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Real Solutions of Polynomial Systems

A generic system S

F1(t1, . . . , tn) = . . . = Fn(t1, . . . , tn) = 0

of n real polynomial equations has finitely many real solutions.
In general it is extremely difficult to compute the real solutions
of S.
Not even the number of real solutions can be computed easily,
or in fact if there are any solutions at all.
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Real Solutions of Polynomial Systems

Theorem (SOPRUNOVA & SOTTILE ’04)
Let N be a lattice polytope and let Nω be a convex and balanced
triangulation of N .

Then there is an associated system S (Nω) of real polynomial
equations and the number of real solutions of S (Nω) is at least the
signature σ(Nω) of Nω.
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Polytopes With Large Signature

It is extremely difficult to determine the number of real solutions of
a polynomial system.

SOPRUNOVA & SOTTILE construct non trivial polynomial systems
where the number of real solutions is bounded from below by the
signature of a triangulation of the Newton Polytope.

We want to construct lattice polytopes with large signature.
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The Staircase Triangulation

The facet (0, 1, 0, 0, 1) of
stc(∆2 ×∆3).

The triangulation stc(∆2 ×∆3)
has

(2+3
2

)
= 10 facets.

∆2

∆3
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The Staircase Triangulation

The staircase triangulation is

a lattice triangulation,
convex,
and balanced.

∆2

∆3
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Example: stc(∆1 ×∆2)

∆1

∆2
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Signature

Theorem (STANLEY ’97, SOPRUNOVA & SOTTILE ’04)
The signature of the staircase triangulation is

σ2k ,2l =

(
k + l

k

)
σ2k ,2l+1 =

(
k + l

k

)
σ2k+1,2l+1 = 0
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The Simplicial Product

Idea: Triangulating the product K × L of two abstract simplicial
complexes by using staircase triangulations for the cells of K × L.

Problem: How do the triangulated facets fit together?
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Definition

A facet of the simplicial product K×stc L.
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The Intersection of 2 Facets

The intersection of two facets of K×stc L.
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The Vertex Ordering Does Matter

Different vertex orderings may yield different triangulations
of K × L.

Given a “wrong” ordering, the simplicial product of two balanced
complexes might not be balanced.

Lemma
If K and L are balanced simplicial complexes with color consecutive
vertex orderings then K×stc L is again balanced.
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Example: 3 Triangulations of the 3-Cube

3

0

30 2
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2 21

1

1
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Regularity

Lemma
If K and L are regular simplicial complexes then K×stc L is regular for
any vertex orderings of K and L.

Let λ : Rm → R and µ : Rn → R be lifting functions of K resp. L.

Define a lifting function ω : Rm+n → R by
ω : Rm+n → R

(v , w) 7→ λ(v) + µ(w) + ε(v , w)
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The Product Theorem

Theorem (JOSWIG & W ’05)
Let K and L be convex and balanced simplicial complexes of
dimension m resp. n. Then K×stc L is a convex and balanced
triangulation for any color consecutive vertex orderings of K and L.
The signature of K×stc L is

σ(K×stc L) = σ(K ) σ(L) σm,n .

Corollary
Let P and Q be lattice polytopes of dimension m resp. n. Let the
signatures of P and Q be non-negative. Then the signature of
P ×Q is at least

σ(P ×Q) ≥ σ(P) σ(Q) σm,n .
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Enumeration up to Dimension 4

Signature of the d-cube for d ≤ 4. Complete enumeration by TOPCOM
and polymake.

dim # triangulations # balanced signature
1 1 1 1
2 1 1 0
3 6 4 4
4 247451 454 2
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Lower Bounds

Theorem
The signature of the d-cube for d ≥ 3 is bounded from below by

σ(Cd) ≥


2

d+1
2

(d−1
2

)
! if d ≡ 1 mod 2(d

2

)
! if d ≡ 0 mod 4

2
3

(d
2

)
! if d ≡ 2 mod 4 .

Corollary

σ(Cd) = Ω

( ⌈
d
2

⌉
!

)
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Lower Bounds

Three cases:
d ≡ 1 mod 2
Induction on d : Factorize Cd = Cd−2×stc C2 with special vertex
ordering of C2.
d ≡ 0 mod 4
Induction on d : Factorize Cd = Cd−4×stc C4.
d ≡ 2 mod 4
Factorize Cd = Cd−6×stc C6 and use special explicit triangulation
of C6.

Triangulations constructed and checked explicitly up to dimension 6
using polymake.
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Lower Bounds up to Dimension 20

dim signature
5 16
6 4
7 96
8 24
9 768

10 80
11 7,680
12 720

dim signature
13 92,160
14 3,360
15 129,0240
16 40,320
17 20,643,840
18 241,920
19 371,589,120
20 3,628,800
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Upper Bound

Lemma
The signature of the d-cube is bounded from above by

σ(Cd) ≤
⌊

d ! (d + 5)

3(d + 3)

⌋
→ d !

3

The upper bound is tight in dimension 3.
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What’s New?

Definition of the simplicial product.

The Product Theorem.

Non-trivial lower bounds for the signature of the d-cube.

Special classes of triangulations such that their simplicial products
meet the conditions of the theorem by SOPRUNOVA & SOTTILE.
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What’s Next?

Do our triangulations of the d-cube with large signature meet the
conditions of the theorem by SOPRUNOVA & SOTTILE?

Does the rectangular grid admit a unimodular and balanced
triangulation with a positive signature?
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