Polytopes With Large Signature Joint work with Michael Joswig

Nikolaus Witte

TU-Berlin / TU-Darmstadt witte@math.tu-berlin.de

Algebraic and Geometric Combinatorics, Anogia 2005

Introduction

- Motivation
- The Staircase Triangulation

Triangulating Products Of Polytopes
 The Simplicial Product
 The Product Theorem

Signature of the *d*-Cube
 Lower Bounds
 Upper Bounds

Introduction

- Motivation
- The Staircase Triangulation

2 Triangulating Products Of Polytopes

- The Simplicial Product
- The Product Theorem
- Signature of the *d*-Cube
 Lower Bounds
 Upper Bounds

Introduction

- Motivation
- The Staircase Triangulation

Triangulating Products Of Polytopes

- The Simplicial Product
- The Product Theorem
- Signature of the *d*-Cube
 Lower Bounds
 - Upper Bounds

Introduction

- Motivation
- The Staircase Triangulation

Triangulating Products Of Polytopes
 The Simplicial Product
 The Product Theorem

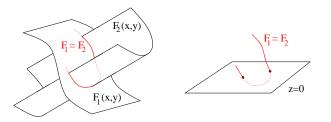
- The Product Theorem
- Signature of the *d*-Cube
 Lower Bounds
 Upper Bounds

 \bullet A generic system ${\cal S}$

$$F_1(t_1,\ldots,t_n) = \ldots = F_n(t_1,\ldots,t_n) = 0$$

of *n* real polynomial equations has finitely many real solutions.

- In general it is extremely difficult to compute the real solutions of S.
- Not even the number of real solutions can be computed easily, or in fact if there are any solutions at all.



Theorem (SOPRUNOVA & SOTTILE '04)

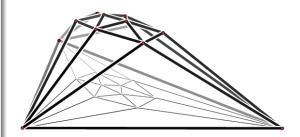
Let N be a lattice polytope and let N_{ω} be a convex and balanced triangulation of N.

Then there is an associated system $S(N_{\omega})$ of real polynomial equations and the number of real solutions of $S(N_{\omega})$ is at least the signature $\sigma(N_{\omega})$ of N_{ω} .

Theorem (SOPRUNOVA & SOTTILE '04)

Let \mathcal{N} be a lattice polytope and let \mathcal{N}_{ω} be a convex and balanced triangulation of \mathcal{N} .

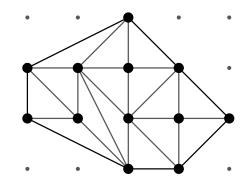
Then there is an associated system $S(N_{\omega})$ of real polynomial equations and the number of real solutions of $S(N_{\omega})$ is at least the signature $\sigma(N_{\omega})$ of N_{ω} .



Theorem (SOPRUNOVA & SOTTILE '04)

Let \mathcal{N} be a lattice polytope and let \mathcal{N}_{ω} be a convex and balanced triangulation of \mathcal{N} .

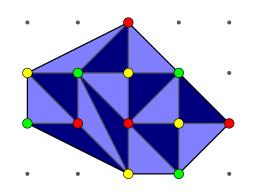
Then there is an associated system $S(N_{\omega})$ of real polynomial equations and the number of real solutions of $S(N_{\omega})$ is at least the signature $\sigma(N_{\omega})$ of N_{ω} .



Theorem (SOPRUNOVA & SOTTILE '04)

Let \mathcal{N} be a lattice polytope and let \mathcal{N}_{ω} be a convex and balanced triangulation of \mathcal{N} .

Then there is an associated system $S(N_{\omega})$ of real polynomial equations and the number of real solutions of $S(N_{\omega})$ is at least the signature $\sigma(N_{\omega})$ of N_{ω} .

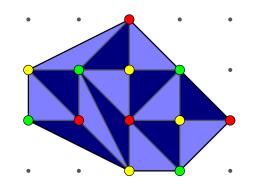


Theorem (SOPRUNOVA & SOTTILE '04)

Let \mathcal{N} be a lattice polytope and let \mathcal{N}_{ω} be a convex and balanced triangulation of \mathcal{N} .

Then there is an associated system $S(N_{\omega})$ of real polynomial equations and the number of real solutions of $S(N_{\omega})$ is at least the

signature
$$\sigma(\mathcal{N}_{\omega})$$
 of \mathcal{N}_{ω} .



Polytopes With Large Signature

- It is extremely difficult to determine the number of real solutions of a polynomial system.
- SOPRUNOVA & SOTTILE construct non trivial polynomial systems where the number of real solutions is bounded from below by the signature of a triangulation of the Newton Polytope.
- We want to construct lattice polytopes with large signature.

Polytopes With Large Signature

- It is extremely difficult to determine the number of real solutions of a polynomial system.
- SOPRUNOVA & SOTTILE construct non trivial polynomial systems where the number of real solutions is bounded from below by the signature of a triangulation of the Newton Polytope.
- We want to construct lattice polytopes with large signature.

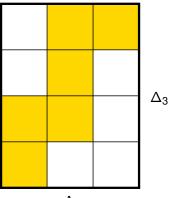
Polytopes With Large Signature

- It is extremely difficult to determine the number of real solutions of a polynomial system.
- SOPRUNOVA & SOTTILE construct non trivial polynomial systems where the number of real solutions is bounded from below by the signature of a triangulation of the Newton Polytope.
- We want to construct lattice polytopes with large signature.

The Staircase Triangulation

The facet (0, 1, 0, 0, 1) of stc $(\Delta_2 \times \Delta_3)$.

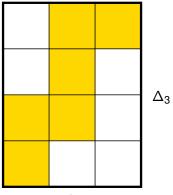
The triangulation stc($\Delta_2 \times \Delta_3$) has $\binom{2+3}{2} = 10$ facets.



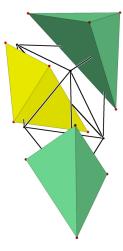
The Staircase Triangulation

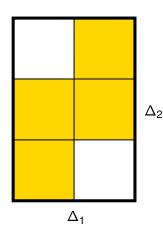
The staircase triangulation is

- a lattice triangulation,
- convex,
- and balanced.



Example: stc($\Delta_1 \times \Delta_2$)





Nikolaus Witte (TU-Berlin)

Polytopes With Large Signatur

AGC 2005 13 / 30

Signature

Theorem (STANLEY '97, SOPRUNOVA & SOTTILE '04) The signature of the staircase triangulation is

$$\sigma_{2k,2l} = \binom{k+l}{k}$$
$$\sigma_{2k,2l+1} = \binom{k+l}{k}$$
$$\sigma_{2k+1,2l+1} = 0$$

Introduction

Motivation

The Staircase Triangulation

Triangulating Products Of Polytopes
 The Simplicial Product
 The Product Theorem

- The Product Theorem
- Signature of the *d*-Cube
 Lower Bounds
 Upper Bounds

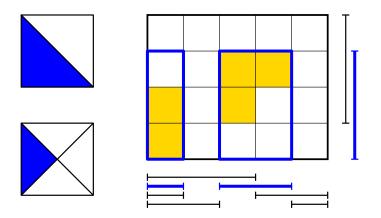
The Simplicial Product

Idea: Triangulating the product $K \times L$ of two abstract simplicial complexes by using staircase triangulations for the cells of $K \times L$.

Problem: How do the triangulated facets fit together?

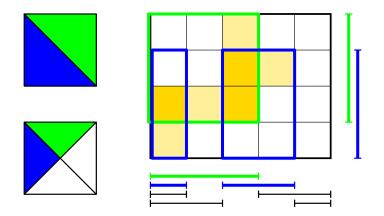
Definition

A facet of the simplicial product $K \times_{stc} L$.



The Intersection of 2 Facets

The intersection of two facets of $K \times_{stc} L$.



Nikolaus Witte (TU-Berlin)

The Vertex Ordering Does Matter

- Different vertex orderings may yield different triangulations of K × L.
- Given a "wrong" ordering, the simplicial product of two balanced complexes might not be balanced.

Lemma

If K and L are balanced simplicial complexes with color consecutive vertex orderings then $K \times_{stc} L$ is again balanced.

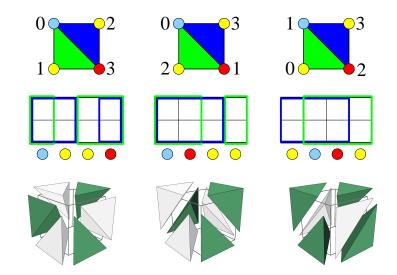
The Vertex Ordering Does Matter

- Different vertex orderings may yield different triangulations of K × L.
- Given a "wrong" ordering, the simplicial product of two balanced complexes might not be balanced.

Lemma

If K and L are balanced simplicial complexes with color consecutive vertex orderings then $K \times_{stc} L$ is again balanced.

Example: 3 Triangulations of the 3-Cube



Regularity

Lemma

If *K* and *L* are regular simplicial complexes then $K \times_{stc} L$ is regular for any vertex orderings of *K* and *L*.

Let $\lambda : \mathbb{R}^m \to \mathbb{R}$ and $\mu : \mathbb{R}^n \to \mathbb{R}$ be lifting functions of *K* resp. *L*.

Define a lifting function $\omega : \mathbb{R}^{m+n} \to \mathbb{R}$ by $\omega : \mathbb{R}^{m+n} \to \mathbb{R}$ $(v, w) \mapsto \lambda(v) + \mu(w) + \epsilon(v, w)$

Regularity

Lemma

If *K* and *L* are regular simplicial complexes then $K \times_{stc} L$ is regular for any vertex orderings of *K* and *L*.

Let $\lambda : \mathbb{R}^m \to \mathbb{R}$ and $\mu : \mathbb{R}^n \to \mathbb{R}$ be lifting functions of *K* resp. *L*.

Define a lifting function $\omega : \mathbb{R}^{m+n} \to \mathbb{R}$ by $\omega : \mathbb{R}^{m+n} \to \mathbb{R}$ $(\mathbf{v}, \mathbf{w}) \mapsto \lambda(\mathbf{v}) + \mu(\mathbf{w}) + \epsilon(\mathbf{v}, \mathbf{w})$

The Product Theorem

Theorem (JOSWIG & W '05)

Let K and L be convex and balanced simplicial complexes of dimension m resp. n. Then $K \times_{stc} L$ is a convex and balanced triangulation for any color consecutive vertex orderings of K and L. The signature of $K \times_{stc} L$ is

$$\sigma(K \times_{\mathsf{stc}} L) = \sigma(K) \sigma(L) \sigma_{m,n} .$$

Corollary

Let P and Q be lattice polytopes of dimension m resp. n. Let the signatures of P and Q be non-negative. Then the signature of $P \times Q$ is at least

$$\sigma(P \times Q) \geq \sigma(P) \sigma(Q) \sigma_{m,n}$$
.

The Product Theorem

Theorem (JOSWIG & W '05)

Let K and L be convex and balanced simplicial complexes of dimension m resp. n. Then $K \times_{stc} L$ is a convex and balanced triangulation for any color consecutive vertex orderings of K and L. The signature of $K \times_{stc} L$ is

$$\sigma(K \times_{\mathsf{stc}} L) = \sigma(K) \sigma(L) \sigma_{m,n} .$$

Corollary

Let P and Q be lattice polytopes of dimension m resp. n. Let the signatures of P and Q be non-negative. Then the signature of $P \times Q$ is at least

$$\sigma(\boldsymbol{P} \times \boldsymbol{Q}) \geq \sigma(\boldsymbol{P}) \sigma(\boldsymbol{Q}) \sigma_{m,n}$$
.

Introduction

Motivation

The Staircase Triangulation

Triangulating Products Of Polytopes
 The Simplicial Product
 The Product Theorem

Signature of the *d*-Cube
 Lower Bounds
 Upper Bounds

Enumeration up to Dimension 4

Signature of the *d*-cube for $d \le 4$. Complete enumeration by TOPCOM and polymake.

dim	# triangulations	# balanced	signature
1	1	1	1
2	1	1	0
3	6	4	4
4	247451	454	2

Theorem

The signature of the d-cube for $d \ge 3$ is bounded from below by

$$\sigma(C_d) \geq \begin{cases} 2^{\frac{d+1}{2}} \left(\frac{d-1}{2}\right)! & \text{if } d \equiv 1 \mod 2\\ \left(\frac{d}{2}\right)! & \text{if } d \equiv 0 \mod 4\\ \frac{2}{3} \left(\frac{d}{2}\right)! & \text{if } d \equiv 2 \mod 4 \end{cases}$$

Corollary

$$\sigma(C_d) = \Omega\left(\left\lceil \frac{d}{2} \right\rceil!\right)$$

Three cases:

● *d* ≡ 1 mod 2

Induction on *d*: Factorize $C_d = C_{d-2} \times_{\text{stc}} C_2$ with special vertex ordering of C_2 .

- $d \equiv 0 \mod 4$ Induction on *d*: Factorize $C_d = C_{d-4} \times_{\text{stc}} C_4$.
- $d \equiv 2 \mod 4$ Factorize $C_d = C_{d-6} \times_{\text{stc}} C_6$ and use special explicit triangulation of C_6 .

Three cases:

• $d \equiv 1 \mod 2$

Induction on *d*: Factorize $C_d = C_{d-2} \times_{\text{stc}} C_2$ with special vertex ordering of C_2 .

• $d \equiv 0 \mod 4$ Induction on *d*: Factorize $C_d = C_{d-4} \times_{\text{stc}} C_4$.

• $d \equiv 2 \mod 4$ Factorize $C_d = C_{d-6} \times_{\text{stc}} C_6$ and use special explicit triangulation of C_6 .

Three cases:

• $d \equiv 1 \mod 2$

Induction on *d*: Factorize $C_d = C_{d-2} \times_{\text{stc}} C_2$ with special vertex ordering of C_2 .

- $d \equiv 0 \mod 4$ Induction on *d*: Factorize $C_d = C_{d-4} \times_{\text{stc}} C_4$.
- $d \equiv 2 \mod 4$ Factorize $C_d = C_{d-6} \times_{\text{stc}} C_6$ and use special explicit triangulation of C_6 .

Three cases:

• $d \equiv 1 \mod 2$

Induction on *d*: Factorize $C_d = C_{d-2} \times_{\text{stc}} C_2$ with special vertex ordering of C_2 .

- $d \equiv 0 \mod 4$ Induction on *d*: Factorize $C_d = C_{d-4} \times_{\text{stc}} C_4$.
- $d \equiv 2 \mod 4$ Factorize $C_d = C_{d-6} \times_{\text{stc}} C_6$ and use special explicit triangulation of C_6 .

Lower Bounds up to Dimension 20

dim	signature	dim	signature
5	16	13	92,160
6	4	14	3,360
7	96	15	129,0240
8	24	16	40,320
9	768	17	20,643,840
10	80	18	241,920
11	7,680	19	371,589,120
12	720	20	3,628,800

Upper Bound

Lemma

The signature of the d-cube is bounded from above by

$$\sigma(C_d) \leq \left\lfloor \frac{d! (d+5)}{3(d+3)} \right\rfloor \quad \rightarrow \quad \frac{d!}{3}$$

The upper bound is tight in dimension 3.

What's New?

- Definition of the simplicial product.
- The Product Theorem.
- Non-trivial lower bounds for the signature of the *d*-cube.
- Special classes of triangulations such that their simplicial products meet the conditions of the theorem by SOPRUNOVA & SOTTILE.

What's Next?

- Do our triangulations of the *d*-cube with large signature meet the conditions of the theorem by SOPRUNOVA & SOTTILE?
- Does the rectangular grid admit a unimodular and balanced triangulation with a positive signature?

