Polytopes With Large Signature

Joint work with Michael Joswig

Nikolaus Witte

TU-Berlin / TU-Darmstadt
witte@math.tu-berlin.de

Algebraic and Geometric Combinatorics, Anogia 2005



Outline

0 Introduction
@ Motivation
@ The Staircase Triangulation

)

Nikolaus Witte (TU-Berlin) Polytopes With Large Signature AGC 2005 2/30



Outline

0 Introduction
@ Motivation
@ The Staircase Triangulation

9 Triangulating Products Of Polytopes
@ The Simplicial Product
@ The Product Theorem

)

Nikolaus Witte (TU-Berlin) Polytopes With Large Signature AGC 2005 2/30



Outline

0 Introduction
@ Motivation
@ The Staircase Triangulation

9 Triangulating Products Of Polytopes
@ The Simplicial Product
@ The Product Theorem

© signature of the d-Cube
@ Lower Bounds
@ Upper Bounds

)

Nikolaus Witte (TU-Berlin) Polytopes With Large Signature AGC 2005 2/30



Outline

0 Introduction
@ Motivation
@ The Staircase Triangulation

)

Nikolaus Witte (TU-Berlin) Polytopes With Large Signature AGC 2005 3/30



Real Solutions of Polynomial Systems
@ A generic system S
F‘|(t‘|,,tn) - ... = Fn(t1,...,tn) — O

of n real polynomial equations has finitely many real solutions.
@ In general it is extremely difficult to compute the real solutions
of S.
@ Not even the number of real solutions can be computed easily,
or in fact if there are any solutions at all.
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Real Solutions of Polynomial Systems

Theorem (SOPRUNOVA & SOTTILE '04)

Let N be a lattice polytope and let N, be a convex and balanced
triangulation of N'.

Then there is an associated system S (N,,) of real polynomial
equations and the number of real solutions of S (N,,) is at least the
signature o(N,,) of N,.
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Polytopes With Large Signature

@ |t is extremely difficult to determine the number of real solutions of
a polynomial system.
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Polytopes With Large Signature

@ |t is extremely difficult to determine the number of real solutions of
a polynomial system.

@ SOPRUNOVA & SOTTILE construct non trivial polynomial systems
where the number of real solutions is bounded from below by the
signature of a triangulation of the Newton Polytope.

@ We want to construct lattice polytopes with large signature.
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The Staircase Triangulation

The facet (0,1,0,0,1) of
StC(Ag X Ag).

The triangulation stc(Az x Agz)
has (?53) = 10 facets.
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The Staircase Triangulation

The staircase triangulation is

@ a lattice triangulation,

@ convex,
@ and balanced.
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Example: stc(A1 x Ap)
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Signature

Theorem (STANLEY '97, SOPRUNOVA & SOTTILE '04)
The signature of the staircase triangulation is

(k + /)
O2k2l = i

k+1
02k2/+1 = k

ook+12i+1 = 0
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e Triangulating Products Of Polytopes
@ The Simplicial Product
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The Simplicial Product

Idea: Triangulating the product K x L of two abstract simplicial
complexes by using staircase triangulations for the cells of K x L.

Problem: How do the triangulated facets fit together?
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Definition

A facet of the simplicial product K x gt L.
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The Intersection of 2 Facets

The intersection of two facets of K x g L.

F 1 F 1
e | P
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The Vertex Ordering Does Matter

@ Different vertex orderings may yield different triangulations
of K x L.

@ Given a “wrong” ordering, the simplicial product of two balanced
complexes might not be balanced.
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The Vertex Ordering Does Matter

@ Different vertex orderings may yield different triangulations
of K x L.

@ Given a “wrong” ordering, the simplicial product of two balanced
complexes might not be balanced.

Lemma

If K and L are balanced simplicial complexes with color consecutive
vertex orderings then K x g L is again balanced.
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Example: 3 Triangulations of the 3-Cube

N, N
2 1 0

3

2
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Regularity

Lemma

If K and L are regular simplicial complexes then K x g L is regular for
any vertex orderings of K and L.
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Regularity

Lemma

If K and L are regular simplicial complexes then K x g L is regular for
any vertex orderings of K and L.

Let A : R™ — R and i : R” — R be lifting functions of K resp. L.

Define a lifting function w : R™" — R by
wiR™T LR

(viw) — ANVv)+ w(w) +e(v,w)
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The Product Theorem

Theorem (JoswiG & W '05)

Let K and L be convex and balanced simplicial complexes of
dimension m resp. n. Then K x4 L is a convex and balanced

triangulation for any color consecutive vertex orderings of K and L.
The signature of K xgic L is

o(Kxsic L) = o(K)o(L) omp -

[

AGC 2005 22/30

Nikolaus Witte (TU-Berlin) Polytopes With Large Signature




The Product Theorem

Theorem (JoswiG & W '05)

Let K and L be convex and balanced simplicial complexes of
dimension m resp. n. Then K x4 L is a convex and balanced

triangulation for any color consecutive vertex orderings of K and L.
The signature of K xgic L is

o(Kxsic L) = o(K)o(L) omp -

Corollary
Let P and Q be lattice polytopes of dimension m resp. n. Let the

signatures of P and Q be non-negative. Then the signature of
P x Q is at least

o(Px Q) > o(P)o(Q) ompn -

L Ia
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@ Lower Bounds
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Enumeration up to Dimension 4

Signature of the d-cube for d < 4. Complete enumeration by TopPCOM
and polymake.

dim # triangulations # balanced signature
1 1 1 1

2 1 1 0
3 6 4 4
4 247451 454 2

)

Nikolaus Witte (TU-Berlin) Polytopes With Large Signature AGC 2005 24/30



Lower Bounds

Theorem
The signature of the d-cube for d > 3 is bounded from below by

27 (93)! ifd=1 mod 2
a(Cq) = § (9)! ifd=0 mod 4
2 (9) ifd=2 mod4.

Corollary
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Lower Bounds

Three cases:

@d=1 mod?2
Induction on d: Factorize Cy = Cy_» Xstc Co With special vertex
ordering of Co.
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Lower Bounds

Three cases:
@d=1 mod?2
Induction on d: Factorize Cy = Cy_» Xstc Co With special vertex
ordering of Co.

@ d=0 mod 4
Induction on d: Factorize Cy = Cy_4 Xstc Ca.
@ d=2 mod4

Factorize Cy = Cy_g Xstc Ce and use special explicit triangulation
of Ce.

Triangulations constructed and checked explicitly up to dimension 6
using polymake.
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Lower Bounds up to Dimension 20

dim signature dim signature
5 16 13 92,160

6 4 14 3,360

7 96 15 129,0240

8 24 16 40,320

9 768 17 20,643,840
10 80 18 241,920
11 7,680 19 371,589,120
12 720 20 3,628,800
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Upper Bound

Lemma

The signature of the d-cube is bounded from above by

d! (d +5) d!
) = |S5ry) ~

The upper bound is tight in dimension 3.
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What’'s New?

@ Definition of the simplicial product.
@ The Product Theorem.
@ Non-trivial lower bounds for the signature of the d-cube.

@ Special classes of triangulations such that their simplicial products
meet the conditions of the theorem by SOPRUNOVA & SOTTILE.
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What's Next?

@ Do our triangulations of the d-cube with large signature meet the
conditions of the theorem by SOPRUNOVA & SOTTILE?

@ Does the rectangular grid admit a unimodular and balanced
triangulation with a positive signature?
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