On the structure of sets minimizing the rectilinear crossing number

O. Aichholzer, D. Orden, P. Ramos

Crete, August 2005

Goal

Rectilinear crossing number problem:

Determine minimum number of crossings of a straight-edge drawing of K_n (vertices in general position).

Minimizing the rectilinear crossing number j-facets and halving edges $\leq j$ -facets

Goal

Rectilinear crossing number problem:

Determine minimum number of crossings of a straight-edge drawing of K_n (vertices in general position).

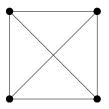
Structural properties of point sets minimizing crossings?

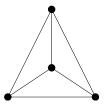
Goal

Rectilinear crossing number problem:

Determine minimum number of crossings of a straight-edge drawing of K_n (vertices in general position).

Structural properties of point sets minimizing crossings?



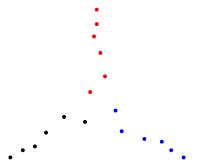


Goal

Rectilinear crossing number problem:

Determine minimum number of crossings of a straight-edge drawing of K_n (vertices in general position).

Structural properties of point sets minimizing crossings?



Flips Halving rays

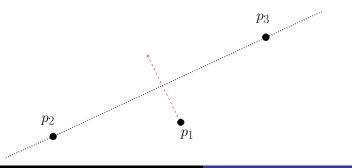
Order type flip events

• Consider a set S of n points and move a point p_1 along a line:

Flips Halving rays

Order type flip events

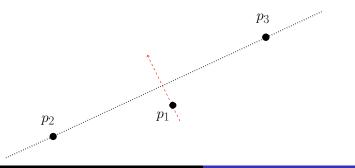
Consider a set S of n points and move a point p₁ along a line: The order type changes precisely when p₁ passes over a line spanned by some p₂p₃.



Flips Halving rays

Order type flip events

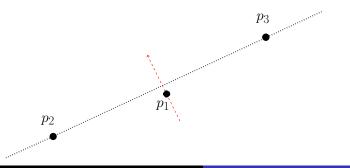
 Consider a set S of n points and move a point p₁ along a line: The order type changes precisely when p₁ passes over a line spanned by some p₂p₃.



Flips Halving rays

Order type flip events

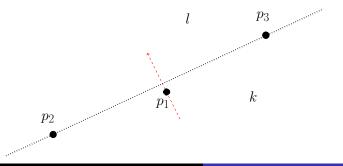
Consider a set S of n points and move a point p₁ along a line: The order type changes precisely when p₁ passes over a line spanned by some p₂p₃.



Flips Halving rays

Order type flip events

- Consider a set S of n points and move a point p₁ along a line: The order type changes precisely when p₁ passes over a line spanned by some p₂p₃.
- We call this a (k, l)-flip if p₁ passes from the side of p₂p₃ containing k points (p₁ excluded) to the side with l points.

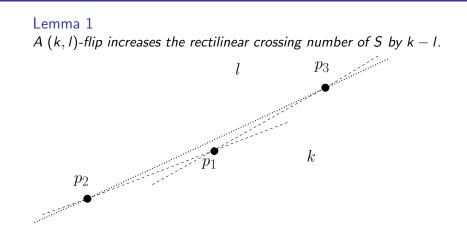


Flips Halving rays

How flips affect the crossing number

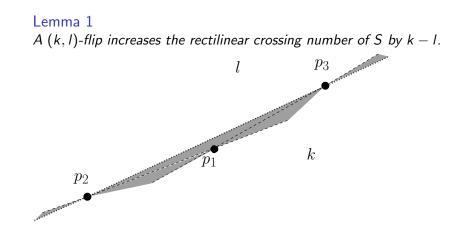
Lemma 1 A (k, l)-flip increases the rectilinear crossing number of S by k - l. $\begin{array}{l} \mbox{Goal} \\ \mbox{Minimizing the rectilinear crossing number} \\ j\mbox{-facets and halving edges} \\ \leq j\mbox{-facets} \end{array}$

Flips Halving rays



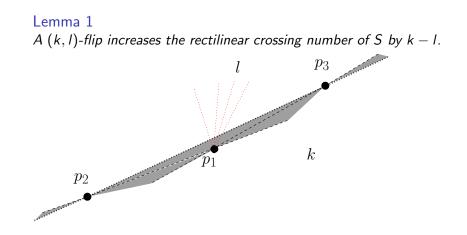
 $\begin{array}{c} & \text{Goal} \\ \text{Minimizing the rectilinear crossing number} \\ j\text{-facets and halving edges} \\ \leq j\text{-facets} \end{array}$

Flips Halving rays



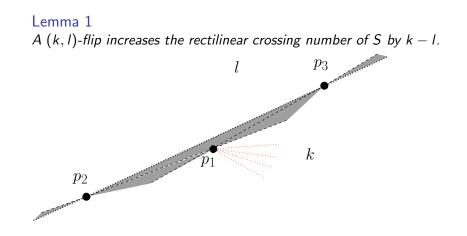
 $\begin{array}{c} & \text{Goal} \\ \text{Minimizing the rectilinear crossing number} \\ j\text{-facets and halving edges} \\ & \leq j\text{-facets} \end{array}$

Flips Halving rays

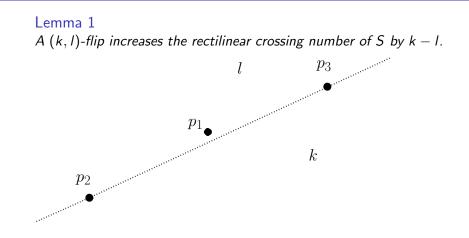


 $\begin{array}{l} \mbox{Goal} \\ \mbox{Minimizing the rectilinear crossing number} \\ j\mbox{-facets and halving edges} \\ \leq j\mbox{-facets} \end{array}$

Flips Halving rays

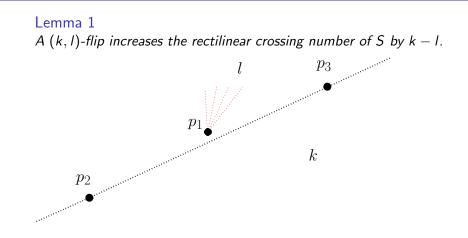


Flips Halving rays



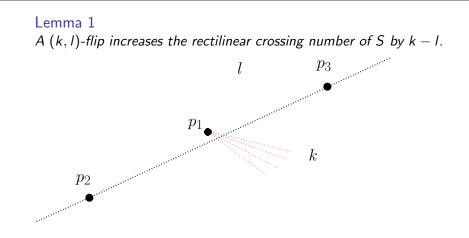
 $\begin{array}{c} & \text{Goal} \\ \text{Minimizing the rectilinear crossing number} \\ j\text{-facets and halving edges} \\ & \leq j\text{-facets} \end{array}$

Flips Halving rays



 $\begin{array}{l} \mbox{Goal} \\ \mbox{Minimizing the rectilinear crossing number} \\ j\mbox{-facets and halving edges} \\ \leq j\mbox{-facets} \end{array}$

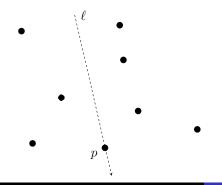
Flips Halving rays



Flips Halving rays

Why halving rays are useful

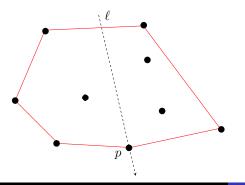
• Halving ray: oriented line ℓ such that



Flips Halving rays

Why halving rays are useful

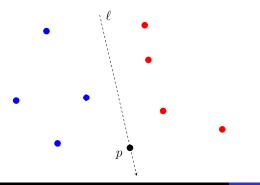
- ▶ Halving ray: oriented line ℓ such that
 - Passes trough exactly one extreme point $p \in S$.
 - Splits $S \setminus \{p\}$ into subsets of cardinalities $\lfloor \frac{n-1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$.
 - ▶ Is oriented "away" from *S*.



Flips Halving rays

Why halving rays are useful

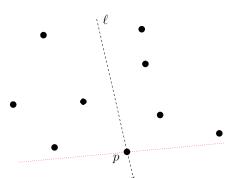
- ► Halving ray: oriented line ℓ such that
 - Passes trough exactly one extreme point p ∈ S.
 - Splits $S \setminus \{p\}$ into subsets of cardinalities $\lfloor \frac{n-1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$.
 - ▶ Is oriented "away" from S.



Flips Halving rays

Why halving rays are useful

- Halving ray: oriented line l such that
 - Passes trough exactly one extreme point $p \in S$.
 - Splits $S \setminus \{p\}$ into subsets of cardinalities $\lfloor \frac{n-1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$.
 - ▶ Is oriented "away" from *S*.

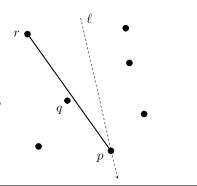


Flips Halving rays

Why halving rays are useful

► Halving ray: oriented line ℓ such that

- ► Passes trough exactly one extreme point p ∈ S.
- Splits $S \setminus \{p\}$ into subsets of cardinalities $\lfloor \frac{n-1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$.
- ▶ Is oriented "away" from *S*.



Lemma 2

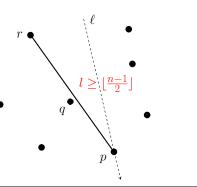
Let p be an extreme point of S and ℓ a halving ray for it. When moving p along ℓ in the given orientation, every flip event decreases the rectilinear crossing number of S.

Flips Halving rays

Why halving rays are useful

► Halving ray: oriented line ℓ such that

- Passes trough exactly one extreme point $p \in S$.
- Splits $S \setminus \{p\}$ into subsets of cardinalities $\lfloor \frac{n-1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$.
- ▶ Is oriented "away" from S.



Lemma 2

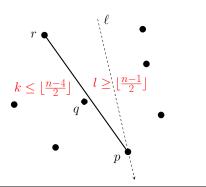
Let p be an extreme point of S and ℓ a halving ray for it. When moving p along ℓ in the given orientation, every flip event decreases the rectilinear crossing number of S.

Flips Halving rays

Why halving rays are useful

► Halving ray: oriented line ℓ such that

- ► Passes trough exactly one extreme point p ∈ S.
- Splits $S \setminus \{p\}$ into subsets of cardinalities $\lfloor \frac{n-1}{2} \rfloor$ and $\lceil \frac{n-1}{2} \rceil$.
- ▶ Is oriented "away" from *S*.



Lemma 2

Let p be an extreme point of S and ℓ a halving ray for it. When moving p along ℓ in the given orientation, every flip event decreases the rectilinear crossing number of S.

Flips Halving rays

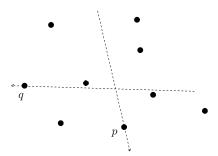
How to use halving rays

Lemma 3

Flips Halving rays

How to use halving rays

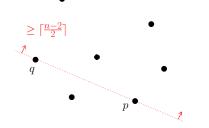
Lemma 3



Flips Halving rays

How to use halving rays

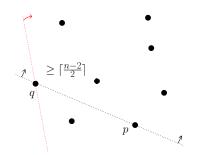
Lemma 3



Flips Halving rays

How to use halving rays

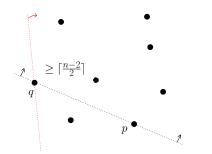
Lemma 3



Flips Halving rays

How to use halving rays

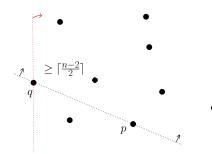
Lemma 3



Flips Halving rays

How to use halving rays

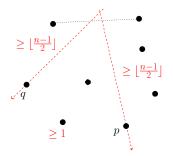
Lemma 3



Flips Halving rays

How to use halving rays

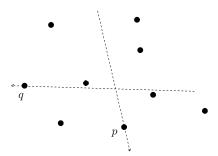
Lemma 3



Flips Halving rays

How to use halving rays

Lemma 3

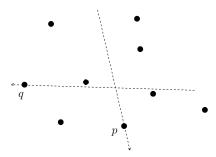


Flips Halving rays

How to use halving rays

Lemma 3

For non-consecutive extreme points p and q we can choose halving rays that cross in the interior of ch(S).



Theorem 4

Let S be a set of n points in the plane in general position with h > 3 extreme points. Then there exists a set S' of n points in general position which has a smaller rectilinear crossing number than S and less than h extreme points.

Flips Halving rays

How to use halving rays

Lemma 3

For non-consecutive extreme points p and q we can choose halving rays that cross in the interior of ch(S).

Theorem 4

Let S be a set of n points in the plane in general position with h > 3 extreme points. Then there exists a set S' of n points in general position which has a smaller rectilinear crossing number than S and less than h extreme points.

Flips Halving rays

How to use halving rays

Lemma 3

For non-consecutive extreme points p and q we can choose halving rays that cross in the interior of ch(S).

Theorem 4

Let S be a set of n points in the plane in general position with h > 3 extreme points. Then there exists a set S' of n points in general position which has a smaller rectilinear crossing number than S and less than h extreme points.

Flips Halving rays

How to use halving rays

Lemma 3

For non-consecutive extreme points p and q we can choose halving rays that cross in the interior of ch(S).

Theorem 4

Let S be a set of n points in the plane in general position with h > 3 extreme points. Then there exists a set S' of n points in general position which has a smaller rectilinear crossing number than S and less than h extreme points.

Flips Halving rays

How to use halving rays

Lemma 3

For non-consecutive extreme points p and q we can choose halving rays that cross in the interior of ch(S).

Theorem 4

Let S be a set of n points in the plane in general position with h > 3 extreme points. Then there exists a set S' of n points in general position which has a smaller rectilinear crossing number than S and less than h extreme points.

Flips Halving rays

Consequence: Main result

Theorem 5

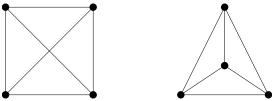
Any set S of $n \ge 3$ points in general position in the plane minimizing the rectilinear crossing number has a triangular convex hull.

Flips Halving rays

Consequence: Main result

Theorem 5

Any set S of $n \ge 3$ points in general position in the plane minimizing the rectilinear crossing number has a triangular convex hull.

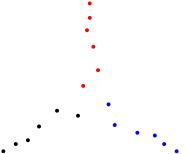


Flips Halving rays

Consequence: Main result

Theorem 5

Any set S of $n \ge 3$ points in general position in the plane minimizing the rectilinear crossing number has a triangular convex hull.



Flips Halving rays

Preliminaries Flips revisited Crossings and *j*-facets are related

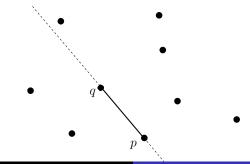
Preliminaries (1)

▶ *j*-facet: segment \overline{pq} such that $(0 \le j \le \lfloor \frac{n-2}{2} \rfloor)$

Preliminaries Flips revisited Crossings and *j*-facets are related

Preliminaries (1)

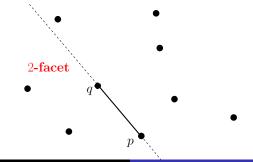
- *j*-facet: segment \overline{pq} such that $(0 \le j \le \lfloor \frac{n-2}{2} \rfloor)$
 - ▶ *p*,*q* ∈ *S*
 - Spans a line which splits S \ {p, q} into subsets of cardinalities j and n − 2 − j.
 - (We consider non-oriented *j*-facets).



Preliminaries Flips revisited Crossings and *j*-facets are related

Preliminaries (1)

- *j*-facet: segment \overline{pq} such that $(0 \le j \le \lfloor \frac{n-2}{2} \rfloor)$
 - ▶ *p*,*q* ∈ *S*
 - Spans a line which splits S \ {p, q} into subsets of cardinalities j and n − 2 − j.
 - (We consider non-oriented *j*-facets).



Preliminaries Flips revisited Crossings and *j*-facets are related

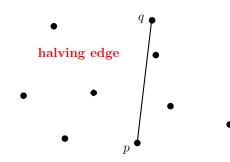
Preliminaries (2)

• Halving edge: *j*-facet with $j = \lfloor \frac{n-2}{2} \rfloor$

Preliminaries Flips revisited Crossings and *j*-facets are related

Preliminaries (2)

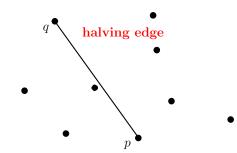
• Halving edge: *j*-facet with $j = \lfloor \frac{n-2}{2} \rfloor$



Preliminaries Flips revisited Crossings and *j*-facets are related

Preliminaries (2)

• Halving edge: *j*-facet with $j = \lfloor \frac{n-2}{2} \rfloor$



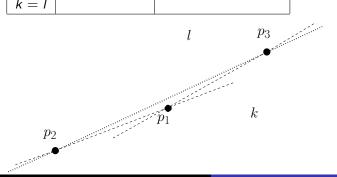
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	
k > l	
k = l	



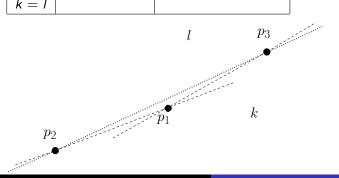
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	<i>k-facets</i> $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l		
k = l		



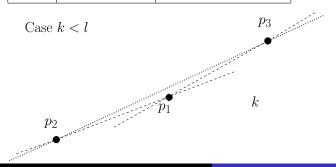
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	k -facets $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l		
k = l		



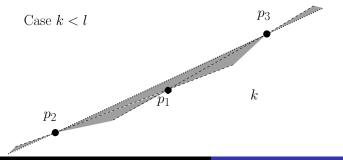
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	k -facets $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l		
k = l		



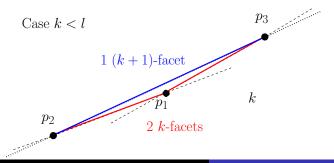
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	k -facets $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l		
k = l		



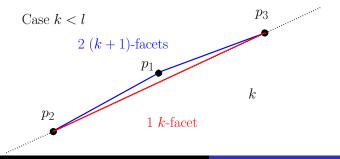
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	k -facets $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l		
k = l		



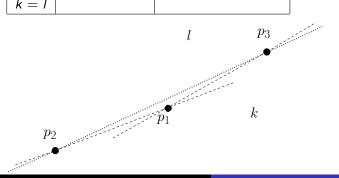
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	<i>k-facets</i> $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l		
k = l		



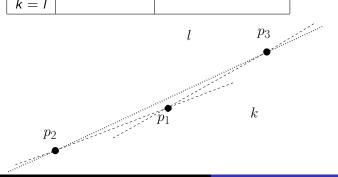
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	k -facets $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l	<i>I-facets</i> $\uparrow +1$	$(l+1)$ -facets $\downarrow -1$
k = l		



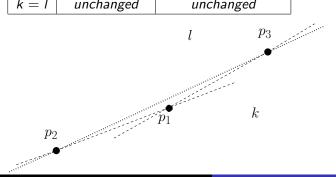
Preliminaries Flips revisited Crossings and *j*-facets are related

How flips affect *j*-facets

Lemma 6

A (k, l)-flip changes the number of j-facets as follows:

k < l	k -facets $\downarrow -1$	$(k+1)$ -facets $\uparrow +1$
k > l	<i>I-facets</i> $\uparrow +1$	$(l+1)$ -facets $\downarrow -1$
k = l	unchanged	unchanged



Preliminaries Flips revisited Crossings and *j*-facets are related

Crossings and *j*-facets are related

Theorem 7

The rectilinear crossing number $\overline{cr}(S)$ and the numbers of j-facets f_j are related by

$$\overline{cr}(S) + \sum_{j=0}^{\lfloor \frac{n-2}{2} \rfloor} (j-1) \cdot (n-j-3) \cdot f_j = \frac{1}{8} \cdot (n^4 - 10n^3 + 27n^2 - 18n)$$

Preliminaries Flips revisited Crossings and *j*-facets are related

Crossings and *j*-facets are related

Theorem 7

The rectilinear crossing number $\overline{cr}(S)$ and the numbers of j-facets f_j are related by

$$\overline{cr}(S) + \sum_{j=0}^{\lfloor \frac{n-2}{2} \rfloor} (j-1) \cdot (n-j-3) \cdot f_j = \frac{1}{8} \cdot (n^4 - 10n^3 + 27n^2 - 18n)$$

Theorem 8

For any fixed cardinality $n \ge 3$ there exist point sets maximizing the number of halving edges and having a triangular convex hull.

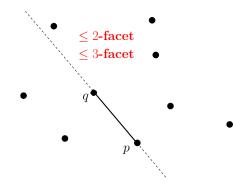
Preliminaries Flips revisited Crossings and *j*-facets are related

STOP?? (last chance)

Preliminaries Flips once more

Preliminaries

▶ ≤ k-facet: any j-facet with $j \le k$ ($0 \le k \le \lfloor \frac{n-2}{2} \rfloor$).



Preliminaries Flips once more

How flips affect $\leq k$ -facets and a useful result

Lemma 9

For every S with (\leq) -facet vector $f = (f_{(\leq 0)}, \ldots, f_{(\leq \lfloor \frac{n-2}{2} \rfloor)})$ there exists a set S' with a triangular convex hull and facet vector f' s.t. $f'_{(\leq i)} \leq f_{(\leq i)} \forall i$, where at least one inequality is strict.

Preliminaries Flips once more

How flips affect $\leq k$ -facets and a useful result

Lemma 9

For every S with (\leq) -facet vector $f = (f_{(\leq 0)}, \ldots, f_{(\leq \lfloor \frac{n-2}{2} \rfloor)})$ there exists a set S' with a triangular convex hull and facet vector f' s.t. $f'_{(\leq i)} \leq f_{(\leq i)} \forall i$, where at least one inequality is strict.

Theorem 10

The number of $(\leq k)$ -facets of S is at least $3\binom{k+2}{2}$ for $0 \leq k < \frac{n-2}{2}$. This bound is tight for $k \leq \lfloor \frac{n}{3} \rfloor - 1$.

Preliminaries Flips once more

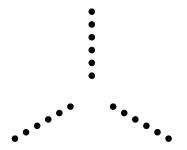
How flips affect $\leq k$ -facets and a useful result

Lemma 9

For every S with (\leq) -facet vector $f = (f_{(\leq 0)}, \ldots, f_{(\leq \lfloor \frac{n-2}{2} \rfloor)})$ there exists a set S' with a triangular convex hull and facet vector f' s.t. $f'_{(\leq i)} \leq f_{(\leq i)} \forall i$, where at least one inequality is strict.

Theorem 10

The number of $(\leq k)$ -facets of S is at least $3\binom{k+2}{2}$ for $0 \leq k < \frac{n-2}{2}$. This bound is tight for $k \leq \lfloor \frac{n}{3} \rfloor - 1$.



Preliminaries Flips once more

STOP?? (no chance)

Preliminaries Flips once more

On the structure of sets minimizing the rectilinear crossing number

O. Aichholzer, D. Orden, P. Ramos

Crete, August 2005