q K-variety, K C F, F algebraically closed, Tp(V) C
Flxi,...,Zn,Y1s--.,Ym]. Let I be the projection
II : Frtm — ™
(V1 ooy Uny Wy ooy Wiy) = (W e, Wiy)

Let W =TI(V)F. Then, W is a K-variety and
JrW) =Tr(V) NFy1, ..., ym]
Proof. 1t is well know (c.f. [CLO97]) that in this case
IeW) =Tw(V) N Fy1, ..., ym

Moreover, if {f1,..., fr} is a Grobner basis of Jr(V) with respect to a block ordering
[x] > [y], then a set of generator of Jp(W) is {f1,..., fr} NFy1,...,ym]. Since K is a
field of definition of V, by Proposition 6.13 there is a set of generators {gi,...,gs} of
Jr(V) with coefficients in K. By the Grobner basis algorithm, we can compute a set of
generators of Jp(W) with coefficients in K. Again, by Proposition 6.13, K is a field of
definition of W. m

Definition 6.21. Let K C . C F be a chain of fields and let V C F", W C F™ be
two IL-varieties irreducible with respect to L. The varieties V and W are K-birational
if there are ¢1,..., ¢, CK(V), ¢1,...,1%, € K(W) such that:

1. ¢1,...,¢nm are defined on a nonempty open subset Dom(®) of (V,m|y)
2. 41,...,1, are defined on a nonempty open subset Dom(¥) of W, 1|w)

3. For every point v = (v1,...,v,) € V such that & is defined, we have that ®(v) =
(p1(v), ..., ¢m(v)) € W and the image ®(Dom/(P)) is a dense subset of (W, 11| w).

4. For every point w = (wi,...,wy) € W where ¥ is defined, its image ¥(w) =
(Y1(w), ..., ¢¥p(w)) €V and the image ¥(Dom(V)) is a dense subset of (V, 1.|y).

5. If v € Dom(®) and ®(v) € Dom(¥) then U(®(v)) = v
6. If w e Dom (V) and ¥(w) € Dom(®) then &(V(w)) = w
Such a function ® = (¢1, ..., ¢n) is called a K-birational map between V and W.

This definition tries to be as general as possible. Hence, it is not asked that V or
W are defined over K, neither that they are irreducible over F.

Theorem 6.22. Let V C F", W C F™ be two F-varieties, F algebraically closed. Let
K C1IL CFT be an extension of fields and suppose that V, W are L-varieties irreducible
with respect to L and that they are K-birational by (®, V). Then, K is a field of
definition of V if and only if it is a field of definition of W.
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Proof. By symmetry, it is enough to prove that if V is a K-variety, so it is W.

Let @ = (é1,-..,0m) € K(V), ¥ = (¢1,...,1%,) € K(W) be the birational map
between the varieties. Let f1,..., f; be polynomials in K[z1, ..., x,] generating Jr(V)
let pj/r; be a representation of ¢; with coefficients over K. We define the ideal

J=(f1,- s f @Y1 = P15 GmYm — Py @1 - - - Gz — 1)

in the ring Flxy,..., 20, Y1,...,Ym, 2], but generated over K. Let W = Vr(J) C
Frtm+l Tt happens that W contains the points (Z,%, h) such that T € V, § = ®(7)
and 0 # h = [[’L, ¢;(T). Define the projection

Ir: prtm+t — fFm
(,9,2) — ¥

Then,

IW) = {g € F™ | 3T € V,T ¢ Uj—1..uTr(q;), ©(T) = 7} C Im(®)

is a subset of W. Moreover, from Lemma 6.20, II(W)F is a K-variety and II(W)F =

OW)K = TI(W)E. To prove that W is a K-variety, it is enough to prove that II(W) is

L-dense in W. We already have proved the containment II(W) C Im(®) C W. Thus,

it suffices to prove that Jp(IIW)), C J(Im(®P)), the result will follow applying the

operator V(). Let f € J.(II(W)) and consider the rational function f(¢1,...,¢m) €
L(V). The subset V\Ur(q1,---,¢n) is a nonempty open subset of V, so it is dense.

Let v € V\Dr(q1,---,qm), then (p1(v),...,0m(v)) € IIW), so f(é1,...,0m)(v) =
f(#1(v),...,¢m(v)) = 0. This equality holds in a dense subset of V, so f(¢1,...,¢m) =
0 € L(V). Now, if v € Dom(®), then f(¢1(v),...,dm(v)) = 0. Hence, f vanishes in
Im(®) and f € I.(Im(®)) O

Proposition 6.23. Let V C F", W C F™ be two L-varieties irreducible with re-
spect to L, K C L. C F a chain of fields, let L[V] = L[z1,...,2,]/3L(V), LIW] =
Llyi, ..., ym]/ILOWV). Then, V, W are K-birational if and only if L(V) = L(W) are
isomorphic, where the isomorphisms f : L(V) — L(W), g : L(W) — L(V) are such
that, if we denote

z; =z; + (V) € LV), 5 = i + (W) € L(W),

then
f(@5) =v; e KW) CLW), 1<j<n,

9@) = ¢ e K(V) CL(V), 1<i<m,

In this case, ® = (¢1,...,0m), V(U1,...,¥n) are K-birational maps between V and W.
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Proof. From [Sha94], Chapter I, page. 28, we have the classical result that two varieties
V, W are birational in the classical sense if and only if its field of functions L(V), L(W)
are isomorphic, where the isomorphisms are given by

L(V) <« L(W)
T = Yy
b — i

Hence, V, W are K-birational if and only if ¢; € K(V), ¥; € K(W). O

Remark 6.24. This Proposition and the results about K-birationality seem artificial.
In the literature, two varieties V and W are birational if and only if the fields of
rational functions L(V), L(W) are isomorphic. In our case, we want to prove that if V
is a K-variety and the map is birational from V to W is defined by rational functions
defined over K, then W is a K-variety. Our definition of K-birationality is adequate
to this property. If one wants to give an equivalent condition to K-birationality, it is
not enough that their fields of rational functions are isomorphic. In fact, it is neither
sufficient that L(V) = L(W) and K(V) =2 K(W), as proves the following example.

Let V = {V/2}, W = {¥/2¢} where ¢ is a primitive cubic root of unity. Let K = Q,
L =F = C. Then, C(V) = Frac(-22L) =~ C, C(W) = Frac(-Z) = C, hence,

:1:7% xr— \3/55
the fields are isomorphic. On the other hand, Jp(V) = Jo(W) = (2* — 2). So,

Q) = QW) = g[i are also isomorphic. However, these two varieties are not
Q-birational. If this where the case, there would be a rational function f € Q(z),
f:V — W, that is, f(+/2) = V/2¢, and we would conclude that v/2¢ € Q(+/2), that
is false. So, V, W cannot be QQ-birational.

6.5 K-parametric Varieties

In this Section, we deal with the problem of parametric varieties in L™ given by a
parametrization with coefficients in a subfield K.

Definition 6.25. Let V C L™ a K-variety, K C IL. V is a K-unirational variety if there
are rational functions

p1 p
¢1:77“.’¢n:7n GK(t17"'atm)
q1 qn

such that if
W= {(¢1(t),.--,on(t)) EK"[ L= (t1,... . tm) €K™, q;(t) #0, 1 <j <n}

then V = WK. The tuple (P1,...,0m) is a K-parametrization of V. The field K is
called a parametrization field or a field of parametrization.

The parametrization is proper, faithful or birational with respect to the field K if
K(¢1,...,0n) = K(t1,...,ty). In this case, we call V a rational variety.

In the case where the dimension of V is 1, then V is a parametric curve.
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It is not true that every unirational variety is a rational variety. See for example
[Sha94], Chapter III, §5.4, page. 174-175. But, due to Liiroth’s Theorem ([Wal50],
Chapter V, §7, page. 149-151.) we can affirm that every parametric curve admits a
proper parametrization.

Proposition 6.26. Let V C L" be a unirational variety, K C L a parametrization field
of V and (¢1,...,¢n) a parametrization of V with coefficients in K. Then:

1. jK(V>:{f€K[$1,,.%‘n] ‘ f(¢1,,¢n)50}
2. V is irreducible with respect to K

Proof. Consider the ring homomorphism:

F: K[:L’l,...,.%n] — ]L(tl,...,tm)
T = oj

First, consider the case K = L. Suppose that f € Jp(V). Then, for every value
(t1,...,tn) where the parametrization is defined we have that

flo1(try - o ytm)y ey On(te, ... tm)) = 0.

Hence, f(¢1,...,¢n) = 0. Conversely, if f is such that f(¢1,...,¢,) = 0, then f
vanishes in I'm(¢1,...,¢y). By definition of V, f € J1(V). Finally, in the general case
KCL:

IxkV) =T0V) NK[zy,...,zn] ={f € K[z, ..., 2] | f(&1,...,0n) =0}

For the second claim, note that Jg()) is the kernel of the previous homomorphism
F. Hence, Jx(V) is a prime ideal and Klz1,...,2,]/JIx(V) is an integer domain by
Proposition 6.12. Then

and, finally

O]

Proposition 6.27. Let V C L™ be a parametric variety of dimension d, K a field of
parametrization of V, K C L; let ¢1(t1,.. . tm)y -y On(ti, ... tm) C K(t1,...,ty) be
a parametrization of V. Then, m > d and there is another parametrization of V with
coefficients in K and d parameters i, ..., ¢, CK(s1,...,sq).

Proof. See [Alo94] or [AGRO1] O
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So, from now on, we will always suppose that the number of parameters equals
the dimension of the variety they define. Moreover, by Liiroth’s Theorem, all the
parametric curves will be given by a proper parametrization.

Proposition 6.28. Let V C F"™, F algebraically closed, if K is a parametrization field
of V, then K is a field of definition of V.

Proof. 1t is a direct consequence of Lemma 6.20. To accomplish the hypothesis of
the Lemma, V must be written as the projection of a K-variety. But this is easy, let
é1,...,0n be any parametrization of V, ¢; = p;/q; € K(t1,...,t). Let

J=(1¢ —p1y- s Tnq — Py q1---Gnz — 1) CF[t1, ... b, T1, .+, Ty, 2]

J is an ideal generated over K. The projection

II: Frmtntl — F™
(t1y oo stm, X1y ooy, h) = (T1,...,2)
defines
(W) = (€ F" | F € F", g5(f) #0, 6(F) = 7} = Im(®).
Then, II(Vp(J))F =V is a K-variety. O

The reciprocal is not true, let us show a counterexample. Let V be the variety
defined by 22 +4% —6 in C2. Q is field of definition of V, but it is not a parametrization
field.

If (41, ¢2) where a parametrization of V over Q, there would be a ¢t € Q such that
both rational functions are defined and (¢1(t), ¢2(t)) € V and V would have points in

Q2. 1f

(plv pQ) S Vﬂ(@Qv ng(pHQZ) = 17 i = 172
q1 g2

2 2
then 21 % = 6, 50 p2q3 + p3q3 = 6q3q3. Then, ¢?|p3q3, but, as ged(p1,q1) = 1, this

41

means that ¢7|¢3 and qi|g2. Analogously, g2|¢1 and both elements are associated, so
our point can be written as %1, %2 with ged(p;, q) = 1.

Now, p? + p3 = 6¢%. From this, p? + p3 =0 mod 3, but p? =0,1 mod 3. So,
p? =0 mod 3. Then, 3|p1, 3|p2 and 9|p?, 9|p3. Thus, 9|6¢> = 3|2¢°. Finally, 3|¢ and
p1, q are not relatively prime, which is a contradiction with our hypothesis.

However, Q(v/5), Q(v/2) are two parametrization fields of V, because we have the
parametrizations of V

<t2+2t\/5—1 _t2f—2t—\/5>

1+ t2 ’ 1+1¢2
<2tﬂ—1+t2 t2\/§—4t—ﬂ)
144 7 1+ t2

Both extensions are of degree 2 over Q. As there are no intermediate field, there are
no minimum field of parametrization of V. What we can prove is that there are always
minimal fields of parametrization.
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Proposition 6.29. Let V C K" be a parametric curve. Then, there are minimal
quadratic fields of parametrization with respect to the inclusion.

Proof. From [Cheb1] Chapter II §6 Theorem 6 we obtain that every parametric curve
has a regular point, either with coefficients in the minimum field of definition or in an
algebraic extension of this field of degree 2. On the other hand, there are algorithms
to compute a parametrization of V from the generators of Jg(V), such that, if it is
not possible to obtain a parametrization over the minimum field of definition of V,
it is found over an algebraic extension of degree 2 (because the parametrizations are
obtained from a regular point). This algorithm is presented in [SW97] or [vH97]. [

Let us show a criterion to decide if a concrete field is a field of parametrization of
a parametric curve.

Proposition 6.30. Let V C F" be a parametric curve, K CF be a extension of fields.
Then K is a parametrization field of V if and only if #(V NK") = co.

Proof. Tt follows, for example, from the results of [SW91]. Suppose that K is a field of
parametrization of V. Let (¢1,...,¢,) be a parametrization of V with coefficients in
K. Then, one of the rational functions ¢; is non constant, without loss of generality,

we may suppose that ¢; is not a constant. Let ¢ = % with ged(p(t),q(t)) = 1 and
let
S ={z € K| ¢;(z) is not defined for an index j},

that is, the set defined by each root of the denominators, so S is finite. If V had only
a finite number of K-rational points, the image by ¢; over K would be finite and it
would be defined by ¢1(K) = {k1,...,k}. So, K would be the union of subsets S and
Sy ={z € K| ¢1(x) = k;}. Each S is finite, because it contains at most the roots of
p(x) — kiq(z) = 0 over K. Hence, K would be expressed as the finite union of finite
sets. But this is a contradiction with the fact that K is of characteristic zero.

For the reciprocal, in [SW91] it is shown an algorithm to parametrize a planar
curve from a regular point, that is a point such that not all partial derivatives of the
polynomial vanish. This algorithm provides a parametrization over the same field that
contains the coordinates of the points. In our case, every curve V is K-birational to a
planar curve W and from [Sha94] Chapter I 1.5 we have that any curve has at most a
finite number of singular points. As V N K" is infinite, we deduce that there must be
a regular point in W N K? and, hence, a parametrization of W with coefficients in K.
Composing this parametrization with the K-birational map from W to V, we obtain a
K-parametrization of V. O



Chapter 7

Weil and Witness Varieties

In this Chapter we associate, to every irreducible variety V defined over a field K(«),
another variety WV (the Weil variety of V), this time defined over K. In some sense,
W codifies the relation of V with the K-varieties. First, we present the classical Weil
method for implicit varieties. Next, we will apply the same technique to the case of
parametric varieties given by a parametrization over K(a).

7.1 Weil Variety

Let K be a characteristic zero field and F its algebraic closure. Let

YV =Dp(fi(x1,...,2n)y- -, fr(T1,...,2y)) CF"

be an algebraic variety of dimension m, irreducible with respect to F, where f; €
Flzy,...,zp], 1 < j < r. Let L be a finite algebraic extension of K, K C L C F
containing all the coefficients of the polynomials f;. Without loss of generality, we may
suppose that L = K(«) for some o € F. Let d = [L : K] be the degree of the extension
and fix once and for all the base {1,q,...,a% 1} of L as a K-vector space.

Following Weil [Wei95], let us define the Weil variety associated to V as follows:
replace each variable x; by x;0 + axj + -+ adilxjyd,l, where xj; are new variables,
and write f in this new set of variables:

fk(.l‘(l); - 7.7}(,1)) S L[x(l); e x(n)],
where x(;) denotes the vector of variables (%03 - -3 2j,4-1). From the equality
Llzay; s 2m] = K@) [z -5 2m)l,
we may express fi(T(1);-..;T(n)) as
fro(@ays - 52m) +afu(@ay- - 2m) + o+ o a1 (@) T)

with fr; € K[z(1);...; %)) uniquely determined.
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Definition 7.1. The K-variety W defined by the polynomials f; is the Weil variety
associated to V.

W:{fki(a:(l);...;x(n))20|k::1,...,r,i:O,...,d—1}§F”d

From the construction of W, it follows that if v = (v(1);v(2);---;V(n)) € W, where
each v(;) represents the d-tuple (vjo, .., vjd—1), then

d—1 d—1
vy = Zvuof,---,vaaZ ey
i=0 i=0

)

that is, vy is in V.
An easy check shows that the variety W just defined does not depend on the equa-
tions used to define V.

Lemma 7.2. Suppose that
V:{fl(xl"”7$n):"':f’/‘(xla"‘7xN):O}:

{g1(z1,...,20) = ... =gs(x1,...,2,) =0} CF"

and that the coefficients of every polynomial fy., g; are in 1. Let Wy, W, be the Weil
variety defined respectively from the set of of polynomials. Then Wy = W,.

Proof. Let
Wi={fri=0,1<k<r, 0<i<d-1}

Wy={g1=0,1<j<s, 0<Ii<d-1}

where (fi), (g;1) are obtained from the polynomials fj, g; during the construction of

the varieties Wy, W,. It suffices to show that \/(fii) = \/(gj1)- As f¥ € (g1, .-, 9s),
we have that f¥ = > 5=195h;. Then

d—1 AN d—1 ' d—1 '
(Z fkl(x(l), RN x(n))o/> = fk(z a;lial, ey Z xmal)N =
i =0 1=0

=0
s d—1 ’ d—1 ’ d—1 ’ d—1 ’
<9j(z Ty, Z Im‘az)hj(z T, Z $m‘042)) =
j=1 i=0 i=0 i=0 i=0
s d—1 d—1 ’ d—1 '
(( > gy mm)al)h O wuad, Y :Emof)) € (g51)
j=1  1=0 i=0 i=0

Hence, ch'l;ol fria® € V0gj), 1 <k < r. As (gj) is an ideal with generators in
Klz1,...,z,], it follows from Lemma 6.8 that \/(g;) is also an ideal defined over K.

Thus, by Lemma 6.6 fr; € \/(g;1) and \/(fxi) € +/(g;1)- By symmetry, we obtain the
equality. O
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Consider the extension of fields K C K(a) = L C F. Let o = ag,...,a4 be the
conjugates of v in IF with respect to K and, for each [ = 1,...,d, take an automorphism
o1 of F|K sending « onto oy, o1 = Id. Denote by V7! the conjugate of V via oy, that is,

VO (f7 (@ a%) = - = fA(a, . at) = 0} C "

n

where f.'(z]',...x7!) is the polynomial whose coefficients are the image under o; of
the coefficients of f; and w}” are some new variables. Notice that the f;' and hence V7
do not depend on the particular K-automorphism o; chosen as long as o;(«) = ;. Also
notice that V7 is characterised by the fact that for every point in F", (vy,...,v,) € Vif
and only if (o7(v1),...,01(v,)) € V7. Obviously V7 is an algebraic variety isomorphic
to V and, if the original equation system has all its coefficients in the base field, that
is, if fx € K[z1,...,2y], then V = V7 for every [ = 1,...,d. This may happen even if
VNK" =), for example if V = {z? + 3% + 1 =0} and K = Q.

Take a point v = (v(1);...;vr) € W, where vy = (vjo,..-,vj4-1). As W is
defined by polynomials with coefficients in K, it is invariant by conjugation. Thus,
w = o, (v) = (Jl_l(v(l));...;Ul_l(v(n))) is also in W. In particular, by the above
description of vy, the point wy belongs to V, so its image by o; is in V9!, that is:

d—1 d—1 d—1
o __ ) i i o
vy = E V1500, E V20, .. E vpiag | € VoL
i=0 i=0 i=0

Hence, the linear automorphism ¥ : F*® — F™ given by

d—1 ; d—1 ;

(10 -- . T1d-1; (Zizo Tt Y Ty Tl
d—1 ; d—1 ;

20 --- T2,d-1; Zi:() TQy ... Zi:() Tnily;

v
......... e e

d—1 ; d—1 ;

Tpo --. Tpd—1;) Doico TUOY . D Tpily )

sends W into V x V%2 x ... x V74, Notice that, in the previous map, we represent

the points in F™ on the left side as a n x d matrix, where each row represents the

vector of variables z(;), while, on the right side, the points are represented by a d X n
matrix where the rows are the points vy, v{?,...,v(? of the varieties V, V72 ... V7%
respectively.

Let = (wg,21,...,24-1) € V x V7 x .- x V%=1 Let y = (y();---;¥Y(d—1)) be
the preimage of x by 1, then Z?;(]l o fik(Yos - -3 Ya—1) = fil(z) =0,0<r<d-1
The matrix (o) is a Vandermonde matrix, so it is regular. Hence, we conclude that
fir(y) =0,0<i<d—-1,1<k<randyeW. To sum up:

The next result summarizes the basic properties of the Weil variety, as it can be
checked in [ARS99]

Theorem 7.3.

1. The automorphism ¥ : F*® — F" maps W onto V x V72 x --- x V. Hence,
they are linearly isomorphic varieties.
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2. Let W=Wn {z;i=01]j=1,...,n,i > 1}. The previous automorphism maps
w isomorphically onto the diagonal A of the product V x V%2 x --- x V74, which
can be identified with the intersection V N V22 N --- N V7. This intersection is
the greatest subset (in fact it is a subvariety) of V which is globally stable under
conjugation

Proof. The first item has already been commented. It holds by construction. For the
second item, let v = (v(1);v(2);- - -;V(n)) be a point in W. Then each vy; is of the form
(vj0,0,...,0). Hence, vy} = (vio,...,vn0) € V. It follows that ¥(v) € A. Conversely,
if a point (v,v,...,v) € A is a point of V that belongs to all its conjugates, then
Ul(,...,v) = (v(1),--->Vm)) € W but in this case vy = (v,0,...,0), so in fact
TL(v,...,v) € W. O

In particular, from the second item we have:
Corollary 7.4. The following statements are equivalent:
1. The variety V is defined over K.

2. W is isomorphic to V.

d

3. V=V
=1
d

4. V= v

=1
5. V=Vv1,1<1<d

6. dim(W) = dim(V).

Proof.
e / = 5 is obvious from Proposition 6.9, because if V = Jg(f1,..., fr), fr with
coefficients in K, then V' = Jr(o;(f1),...,01(fr)) = Ir(f1,-.-, fr) =V, 1 <1 < d.

Also, it is trivial that 5 implies 8 and 4.

e Suppose 4, then we have that for all [, V¢ C V, applying Ul_l we obtain V C V”fl
for all [. Let o4 be the K-automorphism of our family such that og(a) = afl(a), then
Vs = Vo' Tt follows that V = Vo for every [. Hence we conclude that V = V7 for
all I. Analogously, one proves that § implies 5. -

e If 3 holds, then, we have that V is isomorphic with the diagonal A, so with W
and we have 2. Note also W is, by definition a K-variety and that the isomorphism is
T — (z(1);---5%(n)), Where ;) = (2,0,...,0), hence W and V are K-birational. By
Theorem 6.22 V is defined over K and 1 holds.

e It is clear that 2 implies 6. .

e Finally, suppose that 6 holds, note that W is always isomorphic with m;l:lvoz by
an isomorphism defined over K. Hence, it follows that m;lzlval C V are of the same
dimension. As V is irreducible, is must happen that mlevaz =) and hence 5. O
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Example 7.5. Let k = R, V := {22 + 3% + 1 = 0} c C2. Making the substitution
T =x0+ 121, Yy =yYo+ 1ty yields

2y 1= (a3 -2 Fyd —yi 1) i (22021 + 2y0u1)
so the Weil variety W is the variety of C* defined by the equations
xf — 23 +yg — yi + 1= 2z071 + 2y0y1 = 0.
The isomorphism % is given in this case by
(0, 21,90, y1) — (Zo + i 21,90 + i y1, 20 — i 21,%0 — 1 Y1)

and the variety W is given by x% + yg 4+ 1 =21 = y1 = 0 which is isomorphic to V.

7.2 The Weil Variety in the Parametric Case

In this Section we try to adapt the Weil variety method to the case of dealing with
a parametric variety. We suppose that K is a characteristic zero field, F its algebraic
closure and K(a) =L C F is an algebraic extension of K, [K(«) : K] = d.

Let V be a L-parametric variety, given by the unirational parametrization

¢ : F™ — "
(t17"'7tm) - ((bl(tl?...,tm),...7¢n(t1,...,tm))
where ¢y € L(z1,...,2,). Hence, each coordinate function ¢y has a representation as
a quotient
hi(ty,...,t
gf)k(tl,...,tm)_M hk,ngL[l‘l,...,xn].

gk(tla - ,tm) ’
Moreover, substituting g by the least common multiple of all the denominators gz, we
suppose, from now on, that the parametrization is reduced to a common denominator,
denoted by g(t1,...,t,). Finally, we suppose also that there are no common compo-
nents on the representation of the parametrization, ged(hy(t), ..., hn(t),g(t)) = 1.

Definition 7.6. Let ¢ = (¢1,...,¢,) be as above, write t; = tjo+tj10+- - -+tj,d,1ad_1,
where tj; are new parameters. The substitution of these expressions in ¢ define new
rational functions L(t(l); - ;t(m)), where, as in the implicit case, ¢(;) denotes the vector
of parameters (tjo,...,tjq4—1). We will still denote these rational functions by ¢y.

As L(tay;---5tamy) = K(tay;---5tam))(a), each rational function have a unique
expression of the form:

Ok = Bro(ta);- - -1 tem)) + b1ty s tmy) + -+ T T dpac1 ()i i tam)
where each ¢r; € K(t(1);...;t(m)). The unirational map & : Fd — Fnd given by

(to -t (r0(tay;---stem)) - Pra—1(tayi---itum));

tao ... tod—1; 20ty ---3tam)) oo B2a-1()s -5 tm));
......... — e e

tmO NN tmdfl) ¢n0(t(1); ey t(m)) . (ﬁndfl(t(l); ceey t(m)))

is called the parametrization obtained by development of ¢.
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The next result extends the results in [ARS99] to parametric varieties of arbitrary
dimension.

Theorem 7.7. If V is a parametric variety, then its associated Weil variety W is
also parametric; a parametrization of W can be obtained by the development of the
parametrization of V. Moreover, if the initial parametrization of V is birational, so is
the induced parametrization of W. Furthermore, the inverse map of W is obtained by
development of the inverse map of ¢.

Proof. By the linear isomorphism between Hle Vo and W, as Hle Vor is clearly a
parametric variety, VV is also parametric. Now, (¢10, ..., $n 4—1) is & parametrization of
W if and only if

d—1 . d—1 .

( ;)¢1i<t(1);...,t(m))az, ey ;)(ﬁni(t(l);...,t(m))al;
d—1 , d—1 ,
2;}¢M(H1ﬁ---,an)aé, e 22}¢nﬂtu)b--,Wnn)a§;
- IR d._l |
;)¢li<t(1);-"at(m))afiv sy ;)anz(t(l)aat(m))a;;)

parametrices the variety Hle V. But in this product variety we have the follow-
ing product parametrization: By conjugation, there is a parametrization ¢t (t) of the
variety V7. In order to avoid confusion, denote by t7 = (t{*,...,tJ!) the vector of
parameters of the parametrization of V7. Gluing up these parametrizations we obtain
a parametrization of the product, II : (F™)¢ — V x V72 x - .. x V74 given by:

(£, t70, .. 17%) — (p(1), 7 (), ..., @741 (t741))

The linear isomorphism W of the previous Section transforms this parametrization into
a parametrization of W.

An easy check shows that ® is related to II by the linear change of parameters
n:Fmd — (F™)9 given by

-1 d—1 ,
(tio ... t1,d-1; ( Z tuat L. Z tmicd;

=0 i=0

-1 d—1 ,
too . t2,d71§ Z tliOézQ . Z tmiaé;

i=0 1=0

......... I et e e

-1 d—1 4
tmo - -- tm,d—l) z:otliazl e ‘zjotmiazd>

1= 1=

where each row on the right can be interpreted as the vector of parameters t7 =
(¢7',...,t%!) that parametrizes V!. So, W is parametrized by ®.

To sum up, we have the commutative diagram of Figure 7.1 where the horizontal
maps are linear isomorphisms and the vertical ones are the parametrizations of the
WEeil variety and the product variety.
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4% L Vx Vo2 x...x VYo
P IT=¢ x ¢72 x -+ X ¢74
| |

Fmd " Fm o F™ ... x Fm

Figure 7.1: Main Diagram

Suppose that ¢ is birational. Then

F(¢1(t)7 ) ¢n(t)) = F(t)

where t = (t1,...,ty), hence

F(o7 (), ..., ¢21 (t%)) = F(t7)
for every l. In particular, for each | = 1,...,d, there are rational functions P{' €
F(z{',...,2%) such that

BT (7). 51 (t7)) = 1]

Let ¢, P;" be the rational function obtained through the isomorphism ¢ (that is, it is
obtained from P,g ' substituting each variable x}” by o + g1 + -+ ald_la:j’d_l).

The inverse map of 7 in Figure 7.1 expresses the parameters ¢;; as a linear function
> )\kltgl of the parameters tzl for some A\ € F. Consider the rational function

Qji = Y Ma(uP) €F(2(ry, .o T(ny)-
Using the commutativity of the diagram one gets that:
tji = Qji(P10(t(1ys -+ s tm)) s s Pra—1(t1)s - -+ 5 E(m)))
which proves that
F(do1(t1)s- -+ tm))s - - > Prd1(t(1ys - - > tem))) = F(tays - - - tmy)-

Thus, ® is birational. Remark that a similar argument, reversing the order of reasoning
in Figure 7.1 allows us to deduce that, if ® is birational, so is II and ¢. ]

As a consequence, we have the following.

Theorem 7.8. Let W be the subvarietygfw defined in Theorem 7.3. Let Y = {t €
Fme | ¢pi(t) = 0,4 > 0}. Then ®~L(t)(W)DY, and thus ®(Y) C W at every point
where ® is defined.
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Proof. This theorem follows from the construction of Y and W. O

Example 7.9. Let ¢ be the parametrization

x(t) = 2%
y(t) = 41(11_’_ ttz)

of the imaginary circle V = {22 + y? + 1 = 0}. This parametrization is birational and,

taking P(z,y) = %, we have that P(z(t),y(t)) = t. The conjugate variety of V over
Q (that coincides with V itself) is parametrized by

= 2t1
) =
) - —i(1—1¢
) =
7() 1+ ¢
The inverse of this birational map is now P(Z,7) = ?%— L. Recall that 7,7, are
other new variables. Developing P(z,y) and P(Z,7) after performing the substitutions

T =1x9+1iT1, y = yo+ iy, T = To— iT1, § = Yo — 1y1, we obtain the rational functions

Yoo + Y11 —T1 | . Y1Zo — To — Yox1
VP = 2 2 2 2
7 +xg ]+ )

— Yoo+ y1T1 — X1 . Y1Zo + To + YoT1
V. P = 2 p) -t 2 p)
r] + xg r] + xg

of the proof of the Theorem.
On the other hand, substituting t = tq + ity, t = tg — it; in the parametrization of
V), we obtain the parametrization of W:
( 2t + 3 — ¢
zo(to, t1) = — . L
olto, 11) o223 v 2u +tT — 27 +1
3+ tot? + to
z1(tg, t1) = —2 0 1
1(fo; 1) 1o+ 2028 + 202 + 1T — 27 + 1
Yo(to, t1) = digh 1

té+2t%t%+2t%+t]2_2t%+1
(tot) = — — 1ty + 265t + ]
| e 220 22+t — 20 + 1

Finally, taking into account that tg = %(t +1) and t; = 2%(t —t), a simple substitution
shows that

1
to = i[w*P(mO(tmtl)?xl(thtl)ayO(thtl)ayl(thtl))"‘
Y P(xo(to, t1), 1(to, t1), Yo (to, t1), v1 (to, t1))]
1
1 = 27[%13(950(%,tl),wl(to,tl)yyo(to,tl)yyl(to,tl )—

Y P(z0(to, t1), z1(to, t1), yo(to, t1), y1(to, t1))]
is the inverse map of the parametrization of W.

)
)
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7.3 Witness Variety

In this Section we provide an analogous notion to the variety W, this time applied
to the parametric case. We have seen in Corollary 7.4 that W gives information on
whether V is defined over k or not. However, WV is an object defined in terms of the
implicit equations of V and we want to profit from the knowledge of a parametrization
of V. Now, in Theorem 7.8, we have introduced a kind of parametric analog of W,
namely, Y. But only apparently.

In fact, with notation as in the previous Section, let g(t) be the common denomina-
tor of ¢. Then ¢g?(¢°!) is the denominator of the parametrization ¢ : F™ — V7. The
automorphism 7~! maps the polynomials g(t), g?2(t2),. .., g°¢(t°¢) into polynomials
in F[t(1);..-;t@m] on the bottom-left side of Figure 7.1. Let ¢ be the product of all
of them. By construction, § is invariant by the isomorphisms o1, ..., 04, so it has its
coefficients over the ground field K, i.e.,

d
§=JIn (g7 (t)) € Kltys - -5 timy)-
i=1

Moreover,  may be taken as the common denominator of @, that we shall assume from
now on.

Remark 7.10. The open set D5 = {§ # 0} C F™ corresponds by 7 with the open set
{g(t) # 0} x {g72(t72) # 0} x - -- x {g?4(t??) # 0}, hence the maps ®, II, in Figure 7.1,
are regular on these open sets.

Unfortunately, we cannot ensure that ® (respectively II) defines a finite to one map
over its image when it is restricted to Dy (respectively n(Djy)). Neither in the case
where @ is birational, because it is possible that its inverse is not defined everywhere in
the image of ®(Djs) (respectively, the inverse of IT may not be defined over II(n(Ds))),
see Example 7.20.

However, the parametrizations ®, II are generically finite to one. More precisely,
there is a Zariski open subset of V x V72 x - - - x V94 where the fiber of II is a finite set of
constant cardinality (always assuming that the varieties are over the algebraically closed
field F). In fact, there is an open subset A C V where ¢ has a constant finite number
q of preimages, which coincides with the degree of the field F(V) of rational functions
over V over the field F(¢1(t),...,¢n(t)) C F(ty,...,tq) cf. [Shad4]. Consider now the
open subset A = Ax A%2x---x A% CVx V72 x---x V% and let B =I1"1(A) C (F™)?
and finally U = n~1(B). We have that the maps ® : U — 9 ~!(A) and I : B — A are
regular with fiber of constant cardinality equal to ¢%.

As stated before, we are interested in obtaining information about V', not through
W but from Y. Now, it may happen that WV is contained in the closed set where the
parametrization is not defined, that is, &~ (W) NY = (), see Example 7.22. Never-
theless, this cannot happen when V is defined over K. In fact, we have the following
result:

Theorem 7.11. The following statements are equivalent:



106 Part II. Hypercircles and Parametric Curves

a) The variety V is defined over K.

b) There is an irreducible open set of Y N DsNU of dimension dim(V) where the
restriction of ® is dominant over W.

b’) dim(V) = dim(Y N DsNU) and, over every irreducible open set of Y N DsNU of
dimension dim(V), the restriction of ® is dominant over W.

c) dim(Y N DsNU) = dim(V)

Moreover, if these conditions hold and 7 : F"™ — Y N Ds N U is a unirational param-
etrization with coefficients over k of a component of Y N Ds NU of dimension dim()V),
then the composition 1 o ® o T is a unirational parametrization of V. In particular,
if Y N Ds NU contains a parametric variety over k of the right dimension, V is k-
parametrizable as well.

Proof. 1t always hold that

dim(Y N Dy N U) < dim(W) < dim(V).

The first inequality follows because @ is finite to one in ¥ N Ds N U. The second
inequality follows because W is always isomorphic to NV? C V by Theorem 7.3.

Suppose that V is defined over K. Then, we know that W is isomorphic to V. Since
V is parametrized by the unirational map ¢(T") = h(T')/g(T), the image of the open
set {g(T") # 0} C F™ where ¢ is defined and contains a Zariski non empty open set of
V. As V is irreducible, the intersection of this open set with the open set A, where the
fiber of ¢ has constant cardinality, is a non empty open set of V. Analogously, for every
[, the image by ¢! of {g? # 0} contains a non empty open set of V7 =V where the
fiber of the parametrization has constant cardinality. The intersection of all these open
sets is an open set 2 of V = VNVY2N...NY%. The openset 2 x---xQ CVx---x P
determines an open set (identified with Q) in the diagonal A of the product that is
contained in the image of the definition set of II and in the set where the fiber is finite
and constant. Translating these data to the left column of Figure 7.1, we find an open
set of VW which is contained in the image of the open set Djs of definition of ®, where
the fiber has constant cardinality. Hence, ®~!()V) contains an open set of Y N Ds N U
where the restriction of ¢ is a finite to one map over W. Tt follows that the dimension
of this open set is dim()V) = dim(V). This proves that a) implies b).

Suppose now b), then as Y N Ds N U contains an open set of dimension dim())
and hence dim(Y N Ds NU) = dim(V). Now, let B be any open subset of Y N Ds N U
of dimension dim(V). Since ® is finite to one on this set, dim(®(B)) = dim(V) and
®(B) C W. But W is an irreducible variety of dimension at most dim(V). Hence, ®|p
is dominant and we have b').

Now, from ') it is clear that ¢) holds. Finally, if we have ¢) then dim(Y NDsNU) <
dim(W) < dim(V) = dim(Y N Dy N U), so, in particular dim(W) = dim(V) and, by
Corollary 7.4, V is defined over K. O
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For an example of what happens if ®|ynp;ny is a unirational map, but still V is
not K-definable, see Example 7.18.

The set U may be, in general, hard to compute (cf. [PDS04]), while the computation
of Ds and Y is mechanical by construction. We define:

Definition 7.12. Let Y, D;s be as above. Let Z be the F-Zariski closure of Y N Ds.
This algebraic set is the witness variety of V.

Unfortunately (contrary to the results of curves studied in [ARS97]) the witness
variety is not enough in general to certify that ) is defined over K, because the previous
theorem does not hold in general if we eliminate U in the statement, as it is shown in
Example 7.20. There, it shown that it may even happen that Z is a parametric variety
over K but V is not defined over K. At least, Theorem 7.11 implies the witness variety
provides a necessary condition on the rationality of V, as remarked in the following
corollary.

Corollary 7.13. If V is defined over K, then Y N Dg contains an open subset of
dimension dim()).

In the case where ¢ is birational, that is, F(¢) = F(t), ® defines a isomorphism in
the open set Ds N U and Theorem 7.11 can be refined.

Proposition 7.14. Suppose that ¢ defines a birational isomorphism with V. Then,
the variety V s defined over K if and only if Z has an irreducible component defined
over K which is K-birational to V. Moreover, V is reparametrizable over K if and only
if Z has an irreducible component parametrizable over K which is K-birational to V.

Proof. 1f V is defined over K, we know by Theorem 7.11 that the restriction ® : ¥’ N
Ds NU — W defines a finite to one map of degree equal to the degree of ¢, in this
case 1. That is, ® defines over this restriction an algebraic isomorphism. As V is
irreducible, the Zariski closure of Y N DsNU is an irreducible component of Z, which is
K-birational to V. Conversely, suppose that Z has a K-component which is K-birational
to V, then, by Theorem 6.22 V is K-definable. Moreover, a K-parametrization of V can
be translated, by the map that defines the isomorphism, to some component of Z which
should be (by the first part of this proposition) K-birational with V, and conversely;
proving, in this way, the second statement. O

7.4 Hyperquadrics

Proposition 7.14 reduces, under the hypothesis of birationality, checking the K-param-
etrizability of V to finding the same property over a suitable component of Z. The key
issue is that the component we are looking for over Z has necessarily to be of some
special kind, an a-hyperquadric (as defined below) and, thus, this fact helps deciding
if it exists, or not, one such component.

Let 6 be an F-automorphism of the field of rational functions in m variables

H:F(tl,...,tm) —>F(t1,...,tm)
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that we suppose given by the substitution

t1=01(t1, .y tm)y eyt = O (L1, .o tm).

Suppose that the coefficients of 6; belong to L. = K(a) and develop each rational
function 6; in terms of the base elements:

Hj(tl,...,tm) = jS(tl,...,tm)ozi.

Definition 7.15. An a-hyperquadric is the variety in F™? parametrized by the compo-
nents 6;;(t1,...,tm),j =1,...,m,i=0,...,d—1 of an automorphism 6 of L(t1,...,tm)
in the base 1,q,...,a%" !

This definition has its origins in the work [ARS97] for the case of curves. With the
help of this concept we may precise the parametrizations considered in the previous
Section.

Now, suppose that Y N Ds N U has a component that is an a-hyperquadric param-
etrized by

tji = jS(’u,l, .. ,um) S K(ul, cee um),

j=1,....,n,1=0,...,d— 1. Composing with  and then with ¢ we have that

d—1 d—1
610 (1)) = (m (D tutwal).....on( > emxu)af)) = 6(04(w))
=0 i=0

is a parametrization of V. Moreover, as the point (0(1)(u);...;00,)(v)) is in Z, it
happens that ¢pi(0(1)(u);...;04m)(u)) = 0 for every i > 0. So (®(0;)(u))) is a
parametrization of the diagonal A and, by the commutativity of 7.1

(705 (w) = ©(2(0(5) () = (10(w), ., dno(u))*

Hence, ¢r(6(u)) = ¢ro(u), so we obtain a parametrization of V with coefficients in
K. That is, the substitution t; = Z;'i:_ol 0;i(u)a’, j = 1,...,m transforms the given
parametrization into a parametrization over K. Conversely, let ¢(¢) be a birational
parametrization of V and suppose that V is parametrizable over K. Let £ : F'™ — V
be a rational parametrization of V over K. In particular, V is defined over K and
Y = V9 for all [. In this case, the right column in Figure 7.1 corresponding to the
parametrization £ is

e =& x - x&: (Fm)d — Vd
(s,872,...,8%) +—  (&(5),£(s72),...,&(s94))
The points in the diagonal of the product corresponds to the values s = §72 = - .. = 594,

The parametrizations ¢ and £ are related by an isomorphism of the field of rational
functions F(sq,...,8m) — F(t1,...,t,) that we suppose given by the substitution

t1 291(81,...,Sm>,...,tm :Qm(sl,...,sm),
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so £(s) = ¢(0(s)). Developing each rational function 6; with respect to the base:

d—1
0;(s) = > Oju(s)a’
k=0

we have that

?7(010(8), ceny Gl,d,l(s); e ;emo(s), e ,Gm,d,l(s)) =
= (0(s);072(s);...;07(s))

for each s, and II send these points into the diagonal. Finally, we get that the coefficients
tj; = ji(sl,...,sm) GK(ul,...,um), k=1,....m, i=1,...,d—1

in the development of 6 give a parametrization of the open set Y N Ds NU of Z which
is K-birational to W. This provides the following result:

Theorem 7.16. Suppose that ¢ is a birational parametrization, then:

1. if a component of Y N DsNU can be parametrized by tj; = 0j(u1,...,um) €
K(ui,...,um), a parametrization of V over K can be obtained from ¢ by the
change of parameter t; = Z?;ol 0;i(u)at.

2. if V is K-parametrizable, then the variety Y N Ds NU has a component which is
parametrizable over K whose parametrization is given by the components of an
automorphism of L(ty,. .., tm) in the base {1,a,...,a%" '},

Thus, V is K-parametrizable if and only if Y N Ds NU has one component which is an
a-hyperquadric and the fiber of ® on all the other components is non-generic.

This theorem provides information that may be useful from a computational point
of view to determine whether a parametric variety is K-parametrizable or not. In the
following Chapter we will focus in the case where V is a curve.

7.5 Examples and Counterexamples

In this Section we provide Examples of how the results in this Chapter are applied, and
also Counterexamples to the impossibility of relaxing the hypothesis of some Theorems.

First, all our assumptions on the Weil variety are given for an irreducible variety.
In principle, the Weil variety can be applied to any variety, in Corollary 7.4 it is proved

that V is defined over K if and only if dim(V) = dim(W). Next, it is shown that the
irreducibility is necessary for that Corollary.

Example 7.17. Let K= Q, a = V2,V = {2+ (—v2-1)z+v2 =0} = {1,V2} CF.
By Theorem 6.17 V is not defined over K. The equations of W are obtained after
substitution = by zo + V2x1, W = fUu:(y(Q) + 2y% — 0, 2%0y1 — Yo —y1 + 1) CF2. W
is the variety defined by {y1,¥% — vo, —vo + 1}. That is, W = {(1,0)}. In this case
dim(W) = dim(V) = 0, but V is not defined over K. Note that W is isomorphic to {1}
which is the largest subset of V invariant by conjugation.
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Let us show that the second item of Theorem 7.11 does not imply that V is a
K-variety if we drop the condition dim(V) = dim(W).

Example 7.18. Let K = Q, ¢ = (¢,1/2t) a line in the plane. Its implicit equation is
y — 2z, so

W = {yo — 2x1 = y1 — xo = 0}.
W = {yo—221=y1 —x0=21 =11 =0} ={(0,0,0,0)}.

The parametrization of W given by development of ¢ is:
®(to, t1) = (to, t1,2t1, to).

Y = {t; = to = 0} = {(0,0)}. Moreover, every polynomial is linear, hence D5 = F?,
U =Y. Thus Y N Dy N U is birational to W by ®. In particular dim(Y N DsNU) =

dim(W). But V is not K-definable here. This happens because dim(V) > dim(W).

Let us show that if we drop the condition of K-definability in the component of
Y N Dy K-birational to V then the Proposition 7.14 does not hold.

Example 7.19. Let K= Q, L = Q(i), V = {x + y + iz = 0} given by the birational
parametrization
¢ = (iu + iww, iu — iuv?, —2u — uv + uv?)
with inverse
T —y 122 4 22y — iy?
v = U= —
T 20 —y

Note that the parametrization is polynomial, so Dy is the whole plane. Z is the variety
defined by the ideal:

2 2 2 2
(o +ugvo — u1v1, Up — UV + U] +2u1VeV1, —2U1 — UGV — ULV + 2UgUUT + U UG — UL VT)
The components (over C) of this ideal are:

(ul,uo), (UlaUO - 25 U0)7 (’Ul,UO + 1)

(U() + vt 4+ 1, u9 — uli), (UO — vt + 1, ug + uli).
As V is not definable over K, it cannot be K-birational to none of the three first ideals.
We are proving that the fourth component Z4 = {vy — v1i + 1,= up + u1i = 0} is
K-birational to V. The birational map is:

CV) — C(2) C(2) — CV)
x = u] — g U — z
Yy = Vo uy = Tty
z e g vg Yy

v s Zg;y:yl)

This example does not contradict Proposition 7.14 since V is not K-birational to a
K-component of ¥V but to a LL-component of it.
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Example 7.20. In this Example we show a plane that is not defined over Q but whose
variety Z is another plane parametrized over Q. Let a = v/2 and consider the following
parametrization with coefficients in Q[a] of the plane V = {z = az + y} plane in C3:

z(u,v) =u
¢=19 Y(u,v) =uw
z(u,v) = au + uv

Clearly V is not a QQ-variety. Note that the given parametrization ¢ is one to one
on every point of V such that x # 0. The fiber over the point (0,0,0) is the whole
axis v = 0 and the parametrization does not cover the points {x = 0,y # 0}. The
parametrization obtained by development is given by the substitution v = ug + w1«
and v = vg + v, then:

x(ug, u1,v0,v1) = up + oy
y(ug, u1, v, v1) = (ugvo + 2u1v1) + a(ugvr + u1vg)
z(ug, u1,vo,v1) = (ugvy + 2u1 + 2uiv1) + a(ug + upvy + uivg)

As the parametrization is polynomial, there are no denominator, § = 1 and the set Y
coincides with Z. The equations of Y are {u; = ugv1 + uivg = up + upv1 + uivg = 0},
that is, {u; = up = 0}. Hence Z is a plane defined over Q and dim(Z) = dim(V), but
V' cannot be defined over Q. The apparent contradiction with Theorem 7.11 comes
because the whole set Z is contained in the set of points where the parametrization
does not have a finite fiber {u = 0}. So ZNU = (), where U is the open set defined in
Theorem 7.11. On the other hand, notice that Z is not Q-birational to V, so there is
no contradiction with Proposition 7.14.

Substituting a by a d-th root of 2, we obtain a variety Z of dimension d, this shows
that the witness variety can have arbitrarily high dimension.

Example 7.21. Here, we present a plane defined over QQ such that the variety Z has
two components of different dimensions. Let o be a cubic root of 2 and consider the
following parametrization in Q[a] of the plane V = {z = x + y} in C3:

z(u,v) = au
y(u,v) = (. + 2)uv
z(u,v) = ou + (a + 2)uv

As in the previous example, the parametrization is one to one in every point of V
such that x # 0 and the fiber over the point (0, 0,0) is the axis u = 0. The substitutions
u = ug+ura+usa?, v = vy +via+vea® give the following equations of Y = Z (again,
d=1):

Z:{U,[):ul:O,Uo—i-vg:0,01+202:0}U{UO:U1 :’LLQ:O}

The second component of Z has dimension 3 in C® and is completely contained in the
closed set of C® where the parametrization is not finite to one. So it does not give any
information on the definability of V over Q. Nevertheless, the first component is a finite
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to one map and, by Theorem 7.11, this means that V is defined over Q. Furthermore,
it provides a parametrization of V over Q. By Theorem 7.16, it suffices to take uy =
u; = 0, v9 = —vg and v; = —2vy (a parametrization of the first components with
parameters vg,us) in the previous change of coordinates. Hence, is we take u = a?s,

v = (=1 — 2a + o)t we obtain the parametrization of V:

x(s,t) =s
y(s,t) = —bst
z(s,t) = s — bst

Next example shows that the consideration of § is essential even in the case of
curves.

Example 7.22. Let a be a root of 2% — 2 and take the following parametrization of a
planar curve over Q[a/:

2(t) = 71
y(t) = 57

This curve is the line y = ax in C?, so it does not admit equations over Q. The
substitution of the parameters t = to + tia + taa? + t3a® in the parametrization allows
the computation of d:

§ = 1—-2t%+to* +4tg3 — 16tgti1ts + 8t12taty — 16t ta2 t3 — 811 t3to>+
+ 16tat32tg — 4to? — 8ty ts + 812ty + 16 Lo t3? — 8to? to+
+ 8t12t32 — 4t22t02 + 4t24 — 8t34 + 4ty + 6t02
The auxiliary variety Y is defined as the zero set of the polynomials:

fi= —16t34 + 6t03 — 4t22 — 4t14 + 8t24 + 2ty — 32t1t22t3 + 2t04 + 16t12t2t0 — 16t1t3t02 +
32t2t32t0 — 24tot 1t + 12t12t2 + 16t12t32 + 24t2t32 — 8t22t02 — 8tit3 — 12t22t0 + 6t02

fo=4tot] — Stoty +4tita® — 4t 2tz 4+ 2tg>t; + 2t + 8t33 — 8tgtats
fa=8tat1ty — 212 + 2ty — 4tg® — 432 + Attty — 2tgt12 4+ 2taty? — 4132ty
fa=4tot] — Stotg +4tita® — 4t 2tz + 2tg>t; + 2t + 8t3° — 8tgtats
fs =8tatity — 2112 + 2ty — 4tg® — 432 + Attty — 2tgt12 4+ 2tate? — 4t32 1y
fo =2t +2t3tg? —dtitatyg — At t32 +4ta?ty — At to + 2812 + 4dtgty

It can be checked that Y contains the plane in C*:

to + at1 + a2t2 + Oégtg =-1
to + aity + adty + ajty = —1

and its conjugates. If we take the same parametrization with o of degree d arbitrarily
high, we obtain a variety Y of dimension d—2 arbitrarily high. However, it is easy to see
that these planes are contained in the zero set of § = H?:o (to+ ayt1 + O[?tg + Oé?tg +1),
so YN Ds=1{(0,0,0,0)}. This proves that V is not defined over Q.



Chapter 7. Weil and Witness Varieties 113

Figure 7.2: Projection of Z over the space (ug, ui,u2) (left) and (ug, v, v2) (right)

Example 7.23. Let a = /2 and consider the surface parametrized by

Oé’LL2 - ()é2UU

x(u,v) = — T
y(u,v) =u— av

2,2
(u,0) = L4

2

By the substitution u = ug + uja + uga? and v = vg + via + v2a? in x(u,v), y(u,v),

z(u,v) and by normalization, we obtain the denominator:
§ = (4v3 — 6w + v + 203)2,

and six polynomials in Q[ug, u1, u2, vg, v1, v2]. The polynomials corresponding to o and
a? in the numerators of x(ug + uia + usa?, vo + via + vaa?), y(ug + ura + uza?, v +
via + vea?) and z(ug + ura + uza?, vo + via + v2a?) define the set Y.

Using the computer algebra software Maple and Singular, we deduce that the wit-
ness variety Z represents a variety of dimension 2 whose implicit equations are:

—upu] + 2u% =0,v9 —u1 = 0,v1 —ue = 0,ugve — ugug = 0, 2usvy — u% =0,

2 2
vy — 2V1v2, —VoU1 + UgU2, UgVy — 207, U2 — V1, U] — Vo,

this variety is parametrized by

ug = 252/t vy =t
up =t v =S8
Uy =8 vy = t2/2s

The substitution
{ u=2%+at+a?s
t

_ 2 2
v=t+as+ 5o
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Figure 7.3: Whitney umbrella

transforms the given parametrization into the rational parametrization

A3 3

x(s,t) — %
3_ 43
y(s,t) — 2$Stt

that represents the Whitney’s umbrella 22 — zy? = 0 (see Figure 7.3).
The previous substitution is in fact a change of variables, that is, a isomorphism

between C(u,v) and C(s,t), with inverse

UU2 ’UQOé’U,

S = y t =
202 + auv + au? 202 + a?uv + au?

and hence, Z is a 2-dimensional hyperquadric associated to this isomorphism.



Chapter 8

Geometry of Hypercircles

In this Chapter we present a deep study of the geometry of hypercircles. Hypercircles
are hypercuadrics of dimension 1. That is, hypercuadrics given by an automorphism of
F(t) into itself. The best known family of hypercircles are circles themselves. Namely,
let R C C be our extension of fields, let gﬁg € C(t)\C be any unit under composition of
C(t). Then, u(t) = ¢1(t)+iga(t), d1,d2 € R(t). If c £ 0and d/c ¢ R, then (¢1(t), p2(t))
parametrizes a real circle in C?. Hence, the geometric properties of hypercircles are
in particular properties of circles (avoiding some degenerate cases, similar to the case
where d/c € R in this comparison, that produces a real line in the plane). Thus, we

will try to obtain the geometric properties of hypercircles by comparison with circles

in many cases.

8.1 First Properties of Hypercircles

In this Section we begin with the formal definition of a hypercircle. L = K(a) is an
algebraic extension of a characteristic zero field K such that [L : K] = n.

Definition 8.1. An a-hypercircle is an a-hypercuadric of dimension 1. That is, let
u(t) be a unit in L(¢), where L = K(«). Let

n—1
u(t) =Y ¢i(t)a’
=0

where ¢;(t) € K(t), for i =0,...,n — 1. The a-hypercircle U generated by u(t) is the
rational curve in F"™ parametrized by ¢(t) = (¢o(t), ..., dn—1(t)).

As we have fixed the base {1,q,...,a" '} of K(a)(t), the expansion of u(t) is
unique. In Section 7.4 we have not given a way to compute the parametrization of
a hypercuadric, but this is easy for the case of hypercircles. The parametrization
can be obtained by rationalizing the denominator as follows: suppose given the unit

u(t) = gﬁs, ¢ # 0 (remark that, if ¢ = 0, it is straightforward to obtain ¢(t)), and the
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Figure 8.1: A hypercircle in R?

extension K C K(«). Let M(t) be the minimal polynomial of —d/c over K. Compute

thg € K()[t] and develop the unit as

the quotient m(t) =

at+b _ (at+b)mt) _ po(t) +pr(t)a+ -+ +paa(t)a""

ct+d M) M(t)

where p;(t) € K[t]. From this, ¢(t) = (1;\918 yees p’;\/‘[(lt()t)> is the parametrization asso-
ciated to u(t). Remark that ged(po(t),...,pn—1(t),M(t)) = 1. Moreover, it is clear
that F(¢o(t), ..., ¢n-1(t)) =F(t). So this parametrization is proper in F, and it follows

from the results in [AGR96] that also K(¢o(t),. .., ¢n—1(t)) = K(t).

Example 8.2. Let us consider the algebraic extension Q C Q(«), where a3+2a+2 = 0.
The unit Z—g has an associated hypercircle parametrized by

o(t) = B4+2+2 22 2t
C\B A -2 4+2 -2 3 4+2t—2

A picture of the spatial real curve is shown in Figure 8.1

As it stands, the definition of a hypercircle U depends on a given unit u(t) € L(¢) and
on a primitive generator a of an algebraic extension L. In what follows we will analyze
the effect on U when varying some of these items, searching for a simple representation
of a hypercircle to ease studying its geometry.

First notice that, given a unit u(¢) € L(¢) and two different primitive elements
and [ of the extension K C L, we can expand the unit in two different ways u(t)
Z?:_ol aloi(t) = Z?:_ol Bi1;(t). The hypercircles Uy = (¢o(t), ..., Pn—1(t)) and Ug
(o(t),...,¢¥n_1(t)) generated by u(t) are different curves in F", see Example 8.3.
Nevertheless, let A € M,,x,(K) be the matrix of change of basis from {1,c,...,a" !}
to {1,83,...,8"'}. Then, A(¢o(t),...,dn_1(t))t = (o(t),...,¥n_1(t))!. That is, it

carries one of the curve onto the other. Thus, U, and Uz are related by the affine

1o
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transformation induced by the change of basis and, so, they share many important
geometric properties.

In the sequel, if there is no confusion about the algebraic extension and the primitive
element, we will simply call &/ a hypercircle.

Example 8.3. Let us consider the algebraic extension Q C Q(«), where a* + 1 = 0.

Let us take the unit u(t) = ¢, By normalizing u(t), we obtain the parametrization

tt+a”
¢(t) associated to u(t):

-1 =23 22 2t
41U+t

o) = (
This hypercircle U, is the zero set of {z1x9 — x320 — T3, x% + x% — 2x9, 21X + To2T3 —

71,28 + 371 — 1}. Now, we take 3 = o3 + 1, instead of «, as the primitive element of
Q(a) = Q(B). The same unit u(t) generates the S-hypercircle Uz parametrized by

o(t) =

o3 — 22 42t — 1 —6t3 4+ 412 — 2t 63 — 262 —2t3
tA+1 ’ th+1 ot 41 Tttt 41

which is different to U,; note that (1) = (1,—2,2,—1) that does not satisfy the
equation x% +x321 — 1 =0 of U,.

On the other hand it is well known that a given parametric curve can be parametr-
ized over a given field S by different proper parametrizations, precisely, those obtained
by composing to the right a given proper parametrization by a unit in S(¢). In this
way, we have a bijection between a-hypercircles and the equivalence classes of units of
K(«)(t) under the equivalence relation “u ~ v if and only if u(t) = v(7(t)) for a unit
7(t) € K(t)” (fixing the correspondence, between a unit in K(«)(t) and a hypercircle,
by means of the expansion of the unit in terms of powers of «).

More interesting is to analyze, on a hypercircle defined by a unit u(t), the effect of
composing it to the left with another unit 7(¢) € K(a)(t), that is, of getting 7(u(t)).
For instance, 7(t) could be 7(t) =t + X or 7(t) = At, or 7(t) = 1/t, with A € K(a)*.
Every unit is a sequence of compositions of these three simpler cases, for instance, when
¢ # 0, we have

1 bc—ad 1

t t t+d
— ct —— ct + »—>ct+dr—> c Ct—|—d’—>

a bc—ad 1 at +b
— — = = u(t).
c c c+d ct+d
Therefore, studying their independent effect is all we need to understand completely
the behavior of a hypercircle under left composition by units.

For circles, adding a complex number to the unit that defines the circle correspond to
a translation of the circle. Multiplying it by a complex number acts as the composition
of a rotation and a dilation. And the application 7(¢) = 1/t gives an inversion. The

following lemma analyzes what happens in the general case.
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n—1
Lemma 8.4. Let U be the a-hypercircle generated by u(t), and A = Z N € K(a)*,
i=0
where \; € K. Then,
1. X+ u(t) is a unit generating the hypercircle obtained from U by the translation of
vector (Ao, .-y An—1)-

2. Au(t) is a unit generating the hypercircle obtained fromU by the affine transforma-
tion over K given by the matriz of change of basis from B* = {\, Aa, ..., Aa" "'}
to B={l,a,...,a"1}.

Proof. To prove (1), let ¢(t) = (¢o(t),...,Pn-1(t)) € K(t)" be the parametrization of
U obtained from wu(t). Then, X\ + u(t) = leol()\i + ¢;(t))a’ generates the hypercircle
parametrized by (Ao + ¢o(t), ..., An—1+ Pn—1(t)) € K(¢)", which is the translation of U
of vector (Mg, ..., A\,—1). For the second assertion, let ¢*(t) € K(¢)" be the parametr-
ization of the hypercircle associated to the unit Au(t). The rational coordinates ¢} (%)
of ¢*(t) are obtained from the matrix A = (a;;) € Mpxn(K) of change of basis from
B* to B, for i, =0,...,n — 1. Indeed,

n—1 n—1 — — —
= git)ra’ =) it Z ajicd | = Z (Z ajigi(t >
i=0 i=0

7=0
Then ¢*(¢t)! = Ad(t)". O

Finally, the following lemma uses the previous results to transform affinely one
hypercircle into another one whose unit is simpler.

Lemma 8.5. Let u(t) = Zﬁ_s be a unit and U its associated hypercircle.

1. If c =0 then U is affinely equivalent over K to the line generated by u*(t) = t.

2. If ¢ # 0 then U is affinely equivalent over K to the hypercircle U* generated by
_ 1
w*(t) = Fare
Proof. This lemma follows from Lemma 8.4, taking into account that u(t) is obtained
from w*(t) by the following composition:

w*(t) = AMu*(t) — Au*(t) +

+ Ao

with suitable A1, Ap,u*. If ¢ = 0, then Ay = § # 0 and Ay = % for u*(t) = t.
Analogously, if ¢ # 0, then u(t) is obtained from u*(t) = & L e g

and Ay = £. O

Therefore the (affine) geometry of hypercircles can be reduced to those generated by
a unit of type ; + =g (then we say the unit is in reduced form). The simplest hypercircle of
this kind is given by t+7’ when d € K. It is the line parametrized by (Hid, 0,...,0). In
the complex case, units defining lines are precisely those given either by a polynomial
unit in ¢ (i.e. a unit without ¢ at the denominator) or by a unit such that the root of
the denominator is in R. The same property holds for hypercircles.
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Theorem 8.6. Let U be the a-hypercircle associated to u(t). Then, the following
statements are equivalent:

~

. U is a line.

2. U is associated to a polynomial unit.

o

The root of the denominator of every non polynomial unit generating U belongs
to K.

<

. U 1s polynomially parametrizable (over ).

5. U has one and only one branch (over F ) at infinity.
6. U is polynomially parametrizable over K.

7. U has one and only one branch (over K ) at infinity.

Proof. (1) < (2). By definition, we know that hypercircles have a parametrization
over K. Thus, if U is a line, it can be parametrized as (agt + bo, ..., an—1t + bp—1),
where a;, b; € K. Therefore, u(t) = (Z?;ol aiai) t+ 374 bial is a polynomial
unit associated to U. Conversely, let u(t) = at + b € L(t), a # 0, be a polynomial unit
associated to Y. Then U is the line parametrized by P(t) = (agt+bo, - - ., an_1t+bp_1) €
K[t]", where a = Y27 a;a’ and b= 31" b; o’

(2) & (3). Let u(t) = at + b be a polynomial unit associated to U, and let u*(t)
be another non polynomial unit associated to &. Then, u*(t) = u(7(t)), where 7(¢) is
a unit of K (¢). Therefore, the root of u*(t) belongs to K. Conversely, by Lemma 8.5,
(3) implies (1), and we know that (1) implies (2).

(3) & (4). Indeed, (3) implies (2) and therefore (4). Conversely, let u(t) be a
non-polynomial unit generating U, and let ¢(t) = (¢;)i=1,..n € K(¢)" be the associ-
ated parametrization of Y. Then, ¢(t) is proper, ¢;(t) = f}[((?) with deg(p;) < deg(M)
and ged(po(t) .. .pn—1(t), M(t)) = 1. Thus, the fact that ¢ admits a polynomial pa-
rametrization, implies, by Abhyankar-Manocha-Canny’s criterion of polynomiality (see
[MC91]), that the denominator M (t) is either constant or has only one root. Now,
M (t) can not be constant, since it is a minimal polynomial. Thus, M has only one
root, and since it is irreducible, it must be linear. Moreover, since M € K[¢t], its root is
an element in K.

(4) < (5) This is, again, the geometric version of Abhyankar-Manocha-Canny’s
criterion. Same for (6) < (7).

(4) < (6) Obviously (6) implies (4). Conversely, if we have a polynomial param-
etrization over F, it happens [ARO7] that any proper parametrization must be either
polynomial or in all its components the degree of the numerator must be smaller or
equal than the degree of the denominator and, then, this denominator has only one
single root over F. So, since the parametrization ¢(¢) induced by the unit is proper,
and by hypothesis ¢/ is polynomial, then ¢(¢) must be either polynomial (in which case
we are done because ¢(t) is over K) or its denominator M (¢) has a single root a € F.
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Now, reasoning as above one gets that a € K. So, a change of parameter, such as
t+— 19 turns ¢(t) into a K-polynomial parametrization. O

As a corollary of this theorem, we observe that a parabola can never be a hypercircle,
since it is polynomially parametrizable, but it is not a line. Nevertheless, it is easy to
check that the other irreducible conics are indeed hypercircles for certain algebraic
extensions of degree 2.

8.2 Main Geometric Properties.

This Section is devoted to the analysis on the main geometric properties of hypercircles.
The key idea, when not dealing with lines, will be to use the reduction to units of the

form wu(t) = Hid, where d ¢ K (see Lemma 8.5).

Theorem 8.7. Let U be the a-hypercircle associated to the unit u(t) = Cﬁj’ € K(a)(t)
and let r = [K(—d) : K]. Then,

1. there exists an affine transformation x : F* — F" defined over K such that the
curve x(U) is parametrized by

_ 1 t tr—1
X(t) = (M(t)’M(t)"”’M(t)’o’”"0>'

2. there exists a projective transformation p : P(F)" — P(F)", defined over K, such
that the curve p(U) is the rational normal curve of degree r in P(F)", parametrized
by

plt:s)=[s":s" M ist™ i t" 011 0]

Proof. For the case of lines the result is trivial. By Lemma 8.5, we can consider
that U is the hypercircle associated to wu(t) = p%d and r > 2. Let M(t) = t" +
kp 1 th= 1 4o b kg € K[t],m(t) = Z;—(} I;t* € LL[t]. With the notation of Section 8.1
and, since the numerator of u(t) is 1, it holds that m(t) = Z?:_Ol pi(t)ad, pi(t) €
K[t]. Also, note that both M(¢) and the denominator of u(t) are monic, and hence
l,—1 = 1. First of all, we prove that there are exactly r polynomials in {p;(t), i =
0,...,n — 1} C KJ[t] being linearly independent. For this purpose, we observe that
the coefficients of m(t), {1,l,_2,...,lp} C L, are linearly independent over K. Indeed,
from the equality M(t) = (t + d)m(t), one has that l,_; = (—d)" ! + (—=d)* 2k,_1 +
oot kp_ip1, fori=2,...,r. So, {1,l,_2,...,lp} C L are K-linearly independent, since
otherwise one would find a non-zero polynomial of degree smaller than r vanishing
at —d. Now, let lz = (lio,. .- ,li,n,l)t be the vector of coordinates of [; in the base
{1,a,...,a" 1}, Then, {T, l_;«,g, o ,Z_E)} C K" are K-linearly independent. Moreover,
since (po(t),...,pn_1(t))t = =1 4 [ _ot"2 4+ ...+, there are r polynomials p;,,
0<i; <- - <ip <n—1, linearly independent. By simplicity, we assume w.l.o.g. that
the first r polynomials are linearly independent. Observe that this is always possible
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through a permutation matrix. The new curve, that we will continue denoting by U,
is not, in general, a hypercircle. In this situation, we proceed to prove (1) and (2).

In order to prove (1), let A € M,,_,»,(K) be the matrix providing the linear combina-
tions of the n — r last polynomials in terms of the first r polynomials; i.e.

(pr(t), -, a1 ()" = Alpo(t), - .., pr-1(t))"-

Now, given the bases B = {1,...,t" '} and B* = {po(t),...,pr_1(1)}, let M €
M, (K) be the transpose matrix of change of bases from B to B*. Finally, the n x n

matrix
o M Or,n—r

Q N ( _A Infr
defines, under the previous assumptions, the affine transformation x. Note that if r =n
then Q = M.
The proof of (2) is analogous to (1). Now, let consider the basis B = {1,...,t"~1,"}
and B* = {po(t),...,pr—1(t), M (t)}. Let A € My_rxr+1(K) be the matrix provid-
ing the linear combinations of the n — r last polynomials in terms of basis B*; i.e.
(Pr(t)s s pn—1(1)" = Apo(t), ..., pr—1(t), M(t))". Let M € Myi1xr41(K) be the
transpose matrix of change of bases from B to B*. Finally, the n + 1 x n + 1 matrix

Q _ M Or+1,n7r
_-A In—’/‘
defines, under the previous assumptions, the projective transformation p. Note that if
r =n then Q = M. O
As a direct consequence, we derive the following geometric properties of hypercircles.
Corollary 8.8. In the hypothesis of Theorem 8.7

1. U defines a curve of degree .

2. U is contained in a linear variety of dimension r and it is mot contained in a
variety of dimension r — 1.

3. U 1is a regular curve in P(F)".
4. The Hilbert function of U is equal to its Hilbert polynomial and hy(m) = mn—+1.

Proof. All these properties are well known to hold for the rational normal curve of
degree r c.f. [Har92], [Har77], [Wal50]). O

In the following theorem, we classify the hypercircles that are affinely equivalent
over K. We will assume that the denominator of the generating units are not constant.
The case where the units are polynomials are described in Theorem 8.6.

Theorem 8.9. Let U;, i = 1,2, be a-hypercircles associated to u;(t) = ag’i‘;fi, and let

M;(t) be the minimal polynomial of —d; over K. Then, the following statements are
equivalent:




122 Part II. Hypercircles and Parametric Curves

1. Uy and Uy are affinely equivalent over K.

2. There exists a unit 7(t) € K(t) such that it maps a root (and hence all roots) of
M (t) onto a root (resp. all roots) of Ma(t).

Proof. First of all note that, because of Theorem 8.6, the result for lines is triv-
ial. For dealing with the general case, we observe that, by Lemma 8.5, we can as-
sume that u;(t) = 1/(t + d;). Next, suppose that U; and Us are affinely equivalent
over K. By Theorem 8.7, statement (1), [K(d;) : K] = [K(d2) : K] = r and the

curves U5 = x(U1) and U = x(Uz) parametrized by x1(t) = (ﬁ(t), cee %) and
X2(t) = (ﬁ(t), R %), respectively, are affinely equivalent over K; note that, for

simplicity we have omitted the last zero components in these parametrizations. There-
fore, there exists A = (a; ;) € GL(r,K) and ¢ € M,1(K), such that o(t) := A x1(¢)'+7
parametrizes U3. In consequence, since ¢(t) and x2(t) are proper parametrizations of
the same curve, there exists a unit 7(¢) € K(¢) such that ¢(t) = x2(7(¢)). Then,
considering the first component in the above equality, one gets that

(a171 + -4 almtr—l + UlMl(t))MQ(T(t)) =M (t)
Now, substituting ¢t by —d;, we obtain
(a11 + -+ ar,(—d)""' + oy My (—dy)) Mo (7(—dy)) = My (—dy) = 0.

Note that a1 1+---+ay,(—d1)" ! # 0, because [K(d1) : K] = 7. Also, note that 7(—dj)
is well defined, because —d; does not belong to K. This implies that My(7(—d;)) = 0.
So, 7(—dy) is a root of Ma(t).

Conversely, let 7(t) = ﬁ;iiﬁi € K(t) be a unit that maps the root v of M;(t)
onto the root B of Ms(t), i.e. 7(v) = . This relation implies that K(v) = K(3)
and that deg (M;i(t)) = deg(Ma(t)) = r. Therefore, because of Theorem 8.7, it is
enough to prove that the curves U := x(U;) and Uy := x(Uz) are affinely equivalent

over K. Recall that U is parametrized by ¢;(t) = x(t) = (ﬁ, ol %)7 here

again, we omit the last zero components of the parametrization. In order to prove the
result, we find an invertible matrix A € GL(r,K) and a vector ¥ € M,x1(K), such
that Al (t) + 0 = p4(7(t)). For this purpose, we consider the polynomial M (t) =
Ms(7(t))(kst+ka)" € K[t]. Now, since 7(t) is a unit of K(¢), and the roots of Ma(t) are
not in K, one gets that deg(M) = deg(Msz) = r. Moreover, since « is a root of M (t),
and taking into account that M (t) is the minimal polynomial of v over K and that
deg(M) = r = deg(M1), one has that there exists ¢ € K* such that M(t) = e¢M;(t).
Now, in order to determine A and v, let us substitute 7(¢) in the i-th component of
Pa(t): | | | |

T(t)Z _ T(t)l(kgt + /ﬂ4)r _ (lﬁt + k‘Q)Z(/fgt + k4)r71

My(7(t))  Ma(7(t))(kst + kq)" My (t)

Since numerator and denominator in the above rational function have the same degree,
taking quotients and remainders, po(t) can be expressed as

a1+ +ap !
(ea(r())imtcr = (01 + =it
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for some v;,a;; € K. Take A = (a;;) and ¢ = (v;). Then, A(p1(t))" + T = (p2(7(2))".

Finally, let us see that A is regular. Indeed, suppose that A is singular and that there

exists a non trivial linear relation A\ Fy + -+ -+ A\ F = 6, where F; denotes the i-th row
trfl

of A. This implies that (Alﬁ(t) et )\Ti) o7(t) = Mv1+-- -+ N\, is constant,

Mo(t)
)\1+"'+)\7‘t7‘7

which is impossible because =72 " is not constant and 7(t) is a unit of K(¢). O

In Corollary 8.8 we have seen that the degree of a hypercircle is given by the degree
of the field extension provided by the pole of any non polynomial generating unit. Lines
are curves of degree one, a particular case of this phenomenon. Now, we consider other
kind of hypercircles of degree smaller than n. This motivates the following concept.

Definition 8.10. Let U be an a-hypercircle. If the degree of U is [K(«) : K], we
say that it is a primitive hypercircle. Otherwise, we say that U is a non-primitive
hypercircle.

Regarding the complex numbers as an extension of the reals, lines may be considered
as circles when we define them through a Moebius transformation. Lines are the only
one curves among these such that its degree is not [C : R]. The situation is more
complicated in the general case.

8.3 Non-primitive Hypercircles

Apart from lines, which have been thoroughly studied in Theorem 8.6, there are other
non-primitive hypercircles. This is not a big challenge because, as we will see, non-
primitive hypercircles are primitive on another extension. Moreover, these cases reflect
some algebraic aspects of the extension K C K(a) = L in the geometry of the hy-
percircles. Actually, we will see that there is a correspondence between non-primitive
hypercircles and the intermediate fields of K C L. More precisely, let &/ be a non-
primitive hypercircle associated to u(t) = t-%d’ where r = [K(d) : K] < [L : K] =n. In
this case, we have the algebraic extensions K C K(d) € L. We may consider u(t) as a
unit either in the extension K C K(d) with primitive element d or in K(d) € L with
primitive element a. In the first case, u(t) defines a primitive hypercircle in F". In the
second case, as u(t) is a K(d) unit, it defines a line. The analysis of ¢ can be reduced
to the case of the primitive hypercircle associated to u(t) in the extension K C K(d).

at+b
trd <

K(a)(t). Let V be the hypercircle generated by the unit Hid in the extension K C
K(d). Then, there is an affine inclusion from F" to F™, defined over K, that maps the
hypercircle V onto U.

Theorem 8.11. Let U be the non-primitive hypercircle associated to u(t) =

Proof. Taking into account Lemma 8.5, we may assume that u(t) = tJ%d. Let ¢(t) =
(do(t)y...,dn-1(t)) € K(t)™ be the parametrization of U, obtained from w(t), with
respect to the basis B = {1,q,...,a" '}. Similarly, let ¥ (t) = (Yo(t),...,¥—1(t)) €
K"(¢) be the parametrization of the hypercircle V, associated to wu(t), with respect

to the basis B* = {1,d,...,d" '}, where r = [K(d) : K]. The matrix D = (d;;) €
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M, (K) whose columns are the coordinates of d’ with respect to B induces a K-linear
transformation x : F" + F™ that maps V onto U. Indeed, as u(t) = Y i— i(t)d" =
Z;L:_Ol ;(t)a?, one has that

r—1 r—1 n—1 n—1 /r—1 n—1
S td =Y vit) | S die’ | =3 (Z dj,m) o = 3 6y (t)ar
i=0 i=0 j=0 j=0

j=0 \i=0
Then ¢(t)! = D1)(t)t. Moreover, x is one to one, because rank(D) = . O

As a consequence of this theorem, every hypercircle is affinely equivalent, over K,
to a primitive hypercircle. Therefore, the study of hypercircles can be reduced to the
study of primitives hypercircles. For the rest of the Chapter, we will suppose that all
the hypercircles are primitive.

8.4 Properties at Infinity of a Hypercircle

Circles have a very particular structure at infinity, namely, they pass through the cyclic
points, i.e. [£i:1:0]. In this Section, we will see that a similar situation occurs for
more general primitive hypercircles. More precisely, let & be the primitive hypercircle
defined by the unit u(t) = iijb. By Corollary 8.8, U is a parametric affine curve of
degree n. So, there are at most n different points in the hyperplane at infinity. Let
o(t) = (¢po(t),...,Pn-1(t)) be the parametrization of U generated by wu(t); recall that

oi(t) = ]I\’}[((?) Thus, projective coordinates of the points attained by ¢(t) are given by
[po(t) : -+ : pn_1(t) : M(t)]. Now, substituting ¢ by every conjugate o(—d) of —d, we

obtain

[po(o(=d)) : -~ pp-1(0(=d)) : 0] = [o(po(=d)) : -~ : o(pn-1(=d)) : O]

We prove next that these points are the points of the hypercircle at infinity.

Lemma 8.12. Let U be a primitive hypercircle associated to the unit u(t) = (;fdb. The
n points at infinity are

Pj = [oj(po(=d)) : -+ : 0j(pn-1(=d)) : 0], 1 <j<n
where o are the K-automorphisms of the normal closure of L = K(a) over K.

Proof. First of all, observe that ged(po, . . ., pn—1, M) = 1, and hence P; are well defined.
Moreover, p;(—d) # 0, for every i € {0,...,n—1}, since p;(t) € K[t] is of degree at most
n and, thus, if p;(—d) = 0, then ]I\’}[((?) = ¢ € K and the hypercircle would be contained
in a hyperplane. But this is impossible since U is primitive (see Corollary 8.8). It
remains to prove that they are different points. Suppose that two different tuples
define the same projective point. We may suppose that P = P;. P verifies that
St pi(—d)ad = (—ad + bym(—d) # 0 and P; verifies that Y7 pi(oj(—d))a’ =
(acj(—d) + b)m(oj(—d)) = 0. Thus, P; is contained in the projective hyperplane
Z?:_ol a'z; =0, but not P;. Hence, P, # P;. ]
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Let us check that, as in the case of circles, the points at infinity of primitive a-
hypercircles do not depend on the particular hypercircle.

Theorem 8.13. For a fized extension K C K(«) of degree n, the set of points at the
infinity P ={P,...,P,} of any primitive hypercircle does not depend on the particular
a-hypercircle U, but only on the algebraic extension and on the primitive element .
Moreover, the set P is characterized by the following property:

{zo+ajzy + -+ a?ill‘n_l =0}nU = P\ {P;},
where a; = o;(c) are the conjugates of o in F, 1 < j < n, and U is the projective
closure of U.

Proof. Let U be the primitive a-hypercircle generated be a unit u(t) = ?jdb. U has
the projective parametrization [po(t) : --- : pp—1(t) : M(t)]. Let P; = [oj(po(—d)) :

o+ 1 0j(pp—1(—d)) : 0]. Its evaluation in the equation of hyperplane xo + agx1 + ... +
az_lxn_l, yields:

n—1 n—1
> oj(pi(—d))aj, = o (Z oo Uj(%(—d))d) -
1=0 i=0

o ((a(ak_l 00j(=d)) +bym(oy ! o oj(—d))).

If j = k, the previous expression equals oy ((—ad + b)m(—d)) # 0. If j # k, then
ak_l ooj(—d) is a conjugate of —d, different from —d, because —d is a primitive element.
So m(oy ! 0 0j(—d)) = 0.

In order to show that this point does not depend on a particular hypercircle, take
the n hyperplanes x¢ + agxy + -+ + azflxn,l =0,k =1...n. Every point at infinity
of a hypercircle is contained in exactly n — 1 of those hyperplanes. Also, any of these
hyperplanes contains exactly n — 1 points at infinity of the hypercircle. One point at
infinity may be computed by solving the linear system given by any combination of
n—1 hyperplanes. The matrix of the linear system is a Vandermonde matrix, each row
depending on the corresponding ay, so there is only one solution. ]

The following result shows that the points at infinity can be read directly from the
minimal polynomial of «.

Proposition 8.14. Let M,(t) be the minimal polynomial of a over K. Let mq(t) =

]\f%(of) = Z?:_Ol Litt € K()[t], where l,_1 = 1. Then, the points at infinity of every
primitive a-hypercircle are [lg : 1y« : lp—o : ly—1 : 0] and its conjugates.

Ma ()~ Ma(y)

e Substituting

Proof. We consider the symmetric polynomial r(z,y) =
(x,y) by (t,a) we obtain that

T(t, Oé) _ Ma(ti:]awa(a) — ];43(2) — ma(t).
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That is, mq(t) is symmetric in ¢ and «. Take now the hypercircle induced by the
1 ma(t)

unit = = YNOR By Lemma 8.12, we already know that one point at infinity is
[po(c) : - -+ :pn,l(a) : 0], where mq(t) = Z:‘L;ol pi(t)a’. By symmetry, Z?;(} pi(t)al =
S pi(@)th. That is, pi(a) = ;. Thus, the points at infinity are [lo: Iy : -+ : Ly :
1:0] and its conjugates. O

Next result deals with the tangents of a hypercircle at infinity, and it explains again
why parabolas can not be hypercircles.

Proposition 8.15. The tangents to a primitive hypercircle at the points at infinity are
not contained in the hyperplane at infinity.

Proof. Let U be the primitive a-hypercircle generated by atfdb, and [po(t) : -+ :
pn—1(t) : M(t)] the projective parametrization generated by the unit. In the proof
of Lemma 8.12, we have seen that p,_1(t) is not identically 0, because p,,_1(—d) # 0.
So, we can dehomogenize w.r.t. the variable x,,_1, obtaining the affine parametrization
(pfg(lt()t), . gzjgg , pi\{(lt()t)) of U on another affine chart. We have to check that the
tangents to the curve at the intersection points with the hyperplane x,_1 = 0 are not
contained in this hyperplane. The points of C in the hyperplane z,,_1 = 0 are obtained

by substituting ¢ by o(—d). The last coordinate of the tangent vector is

M'(t)pp—1(t) — M(t)p;,_,(t)
Pn-1(t)? '

We evaluate this expression at o(—d). M (o(—d)) = 0 and, as all its roots are different in
F, M'(c(—d)) # 0. We also know that o(p,—1(—d)) # 0. Hence, the last coordinate of
the tangent vector is non-zero. Thus, the tangent line is not contained in the hyperplane
at infinity. O

Finally, we present a property of hypercircles that can be derived from the knowl-
edge of its behavior at infinity. We remark a property of circles stating that given three
different points in the plane, there is exactly one circle passing through them (which is
a line if they are collinear). The result is straightforward if we recall that there is only
one conic passing through five points. In the case of circles, we have the two points at
infinity already fixed, so, given three points in the affine plane there will only be a conic
(indeed a circle if it passes through the cyclic points at infinity) through them. Even
if hypercircles are curves in n-space, surprisingly, the same occurs for hypercircles.

We are going to prove that, given 3 different points in K", there is exactly one
hypercircle passing through them. If the points are not in general position, the resulting
hypercircle needs not to be a primitive one. First, we need a lemma that states what
are the points over K of the hypercircle that are reachable by the parametrization.

Lemma 8.16. Let U be the a—hypercircle, non necessarily primitive, associated to

u(t) = “ttfcf’ with induced parametrization ®(t). ®(K) = U N K" \ {a} with a =

Z:‘L:_ol a;ot, a = (ag,...,an_1).
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Proof. We already know that ®(¢) is proper and, obviously, ®(K) C ¢/ N K", also, a
is not reachable by ®(t), since otherwise one would have that a = u()) for some A,
and this implies that ad — b = 0, which is impossible since u(t) is a unit. In order

to prove the other inclusion, write as before ¢;(t) = ﬁ}[((?), where M (t) is the minimal

polynomial of —d over K. Then, we consider the ideal I over F[t,Z] generated by
(po(t) — xoM(t),...,pp-1(t) — xp_1M(t)), where T = (xg,...,2Zn—1), and the ideal
J =1+ (ZM(t) —1) C F[Z,t,z]. Let I; be the first elimination ideal of I; i.e.
I = I NF[z] and let Jo be the second elimination ideal of J; ie. Jo = J N F[z].
Observe that I C J and therefore I; C Jo. Note that U = V(Jp); i.e. U is the variety
defined by Jo over F. Thus & C V(I;). Now, let us take z € (U NK") \ {a}. Then
z € V(I1). Observe that, by construction, the leading coefficient of p;(t) — z; M (t)
w.r.t. tis a; — x;. Therefore, since T # a one has that at least one of the leading
coefficients of the polynomials in I w.r.t. ¢ does not vanish at . Thus, applying the
Extension Theorem (see Theorem 3, pp. 117 in [CLO97]), there exists typ € F such
that (tg,z) € V(I). This implies that p;(tg) — x;M(tg) =0 for i =1...n — 1. Let us
see that M (tg) # 0. Indeed, if M(ty) = O then p;(to) is also zero for every index and
therefore ged(po(t), ..., pn—1(t), M(t)) # 1, which is impossible. Hence ® is defined at
to and ®(tg) = z. To end up, we only need to show that ty € K. For this purpose, we
note that the inverse of ®(t) is given by

B dea:iai+b
P@) = Sxiat—a

Now, since T # a one deduces that P(z) is well defined, and the only parameter value
generating Z is to = P(Z). Hence, the ged of the polynomials p;(t) —z; M (t) is a power of
(t —tp). Thus, taking into account that p;, M € K]t], one deduces that ¢y € K. Finally,
it only remains to state that a is generated when t takes the value of the infinity of K.
But this follows taking ®(1/t) and substituting by ¢ = 0. O

Proposition 8.17. Let z; = (zio,...,Tin—1) € K" CF" , 1 < i <3 be three different
points. Then, there exists only one a—hypercircle passing through them.

Proof. Let y; = Z?:_& z;ja) € K(a), 1 <4 < 3. Consider the following linear homoge-
neous system in a, b, ¢, d:

b=1wy1d, a+b=1y2(c+d), a=ysc

Observe that, if the three points are different, there is only one projective solution,

namely [a:b: c: d] where a = y1y3 — y3y2, b = y1y2 — v1y3, ¢ = y1 — Y2, d = Y2 — y3.
Take the unit u(t) = gig It verifies that «(0) = y1, u(1) = y2, u(co) = y3. Then,
the hypercircle associated to u passes through x,x2,x3. In order to prove that this
hypercircle is unique, let v be the unit associated to a hypercircle passing through
the three points and v (t) the parametrization induced by v(¢). By Lemma 8.16, as
x; € K", the point z; is reached for a parameter value ¢; in KU {oco}. So, there are
three values t1,ta,t3 € KU {co} such that v(t;) = y;. Let 7(¢t) € K(¢) be the unique

unit associated to the transformation of the projective line P(F) into itself given by
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7(0) = t1, 7(1) = tg, 7(c0) = t3. Then v(7(t)) = u(t) and both units represents the
same hypercircle. O

8.5 Parametrization and Implicitation of a Hypercircle

In this Section, we will provide specific methods to parametrize and implicitate hyper-
circles. These methods show the power of the rich structure of hypercircles, simplifying
problems that are usually much harder in general.

Given a unit u(t) defining i, it is immediate to obtain a parametrization of . Let C
be any curve given by a proper parametrization over K(«), let Z be the witness variety
associated to C, see Definition 7.12. Then, by Theorem 7.16, C is parametrizable over
K is and only if Z is a a-hypercircle. Usually, the components of Z are obtained by
implicit equations. The next proposition shows how to parametrize an a-hypercircle.

Proposition 8.18. The pencil of hyperplanes xg + z1c + -+ - + Tp_1a™ "

etrizes the primitive a—hypercircle U.

=t param-

Proof. Let I be the implicit ideal of U4. Note that, since U is K—rational it is K-
definable, and hence a set of generators of I can be taken in K[zo,...,x,—1]. Let u(t)
be any unit associated with &/ and (¢o(t), ..., ¢n—1(t)) the induced parametrization. Let
v(t) be the inverse unit of u(t), u(v(t)) = v(u(t)) = t. Then (po(v(t)),...,dn—1(v(t))) =
(o(t),...,¢¥n_1(t)) = ¥(¢) is another parametrization of ¢ which is no more defined
over K but over K(«). The later parametrization is in standard form [RSV04], that is

n—1 n—1
Zdh‘(t)ai = (Z ¢i(t)ai> ov(t) =uowv(t) =t.
i=0 i=0

This implies that the pencil of hyperplanes H; = 29 + 10t + - -+ + xp_1a" ' — t pa-
rametrizes U. Indeed, if ¥(t) is defined, H; NU consists in n — 1 points at infinity of U
(Theorem 8.13) and W(t) itself. We deduce that v;(t) — x; belongs to the ideal I + Hy,
which has a set of generators in K(«)(t)[zo,...,2Zn—1]. So, the parametrization W(t)
can be computed from 1. O

Notice that the obtained parametrization W(¢) has coefficients over K(a). Thus,
it is not the parametrization induced by any associated unit u(t). The interest of
obtaining a unit associated to a hypercircle is that it helps us to solve the problem of
reparametrizing a curve over an optimal field extension of K, see [ARS99]. There, it
is shown that given a parametrization W(t) € K(«)" of a curve there is a hypercircle
associated to it. Any unit associated to the hypercircle reparametrizes the original curve
over K. To get a parametrization ¢(t) over K or, equivalently, a unit u(t) associated
to U, we refer to [RSV04]. In addition, note that the proof of Proposition 8.17 shows
how to construct a unit associated to a hypercircle, when points over K are known,
and therefore a parametrization of it.

The inverse problem, computing implicit equations of a hypercircle from the param-
etrization induced by an associated unit, can be performed using classic implicitation
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methods. However, the special structure of hypercircles provides specific methods that
might be more convenient.

Proposition 8.19. Let U be a hypercircle associated to the unit u(t), and let v(t) be
the inverse of u(t). Let

1
Zagj‘ :Zri(xo,...,xn_l)ai
’ i—0 ($0,...,xn_1) ’

where i, s € K[zg, ..., xn—_1]. Then, the ideal of U is the elimination ideal with respect
to Z:
ZU) = (ri(x),...,rn(Z),s(x)Z — 1) N Flzg, ..., Tn-1].

Proof. Let u(t) = ‘ﬁ'db, then v(t) = _dt+b Now, consider

n—1
U (Zail‘i) Zfz Zo, .-y Tn— 1)
i=0

n—1 n—1
v E o'x; zg i (0, -y Tp_1)a’
i=0 i=0

where &, n; € K(zo,...,2p—1) and n; = Ti@0:u-1) - The map ¢ : F? — 7, € =

S(xOV"’znfl)

(&0, ..,&n—1) is birational and its inverse is n = (19, ..., n—1). Indeed:
n—1 . n—1 .
D ni(&(@), . a1 (@)a’ = v | Y alg(@) | =
i=0 =0

n—1 n—1
=v|u E a'z; :E a'z;
i=0 i=0

is an equality in K(a)(zo, ..., 2n—1). We deduce that

i (&o(x0, - 1), Enm1 (o, 1)) = T4

It is clear that U is the image of the line L = {z; = 0,...,2,_1 = 0} under the map
& U =E(L). The set of points where £ is not defined is the union of the hyperplanes
Z?:_ol oj(a)'z; +0j(d) =0, 1 < j <n. The intersection of these hyperplanes with L is
the set of points (—o(d);,0,...,0), 1 < j < n. Thus, for a generic p € L, {(p) is defined
and belongs to Y. The result is similar for the inverse map 7. The set of points where
7 is not defined is the union of the hyperplanes Z?:_()l oi(a)iz; —oi(a) =0,1<j<n.
These n hyperplanes intersect U/ in at most one affine point, see Proposition 8.18. So,
for a generic p € U, n(p) is again defined and belongs to L. Let us compute now the
points Z such that n(z) is defined, but it does not belong to the domain of £. If T is
such a point, then

Z oj(a )+ oj(d) = 0.



130 Part II. Hypercircles and Parametric Curves

As n; is defined over K, applying o; to the definition of 7, we obtain that

n—1
;(v) (Z aj(a)ixi> = —0o;(d)
=0

—oi(d oi(b
But oj(v) = %

be reached, even in F. Thus, the image of 1 is contained in the domain of &.

We are ready to prove the theorem, by verifying that the set U \ {s = 0}, which is
just eliminating a finite number of points in U, is the set of points & such that r;(z) = 0,
i>1and s(z) #0. If z €U\ {s = 0}, then n is defined and n(z) = (no(z),0,...,0).
Hence n;(z) = r;(&) = 0. Conversely, if Z is a point such that r;(z) = 0 and s(z) # 0,
then 7(z) is defined and belongs to L. It is proved that & is defined in 7(Z), so
T =&(n(x)) € &(L) = U. The thesis of the theorem follows taking the Zariski closure
of U\ {s =0}. O

. It follows from Lemma 8.16 that the value —o;(d) cannot

This method to compute the implicit equations of U is not free from elimination
techniques, as it has to eliminate the variable Z. However, it has the advantage that it
yields already an ideal in F[xy, ..., 2,_1] defined over K and such that it describes a non
trivial variety containing the hypercircle. Namely, (r1(Z),...,r,—1(Z)) are polynomials
over K whose zero set contains the hypercircle. The following example shows that the
elimination step is necessary in some cases.

Example 8.20. Let Q C Q(«) be the algebraic extension defined by o + a? — 3 = 0.
Let us consider the unit u(t) = (2;01‘7)520‘ %

zation of U is

. Tts inverse is v(t) = . A parametri-

(2462 +TE+3 P62+ 9t+2 P4+
9(t) = <t3+4t2+5t—1 ’t3+4t2+5t—1’t3+4t2+5t—1)
A Grdébner basis of the ideal of the curve is
I:= {x% — ToXg — XXl — T1 + To, ToX1 — ToTo — 31:% — 2x1 + 4xo,
23 — 3wox1 — 220 + 271 + 312 — 2}
Then, Proposition 8.19 states that this ideal is

I = (r1(xg, 1, x2),12(20, X1, 22), $(T0, 1, 22)Z — 1) N F[x0, 21, T2]

where

ry = 2 — 8xy + dxoxg + 6x%x0 + 17zox1 + $2$% + 3z, — 395%3:2 + x% — x%xl + 4dxgx] —
1222 — 822 + 923 + 323 — 322 — 9z071 22,

rg = —2 — Tx9 + 4dxowg — X271 + 81 — 229 — 22071 + 61‘% — 21‘% + x%,

s = 9:U§ + Gx%xo — 1233% + baoxg — 1729 — 31:%@"2 — 9zox122 + :Egzng + 24x911 + Sx:{’ +
8xg + 4dxox1 — 537(2) — x%xl + 5x1 — Qx% -7+ ajg.

But, if we take J = (r1,r2), then J C I. The saturation of J with respect to I is
J I = %—xoxg — 2129 — 211 + 320+ 1, 2021 —3301'2—3.%’% —x0—2x1+2x2+2,x%—
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3x1x9 — 49 + 322 + 4)
This ideal corresponds to the union of the line

—axg +3ry = —2a
(Oé + Oz2).%'() -3z = —3+42a+ 2062

and its conjugates.

Next theorem shows an alternative method to implicitate a hypercircle without
using any elimination techniques. It is based on properties of the normal rational curve
of degree n.

Theorem 8.21. Let ¢(t) = (%’—Eg, cel q’}\}(lt()t)) be a proper parametrization of a prim-
itive hypercircle U with coefficients in . Let I be the homogeneous ideal of the ra-
tional normal curve of degree m in P(F)" given by a set of homogeneous generators
hi(9), ... he(Y), T = (Yo,---,yn). Let Q € Myyixn+1(F) be the matriz of change of
basis from {qo(t),...,qn-1(t), N(t)} to {1,¢t,...,t"}. Let

n n
fz(ii'):hz Zon:Bj,...,Zanxj , 1< <.
=0 j=0

Then {f1,..., fr} is a set of generators of the homogeneous ideal of U.

Proof. If the parametrization is proper, {qo(t),...,qn—1(t), N(t)} is a basis of the poly-
nomials of degree at most n. This follows from the fact shown in Corollary 8.8 that a
primitive hypercircle is not contained in any hyperplane. Note that a projective point
Z belongs to U if and only if Q(Z) belongs to the rational normal curve, if and only if
hi(Q(z))=0,1<i<r. O

Remark 8.22.

e It is well known that the set of polynomials {y;y;—1 —yi—1y; | 1 <i,5 <n}isa
generator set of I (see [Har92]).

e Notice that it is straightforward to compute @) from the parametrization. There-
fore, we have an effective method to compute the implicit ideal of the projective
closure of Y. The affine ideal of U can be obtained by dehomogenization x,, = 1.

e If the parametrization is given by polynomials over an algebraic extension K(3)
of K, then the coefficients of f; belongs to K(3). Moreover, if we write f;(z) =
>0 fij ()37, with fi; € K[z], then, {f;;} is a set of generators over K of the
hypercircle U.

e In practice, this method is much more suited to compute an implicitation of a
hypercircle than the method presented in Proposition 8.19.
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e Thus, this method provides a fast implicitation method for hypercircles. Note
that the computation of Q can be performed, using linear algebra, in O(n?) field
computations. Then, we have to compute up to O(n?) products of linear poly-
nomials in n variables. Hence, the total amount of field operations is dominated
by O(n?).

Example 8.23. The implicit equations of a hypercircle can be computed by classical
implicitation methods, for example Grébner basis or with the two methods presented
in Proposition 8.19 and Theorem 8.21. Here, we present two cases that show the
practical behavior of these methods. The first example considers the algebraic extension
Q C Q(a), where a* + a? — 3 and the unit u = M% The parametrization of
the hypercircle is given by

b0 = t*+15¢t% + 220 + 1016 — 195 —11¢% — 73t% + 65¢ — 114
O™ $ 1063 — 1712 — 366t + 233" 1 4+ 10t3 — 1712 — 366t + 233

2t3 + 57t2 — 25t — 59 —t* — 613 + 42 + 17t — 56
02 , 3 =

T 11063 — 172 — 366t + 233 t4 + 1083 — 17¢2 — 366t + 233"
The second example starts from the extension Q C Q(3), where 3 is such that g* +

38 4+ 1 = 0. Here, the unit defining I is u = A+5-p)i4145° and the parametrization

t+14+52-33
induced by u(t) is
Yo = th+ 1163 + 4712 + 95t + 72 = th+ 73+ 1512 + 17t + 9
O M 1313 16262 + 126t + 817 © t4 1+ 1313 + 6212 + 126t + 81
—t* —10¢% — 312 — 23¢ t3 4+ 13t2 + 42t + 36
1/’2 7¢3 -

T 11363 + 6262 + 1261 + 81 t4 4+ 133 + 62¢2 + 126t + 81°

The running times for computing the implicit ideal (using a Mac xserver with 2 pro-
cessors G5 2.3 GHz, 2 Gb RAM Maple 10) are

Example 1 | Example 2
Grobner basis method | 0.411 0.332
Proposition 8.19 2.094 2.142
Theorem 8.21 0.059 0.021

8.6 Characterization of Hypercircles

At the beginning of the Chapter we Saw that real circles are hypercircles. A real circle
can also be defined as a conic such that its homogeneous part is 22 + y? and contains
an infinite number of real points. The condition on the homogeneous part is equivalent
to impose that the curve passes through the points at infinity [+ : 1 : 0]. Analogously,
hypercircles are regular curves of degree n with infinite points over the base field passing
through the points at infinity described in Theorem 8.13. The following result shows
that this is a characterization of these curves.
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Theorem 8.24. Let U C F™ be an algebraic set of degree n such that all whose com-
ponents are of dimension 1. Then, it is a primitive a-hypercircle if and only if it has
an infinite number of points with coordinates in K and passes through the set of points
at infinity characterized in Theorem 8.13.

Proof. The only if implication is trivial. For the other one, let &/ C F™ be an algebraic
set of pure dimension 1 and degree n passing through P = {P, ..., P,}, the n points at
infinity of a primitive a-hypercircle. Suppose that ¢ has infinite points with coordinates
in K. Then, we are going to prove that U is irreducible. Let VW be an irreducible
component of U with infinite points in K. Note that, since W is irreducible and contains
infinitely many points over K, the ideal Z(W) over F is generated by polynomials over K
(see Lemma 2 in [ARS97]). Let ¢ be any point at infinity of W; then ¢ € P. As W is K-
definable it follows that W also contains all conjugates of q. Thus, P is contained in the
set of points at infinity of W. It follows that W is of degree at least n; since W C U, U =
W. Therefore, U is irreducible and Z(U) is generated by polynomials with coefficients
over K. Now, consider the pencil of hyperplanes H; = o + z10c + - - - + 2101 — ¢,
where t takes values in F. Notice that H;NP = {P,,..., P,}. Thus, P, € U\ H; so, for
all t, U € H;. Moreover, for every point p = (pg,...,pn—1) € U, t(p) = Z?;()l piat € F
is such that Hy) NU = {p, P2, ..., P,}. The cardinal of {t(p) | t € U} is infinite, since
otherwise, by the irreducibility of ¢, it would imply that there is a ¢o such that & C Hy,
which is impossible. So, for generic ¢, the intersection is H;N\U = {p(t), Ps, ..., P,}. Let
us check that the coordinates of p(t) are rational functions in K(«)(¢). Take the ideal
Z(U) of U. The ideal of p(t) (as a point in F(¢)") is I + Hy, defined over K(a)(¢). The
reduced Grébner basis of the radical I+ Hy is of this kind (xg—y, . .., Tp—1—%n—_1) and,
by Theorem 6.17, it is also defined over K(«)(t)[zo,...,2n—1]. Hence, (¢o,...,¥n_1)
is a K(«)-parametrization of Y. Thus, since U is irreducible, it is rational. Moreover
Z?;ol (¢(t))at = t and the parametrization is proper. As the curve is rational and has
an infinite number of points over K, by Proposition 6.30, it is parametrizable over K.
Let u(t) be a unit such that ¥ o u(t) = (¢o(t),...,Pn—1(t)) is a parametrization over
K, where ¢;(t) € K(t) and Z?:_ol ¢i(t)at = u(t). We conclude that I is the hypercircle
associated to the unit wu(t). O

Remark from the proof of Proposition 6.30 that a parametric curve, definable over
K and with a regular point over K, is parametrizable over the same field; for this, it is
enough to K-birationally project the curve over a plane, such that the K-regular point
stays regular on the projection. Then, a small modification of the proof above, yields
the following:

Theorem 8.25. Let U C F™ be a 1-dimensional irreducible algebraic set of degree n,
definable over K. Then, it is a primitive a-hypercircle if and only if it has a reqular
point with coordinates in K and passes through the set of points at infinity characterized
in Theorem 8.13.
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Applications of Hypercircles

9.1 Hypercircles and Witness Varieties

In this Section, we refine the results of Theorem 7.16 for the case of curves. Let V
be a parametric curve given by a proper parametrization ¢ with coefficients in K(«),
[K(a) : K] = d. Let Z be the witness variety associated to ¢. By Theorem 7.16, V is
K-parametrizable if and only if Z N U contains a hypercircle as a component. For the
case of curves we can provide better results.

Proposition 9.1. Let V C F™ be a parametric curve, given by a proper parametrization
O = (¢1,...,0m) with coefficients in K(a). Let Z be the witness variety associated to
¢. Then V is defined over K if and only if Z has infinitely many points.

Proof. Let ® be the parametrization of the Weil variety VW obtained by development
of ¢. The witness variety Z is the Zariski closure of Y N Ds. Suppose that Z has
infinitely many points. Then, there are infinitely many points in Y N Dg. Furthermore,
the map @ is finite to one. To prove this, let v = (v1,...,v,) € ®(Y N Ds). Let
t = (to,...,ti—1) € (Y N Ds) be a point such that ®(t) = v, then

-1
a1($)(to + o)ty + ... + or(@® Nta1) =D or(@)'djilt, - ta1)
=0

S0, Zl -0 L oy(@)'t; is a solution of o(¢;)(y) = v;. As not every rational function ¢; is
constant, there is an index j such that the equation oy(¢;)(y) = v; only has finitely

many solutions aq,...,as. Necessarily, tg,...,tq_1 is a solution of the linear system
[ 1 o a? ad1 to
21 1 oa(a) o2(a?) o2(ad™1) t1
Yd 1 Ud(Oé) Jd<a2) Ud(adfl) ta—1

with y; € {a1,...,as}, 1 < i < d. Hence, there are only finitely many (at most s%)
solutions.
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Thus, ®(Y N Ds) € W has infinitely many points and 1 < dim(W) < dim(V) = 1.
By Corollary 7.4, V is a K-variety. Conversely, if V is a K-variety, by Proposition 7.14,
Z contains a component birational to V. Hence, Z has infinitely many points. O

Now we prove that, in every case, Z has at most dimension 1.

Theorem 9.2. Let V C F™ be a parametric curve, given by a proper parametrization
¢ = (b1,...,0m) with coefficients in K(a). Let Z be the witness variety associated to
¢. Then dim(Z) <1 and Z has at most one F-component of dimension 1.

Proof. By hypothesis, the parametrization of V is proper, let
P(z1,...,zn) € K(a)(21,...,20)

be the inverse of ¢. Then, we have the algebraic identity P(¢1(t),...,¢n(t)) =t. Let
P = Z;'i:_ol &' Py(x1,...,2,), with Pi(z1,...,2,) € K(x1,...,2,), 0<i <
Define the map:

A: Flzo,...,zq41] — F(V)
T = P+ Jr(V)

ker(A) is a prime ideal of Flxg,...,z4—1], because the quotient is isomorphic to an
integer domain. The dimension of V is one, so dim(ker(A)) < 1. Our next objective is
to show that dim(Jp(Z)) < 1. To prove this, let f € ker(A). Then, f(Py,...,Pq_1) =
0 in F(V). To show that f € Jp(Z), it suffices to show that f vanishes in ¥ N
Ds. By Theorem 7.7, if we substitute z; = E?:_Ol ozi:):j,; in P, and we write P =
Z?;O @'Gi(210y - -+, Tna—1), then Gi(d10, ..., Pna—1) = t; in the change of parameters
t= Z;’l Oloz On the other hand if s = (s0,...,84-1) € Y NDs, then ¢j1(s) =0, 1 <
J<n,k>0; ¢jo(s) = gbj(zl 0 Lals;). So, if s € Y N D

d—1 ‘ d—1 d—1 d—1 n—1 ‘
S @' P10(s), . dno(s) = 3 @l Pi(or(Y si), . 6u(Ds0) = 3 sy
1=0 1=0 1=0 1=0 1=0

whenever it is defined. Moreover, if s € Y N Ds, ®o(s) = (¢10(5),-- -, Pno(s)) € V (See
Theorem 7.7).

__ First, W is of dimension < 1, hence, P; is defined in all but finitely many points of
W. Second, @ is a finite to one map that is defined in Y N Dy (Since @ is finite to
one). Hence, P o ® is defined in all but finitely many points of Y N D5 and

P;o (Qo)(s0,- -5 8d-1) = si-

Let Zy be the (possibly empty) finite set of points where either & or P; o ®g is not
defined. If, s € Z\ 2y, then s; = P;(®(s)) and

f(s) = f(Po(®o(s)), .-, Pi—1(Po(s))) = f(Po, ..., Pa-1)(Po(s)) =0
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because ®y(s) € V and f(Fy,...,Py—1) =0 in F(V). Thus,
ker(A) CIp(Z2\ 20)

Hence, dim(Z \ Zy) < 1. Finally, as Zj is a finite set, we conclude that dim(Z) < 1.
Let Z1U...UZ, be a decomposition of Z\ Zj in F-irreducible sets. Then ker(A) C
Ir(Z2\20) = Jp(Z21) N...NTIp(2,). From this, ker(A) C Jp(2;), 1 <i <r. If some Z;
is 1-dimensional, then ker(A) = Jp(Z;), because they are two prime ideals of the same
dimension. Furthermore, the rest of the components must be 0-dimensional, because
Ir(Z2i) COp(Z5) 1< j<r, j#i. O

To sum up, there are only two possibilities for the witness variety:
Corollary 9.3.
o Z is a finite set and V is not K-definable.

o dim(Z) = 1, then V is K-definable, the unique I1-dimensional component of Z
is Vp(ker(A)) and the 0-dimensional components of Z are either points where
Oy or F;(®g) are not defined. In this case V is K-parametrizable if and only if
the 1-dimensional component of Z is a hypercircle with respect to the extension
K C K(a).

Thus, if V is a parametric curve given by a parametrization in K(«), we can decide,
from the set Z, if V is K-definable or not. Notice that the computation of Z is done
without computing the implicit ideal of V. So this method may be an advantage when
the computation of the implicit ideal is comparatively hard. For example, if d << n.

Our next goal is to show that, if V is K-definable, then the 1-dimensional component
of Z has the structure of an a-hypercircle, possibly for another extension different from
K C K(a). Due to technical reasons, the results are exposed for the case K = Q. But
it is conjectured that the results hold whenever K is the minimun field of definition of
the curve V.

Let V be a curve Q definable given by a parametrization over Q(«). Suppose
that V is not parametrizable over Q. By Proposition 6.29, there are quadratic fields
Q(p) of parametrization of V. Let M (t) be the minimal polynomial of a over Q and
suppose that M (t) is irreducible in Q(3)[t]. Then, it follows from the construction of the
witness variety that the witness variety Z; associated to V with respect to the extension
K C K(«) equals the witness variety Z with respect to the extension K(3) C K(3, «).
The 1-dimensional component of Z is an a-hypercircle of base field K(/3), but it is not
an a-hypercircle of base field K. Now we prove that there is always such an element S.
We need some previous results about quadratic fields of parametrization of a curve.

Every parametric curve V that is Q-definable is Q-birational to a plane conic
([Cheb1], [SW97], [Sha94]). Hence, we can reduce the problem to a plane conic.
By a Q-projective transformation, we can suppose that C is given by a plane conic
ax?® + by? 4+ cz? = 0, where a,b, c € Z* are squarefree, pairwise coprime integers. That
is, abc is nonzero and squarefree. Suppose that there is no point with rational coeffi-
cients in C. The aim is to construct infinitely many quadratic fields L. = Q[v/D] such
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that there are points in C with coefficients in .. The idea is to cut the conic with lines
of type y = nz, for n a crafted prime. Moreover, without loss of generality, we may
look for an affine point (z = 1). The intersection points of the C and the line y = nx

are:
\/—c n\/ < = '—n/ <
a+bn?’ a+bn2 |’ a+bn?’ a+bn?’

Note that a + bn? # 0 since the conic does not have rational points.

Lemma 9.4. With the previous assumptions, let n,m € Q*, then

o(Vazime) (Vi)

if and only if f(n,m) = 315222 is a square in Q.

Proof. The proof is elementary. If f(n,m) is a square in Q, then

Thus, @ (/o) = @ (/o)

On the other hand, suppose that both fields are equal, then a;ﬁ =745,/ ﬁbcn?’

r,s € Q so
—c

— =7’ 4§ - +2rs S
a + bm? a + bn? a + bn?

It must be rs = 0; if s = 0, then 7b 7 IS a square, contrary to the hypothesis that C

a+bn? 2

does not have points with rational coordinates. So r = 0 and 7 oz =S s a rational

square. ]

Lemma 9.5. Let p =1 mod 4 be a prime and e Z 0 mod p an integer. Then, there is
an integer n such that 1 + en? is not a quadratic residue mod p.

Proof. Suppose the contrary, that 1 + en? is always a quadratic residue. Then [1 + ex]
is a bijection of Z/pZ such that maps the quadratic residues mod p onto themselves. It
follows that it is a bijection among the quadratic residues mod p. In particular, there
is a [n] such that [1 4+ en?] = [0], so [e] = [-1][n]72. As p =1 mod 4, [-1] is a square.
Hence, e is a square mod p and we may suppose that the bijection is 1 4+ z. But, in
that case, [1] is a square, and also [2], [3] etc. that is, every residue is a square mod p
which is impossible. O

Proposition 9.6. Given a,b,c as in Lemma 9.4, there is an infinite set S such that:
every element in S is a prime ¢ =1 mod 4, g/ ab and, if p,q € S, then

a + bp?

fp.q) = "

18 not a square in Q.
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Proof. We will define S inductively, starting from S; = {¢1} with ¢; any prime ¢; =1
mod 4 such that ¢; f ab.
Suppose we have defined a set Sy = {q1,...,qn} such that ¢; is prime, ¢; = 1 mod

2
4, q; f ab and if i # j then Zizgg is not a square in Q. We want to construct the set
i

SN+1. Consider the residual polynomial in the variable n with coefficients in Z/q;Z

[a + bn?)[a + bq?-]_1 = [1] + [a] L [pn?] = [1 + en?].

Note that [e] # [0] is well defined because ¢;f ab. Let m; be such that such that
1+ em?] is not a square. This m; exists by Lemma 9.5. Let p be a prime such
that p =1 mod 4, p = m; mod g;, (p,ab) = 1. This prime always exists: from the
Chinese remainder theorem, we can compute the unique class M mod 4q; - - - qn, from
the equations. It follows that M is a unit in the residue ring so we can apply Dirichlet’s
theorem and find a p such that, in addition, it does not divide ab. Take gyi+1 = p in
SN+1. By construction, p =1 mod 4, p/f ab and, in Z/¢,Z

1

la+bp?)[a + b ~" = [a + bm?3]ja + bg?] " = [1 + em?]

which is not a square mod g¢;, so Zigf;; is not a square in Q, 1 <7 < N. O
Example 9.7. Let C = 22 + 32 — 622 = 0 which does not have points in Q2. We look

2
for a set integers such that fi:riz is never a square. Take ¢ = 5. Now we search a [n]
such that 1+ n? is not a square mod 5. For example 1+ 12 = 2 is not a square mod 5.

Now compute a prime gy such that:

@2=1 mod4, ¢ =1 modb}H

By the Chinese reminder Theorem. ¢» = 1 mod 20 and, we can take, for example
g2 = 41. Now we need to compute g3, we impose 1 4+ n? not to be a square mod 41,
the first non square of this form is 1+ 42 = 17. Again we have the following system of
residual equations

g3=1 mod4, gs= 1 mod5, g3= 4 mod 41

So, this time, g3 = 701 mod 820. we can take g3 = 701. Applying again this method,
we arrive that the next prime must be g4 = 266381 mod 574820 and , in particular we
can take, g4 = 266381. That is, the intersection of C with the lines y = bz, y = 41x,
y = 701z and y = 266381x gives four different quadratic fields of parametrization of
the conic. In this case, we obtain:

o(y/13)- @30y 55752y 575 11531

Theorem 9.8. Let V be a Q-definable curve, not Q-parametrizable. Then, there are
infinitely many distinct quadratic fields Q(3) such that V has regular points with coef-

ficients in Q(f3).
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Proof. Let C = Uc(ax? + by? + c2%) be a conic that is Q-birational to V. abc nonzero
and squarefree. By Proposition 9.6, there is an infinite set S such that, for every
p,q €S, f(p,q) = (a+bp?)(a+bg?) is not a rational square. Then, by Lemma 9.4, the

set of fields
—c
B S
2 <a + bsz> 8 <

is an infinite set of fields such that V has points with coordinates over them. O

Corollary 9.9. Let V be a curve Q-definable, that is not Q-parametrizable given by a
Q(«) parametrization. Let U be the 1-dimensional component of the witness variety of
V. Then, there are infinitely many quadratic elements 3 such that U is a hypercircle

for the extension Q(B) C Q(f, a).

Proof. By the Theorem, there are infinitely many quadratic fields Q() such that V
has regular points over Q(v). It follows that there are infinitely many fields quadratic
of parametrization Q(v). Let § be any of this quadratic elements such that 3 does not
belong to the normal closure of Q(«) over Q. There are infinitely many [ satisfying this
condition. Then, the minimal polynomial of « over Q(/3) equals the minimal polynomial
over Q. Hence, by the computational definition of the witness variety, we obtain the
same variety U when applying the method over the extension Q(3) C Q(f, «) and it is
a hypercircle with respect to this extension. ]

9.2 Birational Reparametrization of a Curve

In this Section, we present a example of the classical application of hypercircles to
the algebraic reparametrization problem (see for example [ARS97], [ARS99], [RSV04]
[SVO01], [SV02]). Given a rational curve C defined over K by a proper parametrization
over K(a), we want to decide whether C can be parametrized over K and, in the
affirmative case, find a change of parameter transforming the original parametrization
into a parametrization over K. By Corollary 9.3, the Weil variety Z associated to C
has exactly one component U that is a curve. By Theorem 7.16, C is parametrizable
over K if and only if U is an a-hypercircle for the extension K C K(«). Moreover, if
U is a hypercircle, any generating unit u of U is the change of parameter needed to
obtain a proper rational parametrization over K of C.

In the following example, we illustrate how to use the knowledge of the geometry of
hypercircles to help solving the problem. Suppose given the parametric curve C given
by

(—2t4 — 2t3)a — 24 —2tta )

t y t)) = ’
(m(8), ma(t)) <6a2t2 F (4% — 2)a + t1 — 8t 6a2(2 + (413 — 2)a + 4 — 8t

where « is algebraic over Q with minimal polynomial 23 + 2. We compute the Weil
2 gij(to,t1,t2)

=0 N{io1.2) " In this situation C

variety associated to C by writing 771-(2?:0 tiad) ="
is Q—definable if and only if

U = Vc(qi1, q12, g1, ¢22) \ BVe(N)
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is of dimension 1. Moreover, C is Q-parametrizable if and only if the one-dimensional
component of V is an a-hypercircle. For this example, the equations of W are:

W = U (2tdta — 4t5 + 3t3t2 + 2t5t9 + 2tot3 + 2439 — 3t + 6tot1t3, —6tit1ta + g + 2tots —
Stots — 2tots + 23t — At1t3 — 12t33, 1233 — Otot1t3 + 65 — dtot] — 23t ts + 41313 —
dtots, Otot3t3 — 9t3t3 — 2Udte — 25ts + 6tot 13 — 25 +t3t) — 243ty — 2tt3, 613113 + 1235 —
3ty — 2tot3te — 24313 + 8t 3, 61313 + Otot1ts — 615 + 2tots — 263t to + 41313 + 8tot3, 18tat] +
365ty + 14t3ta + 32650 + 12t 0t 1t — 4t — Ttaty + 14tTto + 14t ot3, 6totsta + 2totota + 13t +
2122 — 8t1t3 + 12t5t0, Itdtats — 365ty — Atdta — AtSts + 12tot1t3 — 415 + 2t3t; — 413ty —
4tot3, 67 + 481513 — 36tatg — 11t3t1 + 6t + 14totits — 220313 + 64¢1t3, 3tito + 6tot1t3 +
tots + t3tite — 233 + 2tot3, 2752 — 2Ttots — I3tS + 5ty — 2dts — 23ty + Gtot1t3 —
25 + t3t) — 2t3ty — 2t0t3, 61513 + 123t — Htot1t3 + 2t3, totdts + 2t1)

Thus the main point is to verify that this curve is a hypercircle. If i is a hypercircle,

then its points at infinity must be as in Theorem 8.13. So, let us first of all check whether
this is the case. The set of generators of the defining ideal form a Grobner basis with
respect to a graded order, thus to compute the points at infinity we take the set of
leading forms of these polynomials. This yields:
{td — 2013 — 6t2t1ta — 12133 — Stot3, 2dta — At + 31312 + 23ty + 6tot 13, ot —
O35, 126383 — Otot1t3 + 613, 613t 3 + 121343, 6t3t3 + Ototats — 63, 18tat] + 36t5t1, totsts +
2t Gtotita + 12t5t0, Otgtats — 36t5t1, 65 + A8t3t3 — 36t5to, Stito + Gtotits, 2Tt5t2 — 2Ttot3,
6t5t2 + 1231 }

The solutions of this system, after dehomogenizing {t, = 1}, are tg = 3,3 +2 = 0.
That is, the points at infinity are of the form [a? : ; : 1 : 0], f;fj = 22 + ax + o’
Thus, by Proposition 8.14, the points at infinity of U are those of an a-hypercircle. This
is not surprising, because, by Corollary 9.9, U is a hypercircle for, possibly, another
extension Q(5) C Q(8, a).

Now, following Proposition 8.18, we may try to parametrize & by the pencil of
hyperplanes to + at; + o®ty — t. Doing so, we obtain the parametrization

(@2 +2at +15)t  —1/2a%3 —1/2at%(t + «)
3ot + a2 4+ 3t2 ' 3at +o? +3t27 Jat + a2 +3t2 )

Remark that this parametrization can also be computed by means of inverse computa-
tion techniques as described in [SV02]|. Then, by direct computation, we observe that
the parametric irreducible curve defined by this parametrization is of degree 3, passes
through the point (0,0,0) and this point is regular. Moreover, it is Q-definable, since
it is the only 1-dimensional component of V (see [ARS99]), which is, by construction,
a (Q-definable variety. It follows from Theorem 8.25 that it is a hypercircle.

In [RSVO04], it is presented an algorithm that takes a parametrization of a hypercircle
over K(«) and a base point p € UNK™ and returns a unit u(t¢) generating the hypercircle.
If we apply this algorithm to our example, the unit u(t) = ZH%“Q is obtained. So, V is
the hypercircle associated to u(t) and C is parametrizable over Q. In particular, the

. . . . 2¢2 —1 —t .
parametrization of V associated to u(t) is (2t3+1, T 2t3+1). Moreover, the unit u(t)

gives the change of parameter we need to compute a parametrization of C over the base
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field (see [ARS99]), namely:
t+1 1
) = (%)

9.3 Optimal Affine Reparametrization of a Curve

In the previous Section, we have shown how the hypercircles help to solve the algebraic
reparametrization problem. However, in order to obtain a generating unit of the hy-
percircle. It is needed a base point p € Y N K”. The problem of obtaining a base point
cannot be avoided and it is equivalent to obtain a generating unit u of the hypercircle,
since from a unit u(t) = ‘?fdb it is trivial to obtain a base point. Namely, substitute ¢
by v € K(a) then u(v) = E?:_ol ow;, w; € K, 0 <i<n—1, the point (wo, ..., w,_1)
is in Y NK™. In this Section, we present an original method of optimal reparametri-
zation by affine change of variables. As we will use the results in Section 9.1, we will
always suppose that our base field in the rationals Q. Suppose that V is given by a
parametrization ¢ over Q(a). We want to obtain reparametrizations of V by affine
change of variables ¢ — vt + vy only. In this case, there is a minimun field (up to
isomorphism) Q(v) such that ¢(vit +ve) € Q(v)(¢). That is, there are v1, vy such that
d(vit + vo) € Q(7)(t) and, for every pair ey, ey € C, e; # 0, the field generated over Q
by the coefficients of ¢(ejt + ep) contains (a field isomorphic to) Q(v). Moreover, to
obtain a reparametrization over Q(v), we do not need a base point as in the previous
Section. This is a generalization of the reparametrization problem for polynomially
parametrizable curves in [SVO1].

Lemma 9.10. Let V be a Q-definable curve given by a parametrization over Q(«). Let
U be the 1 dimensional component of the witness variety of V. Then, there is at least
one point at infinity of U that admits a representation over Q(«).

Proof. If U is a primitive a-hypercircle, the result follows from Proposition 8.14. If U
is not a primitive hypercircle, then, by Theorem 8.11, i is Q-affinely isomorphic to
a primitive hypercircle U for the extension Q C Q(d), where d € Q(«). Hence, at
least one point at infinity of Us has a representation over Q(d) C Q(«). As the affine
isomorphism is defined over QQ, the corresponding point at infinity of U also admits a
representation in Q(«).

Suppose now that V is not Q-parametrizable. Then, by Corollary 9.9, there are
infinitely many quadratic elements 3 over Q such that U is a hypercircle with respect
to the extension of fields Q(5) C Q(3, ). As there are only finite points at infinity, we
conclude that there is a point p at infinity that admits a representation over infinitely
many fields of the form Q(f3,«). Necessarily, this point admits a representation over

Q(a). O

Let V is parametric curve parametrizable over Q but such that it is given by a
parametrization over Q(«). [Q : Q(«)] = n. Suppose that the associated hypercircle

U to V is of degree r < n. Let u(t) = ‘f:; € Q(a)(t) be a unit associated to U.
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Then Q(d) € Q(a) and [Q(d) : Q] = r. By Theorem 8.11, U is Q-isomorphic to the
hypercircle defined by tJ%d in C". Here, we present how to compute the d from the
implicit equations of U and a reparametrization of V over Q(d).

Proposition 9.11. In this conditions, let [ay : ... : a, : 0] be a point at infinity of U
given by a representation over Q(«), suppose that it is dehomogenized with respect to
an index i. Without loss of generality, we may suppose that a1 = 1. Then, Q(d) is
isomorphic to Q(ay,...,a,).

Proof. By Theorem 8.9, U is affinely equivalent over Q to the hypercircle U associated
to tJ%d and, hence, the (dehomogenized) points at infinity of & and U; generate the
same algebraic extension over Q. So, without loss of generality, we may suppose that
u(t) L. Let M(t) =t" +k,_1t""' +--- + ko be the minimal polynomial of —d over

Q and let m(t) = 3O = ;#7141 _pt" 2 4. 41y € Q(d). Let Us C C” be the
hypercircle associated to u(t) for the extension of fields Q C Q(d). By Proposition 8.14

the points at infinity of Uy are
lo:ly: - :lp—g:lp_1:0]

and its conjugates. Notice that l,_o = k.—1 — d, so Q(lp,...,l,) = Q(d). Finally,
since the affine inclusion C" — C" that maps U, onto U is defined over Q, the field
that generates the points at infinity is the same, by conjugation, Q(ao,...,a,—1) is
isomorphic to Q(lg, ..., l,—1) = Q(d). O]

Once we know how to compute d, we have a method to reparametrize a curve over

Q(d).

Theorem 9.12. Let V be a curve Q-definable given by a parametrization ¢ with co-
efficients in Q(av). Let [ag : ... : an—1 : 0] be a point at infinity of the witness variety
U, given by a representation over Q(«) and dehomogenized with respect to a coordinate
i. Suppose that the degree of U is v < n. Then, V admits a reparametrization over

Q(7) C Q(a), where [Q(7) : Q] = 1.

Moreover, if e1,eq € C, e1 # 0 are algebraic numbers, let ¢(e1t + e2) be another
parametrization of V and let I be the field generated over Q by the coefficients of
¢(e1t + e2), then

1. L contains (a field isomorphic to) Q(v).
2. [L:Q]>r.
3. If [L: Q] =r then L is isomorphic to Q(v).

4. There are €}, €}, € L such that €|t + €}, reparametrizes ¢ over (a field isomorphic

to) Q(v).

Proof. Let v be a primitive element of Q(ag,...,an—1) C Q(a). If V is not Q-
parametrizable, by Corollary 9.9, there is a § such that U is a hypercircle for the

extension Q(5) C Q(f, ) and Q(5,v) = Q(B, ag, - .., an—1). If V is Q-parametrizable,
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just take f € Q. Let u(t) = ‘;tjdb € Q(B,a)(t) be a unit associated to U, then, by
Proposition 9.11, Q(3, d) is isomorphic to Q(/3,v). By the transformation ¢ — % —d,
it follows that v(t) = (b — ad)s + a reparametrizes V over Q(3,7). Let Uy be the
witness variety of V with respect to the extension Q(f3,v) C Q(f,«). This witness
variety is an a-hypercircle by Theorem 7.16. Moreover, v(t) is a unit associated to Us
since it reparametrizes V. By Theorem 8.6, Us is a line in C/". Hence, it is trivial to
parametrize Uy over any field of definition. Note that, in the computational procedure
defining Us, the element 3 does not play any role. That is, the defining equations of
U> have coefficients in Q(v). Hence, there is another polynomial unit vy(t) € Q(v)[t]
that reparametrizes )V over the field Q(7).

For the second part, let 8 be a quadratic element in the conditions of Corollary 9.9
such that does not belong to the normal closure of L(«,v1,v2) over Q. Let u = ‘;tjdb
be the unit that reparametrizes V over Q(3). Let ¢, = ¢(vit + v2) € L(¢). On the one
hand,

wi(t) = —————— € L(B, o, v1,v2)

reparametrizes ¢, over Q(3). On the other hand, by Theorem 7.16, there is another
unit wy = 24 € L(3)(¢) that reparametrizes ¢, over Q(8). Then, there is a unit

t+d
wg = agi‘g,@” € Q(p) such that w; = weows € L(B)(t). Hence, d € IL(3). By the choose
of B, d € L. So we have the first item, because Q(d) is isomorphic to Q(y). The rest
of the items follows easily from this one and the proof of the first part. O

Example 9.13. Let a be a root of * —423 41222 — 162 +8, and let V be the parametric
curve given by

L T2+ T20— 3602 + 2403 + (176 — 208a — 16a° + 72a2)t — 16t
N —88 4 104a — 3602 + 8a3 + 16t ’

=96 — 16a + 72a% — 8a® + (32 + 32« + 32a7)t + (96 — 128a + 48a? — 16a%)t?
B —176 + 208 — 7202 + 1603 + 32t

The hypercircle U associated to this curve has implicit equations:
{4ty + 12t5 — 3,5 + 2t — 1 — 16t3, 2t + 24t3to + 805 — 10ty — 52t3 + 15}.

One can easily check that this hypercircle is non primitive, because it is contained in
the hyperplane 4ty + 12t3 — 3. Moreover, from its equations, it is a conic. The points
at infinity are:

[27:8:—2:1]

where 7 is a root of 2 +62+10. The roots of this polynomial in Q(«) are —4a+3/2a%—
1/2a3 and —6 + 4a — 3/2a2 4+ 1/2a®. Choose for example v = —4a + 3/2a2 — 1/2a3.
Then, the minimal polynomial of o over Q(v) is #? + (=8 — 2v)z + 8 + 2. Now, we
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rewrite the parametrization of V over this extension of fields:

e (21 +97)a — 39 — 157y + ((6y + 14)a — 2y — 2)t — 2t2
B L+y4 (=3y—Ta+2t

=30 =5y 4 (67 +2T)a + (—14 — 4y + (18 + 4y)a)t + (27 + 6)¢
4 L+~ + (=3y— T)a + 2t

we compute the hypercircle associated to the extension Q(y) C Q(v, ). We know that
it will be a line, in fact, the computation yields 2t; —3y—7, that can be parametrized by

(s,(3v+7)/2). Hence, the affine substitution ¢ = t+(3y+7)/2« in the parametrization
yields a parametrization over the subfield Q(7)

=3y =2ty + 4ty — 5+ 612 — 483
N 5 — 8t + 4t2

T

_ 27757 + 23y — 3y — 6t2y — 10 + 23t + 613 — 19¢2
v= 5 8t + 4t2
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