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Outline of the talk

1. Triangulations of polytopes (a brief overview).

2. A polytope with a disconnected graph of triangulations.

3. A disconnected toric Hilbert scheme.

4. Tropical polytopes and products of simplices.
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1. Triangulations
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Polytopes

A polytope is the convex hull of finitely many points

conv(p1, . . . , pn) := {
∑

αipi : αi ≥ 0 ∀i = 1, . . . , n,
∑

αi = 1}

A finite point set
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Polytopes

A polytope is the convex hull of finitely many points

conv(p1, . . . , pn) := {
∑

αipi : αi ≥ 0 ∀i = 1, . . . , n,
∑

αi = 1}

Its convex hull
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Triangulations

A triangulation is a partition of the convex hull into simplices such that

The union of all these simplices equals conv(A). (Union Property.)

Any pair of them intersects in a (possibly empty) common face. (Intersec. Prop.)

A triangulation of P
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Triangulations

The following are not triangulations:

The union is not the whole convex hull
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Triangulations

The following are not triangulations:

The intersection is not okay
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Triangulations of a point configuration

A point configuration is a finite set of points in Rd, possibly with repetitions.

= (0, 0)a
a = a

3
1

2

4, 5
1

2

3

4 5

= (−1, −1)
= (0, 1)

= (2, 0)

a
a

A point set with repetitions
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Triangulations of a point configuration

A triangulation of a configuration A is a triangulation of conv(A) with vertex
set contained in A. Remark: Don’t need to use all points

123, 134, 234

2

3 4
1

2

3 4

124

1

The two triangulations of A = {a1, a2, a3, a4}
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Triangulations of vector sets
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Triangulations of vector sets

Let A = {a1, . . . , an} be a finite set of real vectors (a vector configuration).

The cone of A is cone(A) := {∑ λiai : λi ≥ 0, ∀i = 1, . . . , n}

2

4

3

1
2

3

1

Two vector configurations, and their cones

A simplicial cone is one generated by linearly independent vectors.
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Triangulations of vector sets

A triangulation of a vector configuration A is a partition of cone(A) into
simplicial cones with generators contained in A and such that:

(UP) The union of all these cones equals conv(A). (Union Property.)
(IP) Any pair of them intersects in a common face (Intersection Property.)

2

4

3

1

2

4

3

1

2

4

3

1

23,34,24 12,23,34,14 13,34,14

The three triangulations of the first configuration
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Remark: Triangulations of a {pointed cone/acyclic vector set} of dimension d
are the same as the triangulations of the {polytope/point set} of dimension d− 1
obtained cutting by an affine hyperplane:

(A cone is pointed if it is contained (except for the origin) in an open
half-space. If this happens for cone(A), then A is called acyclic).

A point configuration can be considered a particular case of vector configuration
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Example: Triangulations of a convex n-gon

To triangulate the n-gon, you just need to insert n−3 non-crossing diagonals:

A triangulation of the 12-gon
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Example: Triangulations of a convex n-gon

To triangulate the n-gon, you just need to insert n−3 non-crossing diagonals:

Another triangulation of the 12-gon, obtained by flipping an edge
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The Graph of flips in triangulations of a hexagon
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Some obvious properties of triangulations and flips of an
n-gon

• The graph is regular of degree n− 3.

• The graph has dihedral symmetry.
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Some non-obvious properties of triangulations and flips of an
n-gon

• It is the graph of a polytope of dimension n − 3, called the associahedron
[Stasheff 1963, Haiman 1984, Lee 1989].

• The graph has diameter bounded above by 2n− 10 for all n [easy] and equal
to 2n− 10 for large n [hard, Sleator-Tarjan-Thurston, 1988].

• There are exactly 1
n−1

(2n−4
n−2

)
triangulations.

That is to say, the Catalan number Cn−2:

Cn := 1
n+1

(2n
n

)
,

n 0 1 2 3 4 5 6
Cn 1 1 2 5 14 42 132
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The Catalan number Cn not only counts the triangulations of a n + 2-gon:

1

2 4

1

2 4

5

3

3

51

1

2 4

5

3

2 4

1

2 4

5

3

3

5

It also counts. . .
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1. Binary trees on n-nodes.
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1. Binary trees on n-nodes.

2. Monotone lower-diagonal lattice (integer) paths from (0, 0) to (n, n).

(1,0) (2,0)
(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(1,1)

(2,2)

(2,1)

(1,0) (2,0)
(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(1,1)

(2,2)

(2,1)

(1,0) (2,0)
(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(1,1)

(2,2)

(2,1)

(1,0) (2,0)
(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(1,1)

(2,2)

(2,1)

(1,0) (2,0)
(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(1,1)

(2,2)

(2,1)
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1. Binary trees on n-nodes.

2. Monotone lower-diagonal lattice (integer) paths from (0, 0) to (n, n).

3. Sequences of 2n signs with exactly n of each and with more +’s than −’s in
every initial segment.

+ − + + − −+ + − − + −+ − + − + −

+ − + − + − + + + − − −
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1. Binary trees on n-nodes.

2. Monotone lower-diagonal lattice (integer) paths from (0, 0) to (n, n).

3. Sequences of 2n signs with exactly n of each and with more +’s than −’s in
every initial segment.

. . . and some other 60 combinatorial structures,
according to Exercise 6.19 in

R. Stanley, Enumerative combinatorics, Cambridge University Press, 1999.
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Regular triangulations

Let A = {a, . . . , an} ⊂ Rd be a vector configuration. Let w = (w1, . . . , wn) ∈
Rn be a vector.

Consider the lifted vector configuration Ã =
{

a1 · · · an

w1 · · · wn

}
⊂ Rd+1. The

lower envelope of cone(Ã) (projected down to Rd) forms a polyhedral subdivision
of A. If w is “sufficiently generic” then it forms a triangulation.
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Regular triangulations

Let A = {a, . . . , an} ⊂ Rd be a vector configuration. Let w = (w1, . . . , wn) ∈
Rn be a vector.

Consider the lifted vector configuration Ã =
{

a1 · · · an

w1 · · · wn

}
⊂ Rd+1. The

lower envelope of cone(Ã) (projected down to Rd) forms a polyhedral subdivision
of A. If w is “sufficiently generic” then it forms a triangulation.

Obviously, different w’s may provide different triangulations.
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Regular triangulations

Let A = {a, . . . , an} ⊂ Rd be a vector configuration. Let w = (w1, . . . , wn) ∈
Rn be a vector.

Consider the lifted vector configuration Ã =
{

a1 · · · an

w1 · · · wn

}
⊂ Rd+1. The

lower envelope of cone(Ã) (projected down to Rd) forms a polyhedral subdivision
of A. If w is “sufficiently generic” then it forms a triangulation.

Obviously, different w’s may provide different triangulations.

More interestingly, for some A’s, not all triangulations can be obtained in
this way. The triangulations that do are called regular triangulations.
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Regular triangulations
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Regular triangulations
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Regular triangulations
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Regular triangulations
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Example:

h = ( 0, 0, 0,−5,−4,−3), A =

 4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

 ,

−3

1
2
1

2
1
1

1
1
2

0
4
0

0
0

4

0
0
4

0

00

−5−4

The cone triangulation associated with the lifting vector h. This shows a
two-dimensional slice of the 3d-cone.
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Another example:

h = ( ?, ?, ?, ?, ?, ?), A =

 4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2

 ,

1
2
1

1
1
2

2
1
1

0
0

4 0
4
0

0
0
4

A triangulation not associated with any lifting vector h. That is to say, a
non-regular triangulation.
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The secondary polytope

Theorem [Gelfand-Kapranov-Zelevinskii, 1990]
The poset of regular polyhedral subdivisions of a point set (or acyclic vector
configuration) A equals the face poset of a certain polytope of dimension n − k
(n = number of points, k = rank = dimension +1).

This is called the secondary polytope of A.
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Secondary polytope of a pentagon (again a pentagon)
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Secondary polytope of a 1-dimensional configuration (a cube)
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Secondary polytope of a hexagon (sort of)

1. Triangulations 37



Secondary polytope of a point set with non-regular triangulations
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... and graph of all triangulations of the same point set
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Bistellar flips

They are the “minimal possible changes” among triangulations. They
correspond to edges in the secondary polytope.

Definition 1: In the poset of polyhedral subdivisions of a point set A, the
minimal elements are the triangulations. It is a fact that if a subdivision is only
refined by triangulations then it is refined by exactly two of them. We say these
two triangulations differ by a flip.

That is to say, flips correspond to next to minimal elements in the poset of
polyhedral subdivisions of A
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Bistellar flips

They are the “minimal possible changes” among triangulations. They
correspond to edges in the secondary polytope.

Definition 2: A circuit is a minimally (affinely/linearly) dependent set of
(points/vectors). It is a fact that a circuit has exactly two triangulations. If a
triangulation T of A contains one of the two triangulations of a circuit C, a flip
on C consists on changing that part of T to become the other triangulation of C.
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(e)

(c)

3 collinear points
form a circuit.

(d)

(b)

(a)

Triangulated circuits and their flips, in dimensions 2 and 3
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The number of flips of a triangulation

Flips between regular triangulations correspond exactly to edges in the
secondary polytope.
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The number of flips of a triangulation

Flips between regular triangulations correspond exactly to edges in the
secondary polytope. Hence,

Theorem: For every point set A, the graph of flips between regular
triangulations is n − d − 1-connected (in particular, every triangulation has
at least n− d− 1 flips).
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The number of flips of a triangulation

Flips between regular triangulations correspond exactly to edges in the
secondary polytope. Hence,

Theorem: For every point set A, the graph of flips between regular
triangulations is n − d − 1-connected (in particular, every triangulation has
at least n− d− 1 flips).

The same happens for non-regular triangulations if d or n are “small”:

If d = 2, then the graph is connceted [Lawson 1977] and every triangulation
has at least n − 3 flips [de Loera-S.-Urrutia, 1997] (but it is not known if the
graph is n− 3-connected).
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The number of flips of a triangulation

Flips between regular triangulations correspond exactly to edges in the
secondary polytope. Hence,

Theorem: For every point set A, the graph of flips between regular
triangulations is n − d − 1-connected (in particular, every triangulation has
at least n− d− 1 flips).

The same happens for non-regular triangulations if d or n are “small”:

If d = 3 and the points are in convex position, then every triangulation has at
least n − 4 flips [de Loera-S.-Urrutia, 1997] (but it is not known if the graph is
connected).

1. Triangulations 46



The number of flips of a triangulation

Flips between regular triangulations correspond exactly to edges in the
secondary polytope. Hence,

Theorem: For every point set A, the graph of flips between regular
triangulations is n − d − 1-connected (in particular, every triangulation has
at least n− d− 1 flips).

The same happens for non-regular triangulations if d or n are “small”:

If n ≤ d + 4, then every triangulation has at least 3 flips and the graph is
3-connected [Azaola-S., 2001].
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The number of flips of a triangulation

But:

1. In dimension 3, there are triangulations with arbitrarily large n and only
O(
√

n) flips [S., 1999].

2. In dimension 4, there are triangulations with arbitrarily large n and only O(1)
flips [S., 1999].

3. In dimension 5, there are polytopes with disconnected graph of flips [S.,
2004].

4. In dimension 6, there are triangulations with arbitrarily large n and no flips
[S., 2000].
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2. A disconnected graph
of triangulations
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Point sets with a disconnected graph of triangulations

The first example known had 324 points and dimension 6 [S. 2000].
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Point sets with a disconnected graph of triangulations

The first example known had 324 points and dimension 6 [S. 2000].

The smallest example known has 26 points and dimension 5 [S. 2004].
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Point sets with a disconnected graph of triangulations

The first example known had 324 points and dimension 6 [S. 2000].

The smallest example known has 26 points and dimension 5 [S. 2004].

Here we are going to describe a somewhat simpler example with 50 points
and dimension 5.
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Point sets with a disconnected graph of triangulations

The first example known had 324 points and dimension 6 [S. 2000].

The smallest example known has 26 points and dimension 5 [S. 2004].

Here we are going to describe a somewhat simpler example with 50 points
and dimension 5.

It is not known whether examples exist in dimensions 3 or 4.
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Ingredient 1: Triangulations of a prism
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Triangulations of a prism

We call prism of dimension d the product of a d− 1-simplex and a segment.

2

1 3

The triangular prism ∆2 × I
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Triangulations of a prism

To triangulate the d-prism, start with the top base and join to the d bottom
vertices, one by one.

2

1 3

A triangulation of ∆2 × I
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All triangulations of the d-prism can be obtained in this way.

3

(2,3,1)

2

1 3

(3,2,1)

2

1 3

(1,2,3)

(3,1,2)

(1,3,2)

2

1 3

(2,1,3)

2

2

1

There are d! of them, in bijection with the d! orderings on the bottom vertices.
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Triangulations of a prism

The secondary polytope of the d-prism is the permutahedron of dimension
d−1: the convex hull of the points (σ1, . . . ,σd) where σ runs over all permutations
of (1, 2, . . . , d).

213

2314

3124

1324

3214

2134

2431
2341

3241

3421

1342
1432

1423

2143

1243
1234

3412

3142
12

21

123

321
231

132

312

2413

2. disconnected graph of triangulations 58



Triangulations of a prism

Put differently, triangulations of ∆d−1×I are in bijection to acyclic orientations
of the complete graph Kd.

(2,1,3)

1 2

(2,3,1)

3

1 2

(1,3,2)

3

1 2

(3,2,1)

3

1 2

(3,1,2)

3
(1,2,3)

1 23

1 2 3

2. disconnected graph of triangulations 59



Triangulations of a prism

Flips correspond to reversals of a single edge, whenever this does not create a
cycle.

1

(1,3,2)

21

3

21

(1,2,3)
3

2

3

Not a flip A flip
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Ingredient 2: Locally acyclic orientations

Definition: A locally acyclic orientation (l.a.o.) in a simplicial complex K is
an orientation of its graph which is acyclic on every simplex.

A reversible edge in a l.a.o. is an edge whose reversal creates no local cycle.
The graph of l.a.o.’s of K has as nodes all the l.a.o.’s and as edges the single-edge
reversals.

A l.a.o. with three reversible edges
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Example: a simplex

If K is a simplex with k vertices, it has k! l.a.o.’s. The graph is the graph of
the permutahedron.

(2,1,3)

1 2

(2,3,1)

3

1 2

(1,3,2)

3

1 2

(3,2,1)

3

1 2

(3,1,2)

3
(1,2,3)

1 23

1 2 3
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Example: a l.a.o. of the boundaty of an octahedron

It has a cycle. The only reversible edges are the four edges in the cycle.
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Crucial remark

There is a bijective correspondence between l.a.o. of K and triangulations
that refine K × I.

triang.

l. a. o.K

K x I
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Triangulating boundary subcomplexes

Suppose now that K is a simplicial subcomplex of the face complex of a
polytope P . Then, there is a bijection betweem l.a.o.’s of K and triangulations
of the subcomplex K × I in P × I.

2. disconnected graph of triangulations 65



Triangulating boundary subcomplexes

Suppose now that K is a simplicial subcomplex of the face complex of a
polytope P . Then, there is a bijection betweem l.a.o.’s of K and triangulations
of the subcomplex K × I in P × I.

Moreover:

• Every triangulation of P × I in particular triangulates K × I ⇒ “there is a
map φ : triangulations(P × I) → l.a.o’s(K)”.

• If two triangulations of P ×I differ by a flip, the corresponding l.a.o.’s coincide
or differ by a single-edge reversal ⇒ the map φ is continuous, as a map
between the graph of triangulations of P × I and the graph of l.a.o.’s of K.
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Triangulating boundary subcomplexes

Suppose now that K is a simplicial subcomplex of the face complex of a
polytope P . Then, there is a bijection betweem l.a.o.’s of K and triangulations
of the subcomplex K × I in P × I.

Moreover:

• Every triangulation of P × I in particular triangulates K × I ⇒ “there is a
map φ : triangulations(P × I) → l.a.o’s(K)”.

• If two triangulations of P ×I differ by a flip, the corresponding l.a.o.’s coincide
or differ by a single-edge reversal ⇒ the map φ is continuous, as a map
between the graph of triangulations of P × I and the graph of l.a.o.’s of K.

2. disconnected graph of triangulations 67



Triangulating boundary subcomplexes

Suppose now that K is a simplicial subcomplex of the face complex of a
polytope P . Then, there is a bijection betweem l.a.o.’s of K and triangulations
of the subcomplex K × I in P × I.

Corollary: If the image of φ is a disconnected subgraph of l.a.o.’s of K, then
the graph of triangulations of P × I is not connected. ddd rrr rrr rrr rrr rrr
rrrrrr rrr

ddd rrr rrr rrr rrr rrr rrrrrr rrr

ddd rrr rrr rrr rrr rrr rrrrrr rrr

ddd rrr rrr rrr rrr rrr rrrrrr rrr
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Ingredient 3: The 24-cell

The 24-cell is one of the six regular polytopes in dimension four. It is self-dual.

Its faces are 24 octahedra, 96 triangles, 96 edges and 24 vertices. There are
six octahedra incident to each vertex.

One coordinatization consists of the following 24 vertices:

• The sixteen points (±1,±1,±1,±1).

• The eight points (±2, 0, 0, 0), (0,±2, 0, 0), (0, 0,±2, 0), (0, 0, 0,±2).
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A 24-cell from a 4-cube

It can be constructed from a 4-cube (16 vertices) by adding a point beyond
each of its eight 3-cubes. Each new point “divides” a 3-cube into “six half-
octahedra”, and these 6× 8 half octahedra are glued in pairs.

A 3d analogue of the construction of the 24-cell from a 4-cube
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A l.a.o. of the 2-skeleton of the 24-cell

Let K be the complex consisting of the 96 triangles in the 24-cell (the “2-
skeleton”). To define a l.a.o. in K, we consider the boundary of the 4-cube as
consisting of two (oriented) cycles of four 3-cubes each (a “3-sphere obtained by
gluing two solid tori along the boundary”).

We orient each edge in the 24-cell in the way “most consistent” with the cycles:
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the “vertical cycle”
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the “horizontal cycle”
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The graph of l.a.o.’s of the 2-skeleton of the 24-cell

It turns out this is a locally acyclic orientation with no reversible edges at
all. (Each of the 24 octahedra gets the l.a.o. with a cycle of reversible edges, but
every edge is in the cycle of only one of the three octahedra it belongs to).

Hence, the graph of l.a.o.’s of the 2-skeleton of a 24-cell is not
connected. Actually, it has at least thirteen connected components, twelve of
them consisting of an isolated vertex.

. . . but,does this imply that the graph of triangulations of 24-cell×I is not
connected?

Remember that: “there is a map φ : triangulations(P × I) → l.a.o’s(K).
If the image of φ is a disconnected subgraph of l.a.o.’s of K, then the graph of
triangulations of P × I is not connected”.
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The graph of l.a.o.’s of the 2-skeleton of the 24-cell

It turns out this is a locally acyclic orientation with no reversible edges at
all. (Each of the 24 octahedra gets the l.a.o. with a cycle of reversible edges, but
every edge is in the cycle of only one of the three octahedra it belongs to).

Hence, the graph of l.a.o.’s of the 2-skeleton of a 24-cell is not
connected. Actually, it has at least thirteen connected components, twelve of
them consisting of an isolated vertex.

. . . but,does this imply that the graph of triangulations of 24-cell×I is not
connected?

Remember that: “there is a map φ : triangulations(P × I) → l.a.o’s(K).
If the image of φ is a disconnected subgraph of l.a.o.’s of K, then the graph of
triangulations of P × I is not connected”.
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The graph of l.a.o.’s of the 2-skeleton of the 24-cell

It turns out this is a locally acyclic orientation with no reversible edges at
all. (Each of the 24 octahedra gets the l.a.o. with a cycle of reversible edges, but
every edge is in the cycle of only one of the three octahedra it belongs to).

Hence, the graph of l.a.o.’s of the 2-skeleton of a 24-cell is not
connected. Actually, it has at least thirteen connected components, twelve of
them consisting of an isolated vertex.

. . . but, does this imply that the graph of triangulations of 24-cell×I is not
connected?

Remember that: “there is a map φ : triangulations(P × I) → l.a.o’s(K).
If the image of φ is a disconnected subgraph of l.a.o.’s of K, then the graph of
triangulations of P × I is not connected”.
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The graph of l.a.o.’s of the 2-skeleton of the 24-cell

It turns out this is a locally acyclic orientation with no reversible edges at
all. (Each of the 24 octahedra gets the l.a.o. with a cycle of reversible edges, but
every edge is in the cycle of only one of the three octahedra it belongs to).

Hence, the graph of l.a.o.’s of the 2-skeleton of a 24-cell is not
connected. Actually, it has at least thirteen connected components, twelve of
them consisting of an isolated vertex.

. . . but, does this imply that the graph of triangulations of 24-cell×I is not
connected?

Remember that: “there is a map φ : triangulations(P × I) → l.a.o’s(K).
If the image of φ is a disconnected subgraph of l.a.o.’s of K, then the graph of
triangulations of P × I is not connected”.
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A point set with disconnected graph of triangulations

We still need to check that the l.a.o. we have is “in the image of φ”. That
is to say, that the triangulation of K × I it represents can be extended to a
triangulation of P × I (P = 24-cell).

. . . But we are allowed to add points to the interior of the configuration!

Theorem [S. 2004] Let A consist of the 24 vertices of the 24-cell, together with
the origin. Let K be the 2-skeleton of the 24-cell. Then, the triangulation of
K × I represented by the above l.a.o. of K can be extended to a triangulation of
A×I. Hence, the graph of triangulations of A×I has at least thirteen connected
components, each with at least 348 triangulations.
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A point set with disconnected graph of triangulations

We still need to check that the l.a.o. we have is “in the image of φ”. That
is to say, that the triangulation of K × I it represents can be extended to a
triangulation of P × I (P = 24-cell).

. . . But we are allowed to add points to the interior of the configuration!

Theorem [S. 2004] Let A consist of the 24 vertices of the 24-cell, together with
the origin. Let K be the 2-skeleton of the 24-cell. Then, the triangulation of
K × I represented by the above l.a.o. of K can be extended to a triangulation of
A×I. Hence, the graph of triangulations of A×I has at least thirteen connected
components, each with at least 348 triangulations.
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A point set with disconnected graph of triangulations

We still need to check that the l.a.o. we have is “in the image of φ”. That
is to say, that the triangulation of K × I it represents can be extended to a
triangulation of P × I (P = 24-cell).

. . . But we are allowed to add points to the interior of the configuration!

Theorem [S. 2004] Let A consist of the 24 vertices of the 24-cell, together with
the origin. Let K be the 2-skeleton of the 24-cell. Then, the triangulation of
K × I represented by the above l.a.o. of K can be extended to a triangulation of
A×I. Hence, the graph of triangulations of A×I has at least thirteen connected
components, each with at least 348 triangulations.
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A point set with disconnected graph of triangulations

Moreover:

• The triangulations we have constructed are unimodular, which has interesting
algebro-geometric consequences (see part 3).

• The construction can be put into convex position: there is a 5-polytope with
50 vertices with a disconnected graph of triangulations.

• The construction can be iterated: for every k there is a 5-polytope with
26 + 24k vertices whose graph of triangulations has at least 13k connected
components.
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Interlude — Viro’s Theorem
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Hilbert’s sixteenth problem (1900)

“What are the possible (topological) types of non-singular real algebraic curves
of a given degree d?”

Observation: Each connected component is either a pseudo-line or an oval.
A curve contains one or zero pseudo-lines depending in its parity.

A pseudoline. Its complement has one An oval. Its interior
component, homeomorphic to an open is a (topological) circle and

circle. The picture only shows the “affine part”; and its exterior is a
think the two ends as meeting at infinity. Möbius band.

Viro 83



Partial answers:

Bezout’s Theorem: A curve of degree d cuts every line in at most d points. In
particular, there cannot be nestings of depth greater than +d/2,
Harnack’s Theorem: A curve of degree d cannot have more than

(d−1
2

)
+ 1

connected components (recall that
(d−1

2

)
= genus)

Two configurations are possible in degree 3
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Partial answers:

Bezout’s Theorem: A curve of degree d cuts every line in at most d points. In
particular, there cannot be nestings of depth greater than +d/2,
Harnack’s Theorem: A curve of degree d cannot have more than

(d−1
2

)
+ 1

connected components (recall that
(d−1

2

)
= genus)

Six configurations are possible in degree 4. Only the maximal ones are shown.
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Partial answers:

Bezout’s Theorem: A curve of degree d cuts every line in at most d points. In
particular, there cannot be nestings of depth greater than +d/2,
Harnack’s Theorem: A curve of degree d cannot have more than

(
d−1
2

)
+ 1

connected components (recall that
(d−1

2

)
= genus)

Eight configurations are possible in degree 5. Only the maximal ones are shown.
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All that was known when Hilbert posed the problem, but the classification
of non-singular real algebraic curves of degree six was not completed until the
1960’s [Gudkov]. There are 56 types degree six curves, three with 11 ovals:

Dimension 7 was solved by Viro, in 1984 with a method that involves
triangulations.
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Viro’s method:

b

a

a

b

For any given d, construct a topological model of the projective plane by gluing
the triangle (0, 0), (d, 0), (0, d) and its symmetric copies in the other quadrants:
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Viro’s method:

Consider as point set all the integer points in your rhombus (remark: those in
a particular orthant are related to the possible homogeneous monomials of degree
d in three variables).
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Viro’s method:

Triangulate the positive orthant arbitrarily . . .
. . . and replicate the triangulation to the other three orthants by reflection on
the axes.
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Viro’s method:

Triangulate the positive quadrant arbitrarily . . .
. . . and replicate the triangulation to the other three quadrants by reflection on
the axes.
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Viro’s method:

Choose arbitrary signs for the points in the first quadrant . . . and replicate
them to the other three quadrants, taking parity of the corresponding coordinate
into account.
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Viro’s method:

Choose arbitrary signs for the points in the first quadrant . . . and replicate
them to the other three quadrants, taking parity of the corresponding coordinate
into account.
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Viro’s method:

+

Finally draw your curve in such a way that it separates positive from negative
points.

Viro 94



Viro’s Theorem

Theorem (Viro, 1987) If the triangulation T chosen for the first quadrant is
regular then there is a real algebraic non-singular projective curve f of degree d
realizing exactly that topology.

More precisely, let wi,j (0 ≤ i ≤ i + j ≤ d) denote “weights” (↔cost
vector↔lifting function) producing your triangulation and let ci,j be any real
numbers of the sign you’ve given to the point (i, j).

Then, the polynomial

ft(x, y) =
∑

ci,jx
iyjtw(i,j)

for any positive and sufficiently small t gives the curve you’re looking for.
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Viro’s Theorem

Theorem (Viro, 1987) If the triangulation T chosen for the first quadrant is
regular then there is a real algebraic non-singular projective curve f of degree d
realizing exactly that topology.

More precisely, let wi,j (0 ≤ i ≤ i + j ≤ d) denote “weights” (↔cost
vector↔lifting function) producing your triangulation and let ci,j be any real
numbers of the sign you’ve given to the point (i, j).

Then, the polynomial

ft(x, y) =
∑

ci,jx
iyjzd−i−jtw(i,j)

for any positive and sufficiently small t gives the curve you’re looking for.
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces). It was extended to varieties of higher
codimension by Sturmfels.

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906.

• Applied to a non-regular triangulation, the method may in principle produce
curves not isotopic to algebraic curves of that degree (although not explicit
example is known in the projective plane, there are examples of such curves in
other two-dimensional toric varieties [Orevkov-Shustin, 2000]).

• Still, the curves constructed with Viro’s method (with non-regular triangulations)
can be realized as pseudo-holomorphic curves in CP2 [Itenberg-Shustin, 2002].
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces). It was extended to varieties of higher
codimension by Sturmfels.

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906.

• Applied to a non-regular triangulation, the method may in principle produce
curves not isotopic to algebraic curves of that degree (although not explicit
example is known in the projective plane, there are examples of such curves in
other two-dimensional toric varieties [Orevkov-Shustin, 2000]).

• Still, the curves constructed with Viro’s method (with non-regular triangulations)
can be realized as pseudo-holomorphic curves in CP2 [Itenberg-Shustin, 2002].
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces). It was extended to varieties of higher
codimension by Sturmfels.

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906.

• Applied to a non-regular triangulation, the method may in principle produce
curves not isotopic to algebraic curves of that degree (although not explicit
example is known in the projective plane, there are examples of such curves in
other two-dimensional toric varieties [Orevkov-Shustin, 2000]).

• Still, the curves constructed with Viro’s method (with non-regular triangulations)
can be realized as pseudo-holomorphic curves in CP2 [Itenberg-Shustin, 2002].
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Viro’s Theorem

• The method works exactly the same in higher dimension (and produces smooth
real algebraic projective hypersurfaces). It was extended to varieties of higher
codimension by Sturmfels.

• It was used by I. Itenberg in 1993 to disprove Ragsdale’s conjecture, dating
from 1906.

• Applied to a non-regular triangulation, the method may in principle produce
curves not isotopic to algebraic curves of that degree (although not explicit
example is known in the projective plane, there are examples of such curves in
other two-dimensional toric varieties [Orevkov-Shustin, 2000]).

• Still, the curves constructed with Viro’s method (with non-regular triangulations)
can be realized as pseudo-holomorphic curves in CP2 [Itenberg-Shustin, 2002].
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3. Toric Hilbert schemes

3. Toric Hilbert schemes 101



A-graded ideals

Let A = (a1, . . . , an) ∈ Zn×d be an acyclic integer vector configuration. Let
K be a field.

In the polynomial ring K[x1, . . . , xn] we consider the variable xi to have
(multi-)degree ai and the monomial xc := xc1

1 . . . xcn
n to have multi-degree Ac.

Example: A = (1, . . . , 1) defines the standard grading.

An ideal I ⊂ K[x1, . . . , xn] is said to be A-homogeneous if it can be generated
by polynomials with all its monomials of the same multi-degree.

Example: The toric ideal IA:

IA = 〈xc − xd : c, d ∈ Zn
≥0, Ac = Ad〉
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The multi-graded Hilbert function

Every A-homogeneous ideal I decomposes as

I =
⊕

Ib,

where b ∈ A(Zn
≥0) ranges over all possible multidegrees.

The A-graded Hilbert function of I is the map

A(Zn
≥0) → Z≥0

that sends each Ib to its linear dimension over K.

Remark: dimK(Ib) ≤ #A−1(b) = # of monomials of degree b.
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A-graded ideals and the toric Hilbert scheme

The toric ideal IA has “codimension 1 in every degree”:

dimK(Ib) = #A−1(b)− 1.

An A-homogeneous ideal is called A-graded if its Hilbert function equals that
of the toric ideal IA. The prototypical examples are all the initial ideals of IA.

Remark: All A-graded ideals are binomial ideals.

The toric Hilbert scheme of A is the “space” of all possible A-graded ideals,
together with certain scheme structure on it; each irreducible component is a
(perhaps not normal) toric variety.
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History:

[Arnol’d, 1989], [Korkina-Post-Roelofs, 1995]: study the case d = 1.

[Sturmfels 1995]: defines A-graded ideals in full-generality and shows their
relation to triangulations of A. The relation is specially well-behaved for
unimodular triangulations of A.

[Peeva-Stilman 2001]: introduce the scheme structure and coin the name
“toric Hilbert scheme”. They pose the connectivity question.

[Maclagan-Thomas, 2002]: define a graph of “monomial A-graded ideals” and
show that the toric Hilbert scheme is connected if and only if the graph is.
They use a result of Sturmfels to conclude:

Theorem: If A has unimodular triangulations that are not connected by flips,
then the toric Hilbert scheme of A is not connected.
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History:

[Arnol’d, 1989], [Korkina-Post-Roelofs, 1995]: study the case d = 1.

[Sturmfels 1995]: defines A-graded ideals in full-generality and shows their
relation to triangulations of A. The relation is specially well-behaved for
unimodular triangulations of A.

[Peeva-Stilman 2001]: introduce the scheme structure and coin the name
“toric Hilbert scheme”. They pose the connectivity question.

[Maclagan-Thomas, 2002]: define a graph of“‘monomial A-graded ideals” and
show that the toric Hilbert scheme is connected if and only if the graph is.

[S., 2002]: constructs a point set A (dim = 5,#A = 50) that has unimodular
triangulations not connected by flips. Hence, its toric Hilbert scheme is not
connected.
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The Sturmfels map

In 1991, Sturmfels had proved:

Theorem:The Gröbner fan of a toric ideal IA refines the secondary fan of the
corresponding vector configuration A. (Equivalently, the secondary polytope of
A is a Minkowski summand of the state polytope of IA).

In particular, there is a well-defined map

initial ideals of IA → regular polyhedral subdivisions of A

(the map sends monomial initial ideals to regular triangulations, and is surjective).
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In 1995, he extended the map to

Φ : A-graded ideals → polyhedral subdivisions of A,

and the map sends monomial ideals to triangulations.

The map is now not surjective [Peeva 1995], but its image contains all
the unimodular triangulations of A [Sturmfels 1995] (moreover, each unimodular
triangulation T is the image of a unique monomial A-graded ideal, namely the
Stanley-Reisner ring of T ).

Maclagan and Thomas defined flips between A-graded monomial ideals, and
showed that if I1 and I2 are related by a flip, then Φ(I1) and Φ(I2) either coincide
or are related by a bistellar flip.
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Open question: Is the toric Hilbert scheme connected when d = 1?

Observe that a vector configuration of dimension 1 gives a “point configuration
of dimension 0”. That is, n copies of a single point! This has n triangulations,
one using each of the points; the secondary polytope is an n− 1-simplex.

Even the case n = 4 is open!
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4. Tropical polytopes
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Tropical hypersurfaces

The tropical semiring (or min-plus algebra) is (R,⊕,1) where

a⊕ b := min(a, b) a1 b := a + b.

A tropical polynomial is F (x1, . . . , xn) =
r⊕

i=1

ci x$ai1
1 1 · · ·1 x$ain

n .

(In usual arithmetics: F (x1, . . . , xn) = min{ci +
∑n

i=1 aijxj : i = 1, . . . , r}.)
We define the “zero-set” (or tropical hypersurface) of F as the set of points

for which the minimum is achieved twice. That is to say, the set of points were
the function F : Rn → R is not linear. It is a polyhedral complex of codimension
one, with cells in directions normal to faces of the simplex conv(O, e1, . . . , en).
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Tropical curves of degrees 1, 2, 3 and 4

Trough every two points in R2 there is a unique tropical line, every two tropical
lines meet in a single point
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Tropical algebraic geometry

Let K = C{{t}} (field of Puiseux series over C. The order of the series
c · tα + · · · is its minimum exponent, α ∈ Q. Now, we look at polynomials in
K[x1, . . . , xn]. To each such polynomial

f = c1(t) · xa1 + · · · cr(t) · xar

one can associate a tropical polynomial

trop(f) :=
r⊕

i=1

order(ci(t))1 x$ai.

Similarly, for each point c = (c1, . . . , cn) ∈ (K∗)n, we define order(c) :=
(order(c1), . . . , order(cn)).
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Tropical algebraic geometry

Theorem [Kapranov 2000, Sturmfels 2002] Let I ⊂ K[x1, . . . , xn] be an
ideal, V ⊂ (K∗)n its variety (intersected with (K∗)n) and GI auniversal Gröbner
basis of I. Then, the following subsets of Rn coincide:

1. The closure of the image of V under the order map (K∗)n → Rn.

2. The intersection of all tropical hypersurfaces defined by {trop(f) : f ∈ GI}.

3. The set of weight vectors w ∈ Rn for which the initial ideal inw(I) contains
no monomial.

Such a set is called the tropical variety of I. It is a polyhedral complex in Rn.
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Applications of tropical algebraic geometry

1. The “tropical Grassmannian of lines” TG(r, 2) equals the space of phylogenetic
trees with r nodes (Billera-Holmes-Vogtmann, 2001).

2. Mikhalkin (2002) computes the number (dimension) of curves of a certain
degree through a certain number of generic points in CP2 (or any other toric
surface) “tropically” (counting integer lattice paths in the defining polygon).
In particular, he computes the Gromov-Witten invariants of CP2 (or other
non-singular toric surfaces). Shustin (2003) does a similar thing for real curves
(Welshinger invariant).

3. Better understanding of A-discriminants (E.-M. Feichtner’s talk).
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Tropical polyhedral geometry

Where do triangulations arise?

The graphs of the functions that define tropical hypersurfaces are polyhedral
hypersurfaces polar to liftings of regular subdivisions.
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Tropical polyhedral geometry

Where do triangulations arise?

Moreover, in 2003, Develin and Sturmfels initiated the study of tropical
polytopes. That is, tropical convex hulls of finite point sets. They are bounded
polyhedral complexes, with cells in the directions normal to faces of the standard
simplex. They proved:

Theorem: There is a 1-to-1 correspondence between tropical polytopes with
n + 1 vertices in Rd and regular subdivisions of the product ∆n × ∆d of two
simplices.
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Some (generic) tropical triangles in the plane
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and the corresponding triangulations of ∆2 ×∆2 (pictured, via the Cayley Trick,
as regular mixed subdivisions of 3∆2)
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An application of tropical geometry to the study of
triangulations

By “construction”, (the codimension 1 skeleton of) a tropical polytope of
dimension d and with n + 1 vertices lies in the union of (d + 1)(n + 1) (usual)
hyperplanes.

In particular, the number of combinatorial types of tropical polytopes is
bounded above by that of hyperplane arrangements. Using known bounds
[Goodman-Pollack, Alon]:

Theorem [Santos 2004] For a fixed d, the number of regular triangulations of
∆d ×∆n grows as nΘ(n). In contrast, (if d ≥ 2) the number of all triangulations

grows as nΩ(n2).
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