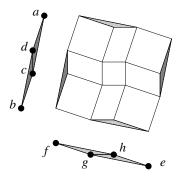
50 years of the Hirsch conjecture

Francisco Santos

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

June 17, 2009 Algorithmic and Combinatorial Geometry, Budapest

52 years of the Hirsch conjecture (with focus on "partial counterexamples")



Conjecture: Warren M. Hirsch (1957)

For every polytope P with f facets and dimension d,

$$\delta(P) \leq f - d$$
.

Fifty two years later, not only the conjecture is open:

We do not know any polynomial upper bound for $\delta(P)$, in terms of f and d.

Conjecture: Warren M. Hirsch (1957)

For every polytope *P* with *f* facets and dimension *d*,

$$\delta(P) \leq f - d$$
.

Fifty two years later, not only the conjecture is open:

We do not know any polynomial upper bound for $\delta(P)$, in terms of f and d.

Conjecture: Warren M. Hirsch (1957)

For every polytope P with f facets and dimension d,

$$\delta(P) \leq f - d$$
.

Fifty two years later, not only the conjecture is open:

Conjecture: Warren M. Hirsch (1957)

For every polytope *P* with *f* facets and dimension *d*,

$$\delta(P) \leq f - d$$
.

Fifty two years later, not only the conjecture is open:

We do not know any polynomial upper bound for $\delta(P)$, in terms of f and d.

Introduction 00000

- *d* < 3: [Klee 1966].
- f d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb]
- Polynomial bound for ν -way transportation polytopes (for
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

Hirsch conjecture holds for

Introduction 00000

- *d* < 3: [Klee 1966].
- f d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb]
- Polynomial bound for ν -way transportation polytopes (for
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

- d < 3: [Klee 1966].
- f d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb]
- Polynomial bound for ν -way transportation polytopes (for
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

Hirsch conjecture holds for

Introduction 00000

- d < 3: [Klee 1966].
- f d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb]
- Polynomial bound for ν -way transportation polytopes (for
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

Hirsch conjecture holds for

Introduction 00000

- d < 3: [Klee 1966].
- f d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb]
- Polynomial bound for ν -way transportation polytopes (for
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]

- *d* ≤ 3: [Klee 1966].
- $f d \le 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν -way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967] H(11,4) = 6 [Schuchert, 1995], H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009]

- *d* ≤ 3: [Klee 1966].
- $f d \le 6$: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν -way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967] H(11,4) = 6 [Schuchert, 1995], H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009]

- d < 3: [Klee 1966].
- f d < 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
- 0-1 polytopes [Naddef 1989]
- Polynomial bound for network flow polytopes [Goldfarb 1992, Orlin 1997]
- Polynomial bound for ν -way transportation polytopes (for fixed ν) [de Loera-Kim-Onn-S. 2009]
- H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967] H(11,4) = 6 [Schuchert, 1995], H(12,4) = H(12,5) = H(13,6) = 7 [Bremner et al. >2009].

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]

Introduction

For every *d*-polytope with *f* facets:

$$\delta(P) \leq f^{\log_2 d + 2}.$$

and a subexponential simplex algorithm

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

$$e^{O(\sqrt{f \log d})}$$

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

$$\delta(P) \leq f^{\log_2 d + 2}.$$

and a subexponential simplex algorithms

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

$$e^{O(\sqrt{f \log d})}$$

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

$$\delta(P) \leq f^{\log_2 d + 2}.$$

and a subexponential simplex algorithm:

$$e^{O(\sqrt{f \log d})}$$

Introduction 00000

Theorem [Kalai-Kleitman 1992]

For every *d*-polytope with *f* facets:

$$\delta(P) \leq f^{\log_2 d + 2}.$$

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]

There are random pivot rules for the simplex method which, for any linear program, yield an algorithm with expected complexity at most

$$e^{O(\sqrt{f \log d})}$$

A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]

For every *d*-polytope with *f* facets:

Introduction

$$\delta(P) \leq f2^{d-3}$$

Introduction

Theorem [Barnette 1967, Larman 1970]

For every *d*-polytope with *f* facets:

$$\delta(P) \leq f2^{d-3}$$
.

Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we consider a random perturbation of the matrix, within a parameter ϵ .

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1} , and polylogarithmic in f.

Polynomial bounds, under perturbation

Given a linear program with d variables and f restrictions, we consider a random perturbation of the matrix, within a parameter ϵ .

Theorem [Spielman-Teng 2004] [Vershynin 2006]

The expected diameter of the perturbed polyhedron is polynomial in d and ϵ^{-1} , and polylogarithmic in f.

- It holds with equality in simplices $(f = d + 1, \delta = 1)$ and cubes $(f = 2d, \delta = d)$.
- If P and Q satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:

For every $f \le 2d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

 For every f > d, it is easy to construct unbounded polyhedra where the bound is met.

- It holds with equality in simplices $(f = d + 1, \delta = 1)$ and cubes $(f = 2d, \delta = d)$.
- If P and Q satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:

For every $f \le 2d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

 For every f > d, it is easy to construct unbounded polyhedra where the bound is met.

- It holds with equality in simplices $(f = d + 1, \delta = 1)$ and cubes $(f = 2d, \delta = d)$.
- If P and Q satisfy it, then so does $P \times Q$: $\delta(P \times Q) =$ $\delta(P) + \delta(Q)$. In particular:

• For every f > d, it is easy to construct unbounded

- It holds with equality in simplices $(f = d + 1, \delta = 1)$ and cubes $(f = 2d, \delta = d)$.
- If P and Q satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:

For every $f \le 2d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

 For every f > d, it is easy to construct unbounded polyhedra where the bound is met.

- It holds with equality in simplices $(f = d + 1, \delta = 1)$ and cubes $(f = 2d, \delta = d)$.
- If P and Q satisfy it, then so does $P \times Q$: $\delta(P \times Q) = \delta(P) + \delta(Q)$. In particular:

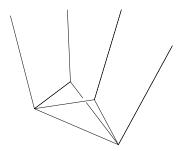
For every $f \le 2d$, there are polytopes in which the bound is tight (products of simplices). We call these "Hirsch-sharp" polytopes.

 For every f > d, it is easy to construct unbounded polyhedra where the bound is met.

Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation of dimension d-1.

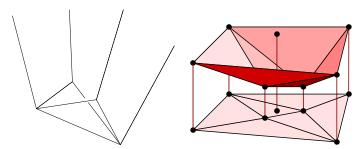
Regular triangulations of dimension d-1 with f vertices and diameter f-d are easy to construct by "stacking" simplices one after another.



Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation of dimension d-1.

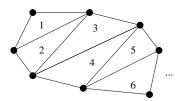
Regular triangulations of dimension d-1 with f vertices and diameter f-d are easy to construct by "stacking" simplices one after another.



Unbounded polys. and regular triangulations

An unbounded d-polyhedron is polar to a regular triangulation of dimension d-1.

Regular triangulations of dimension d-1 with f vertices and diameter f-d are easy to construct by "stacking" simplices one after another.



Hirsch conjecture has the following interpretations:

Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices (no common facet):

Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

"d-step conjecture" \Rightarrow Hirsch for f = 2d.

Hirsch conjecture has the following interpretations:

Assume f = 2d and let u and v be two complementary vertices (no common facet):

d-step conjecture

It is possible to go from u to v so that at each step we abandon a facet containing u and we enter a facet containing v.

"d-step conjecture" \Rightarrow Hirsch for f = 2d.

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

"non-revisiting conjecture" ⇒ Hirsch.

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting conjecture

It is possible to go from u to v so that at each step we enter a new facet, one that we had not visited before.

"non-revisiting conjecture" ⇒ Hirsch.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f$

$$\cdots \le H(2d-1, d-1) \le H(2d, d) \ge H(2d+1, d+1) \ge \cdots$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

$$\cdots \le H(2d-1, d-1) \le H(2d, d) \ge H(2d+1, d+1) \ge \cdots$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

$$\cdots \le H(2d-1, d-1) \le H(2d, d) \ge H(2d+1, d+1) \ge \cdots$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

$$\cdots \le H(2d-1,d-1) \le H(2d,d) \ge H(2d+1,d+1) \ge \cdots$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

$$\cdots \le H(2d-1, d-1) \le H(2d, d) \ge H(2d+1, d+1) \ge \cdots$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

 If f < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and f - d).

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

 If f < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and f - d).

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

• If f < 2d, because every pair of vertices lie in a common facet F, which is a polytope with one less dimension and (at least) one less facet (induction on f and f - d).

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

$$d_P(u, v) = d_{P'}(u, v)$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

$$d_P(u, v) = d_{P'}(u, v)$$

Theorem [Klee-Walkup 1967]

Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

$$d_P(u, v) = d_{P'}(u, v)$$

Theorem [Klee-Walkup 1967]

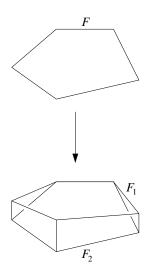
Hirsch \Leftrightarrow *d*-step \Leftrightarrow non-revisiting.

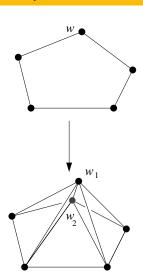
Proof: Let $H(f, d) = \max\{\delta(P) : P \text{ is a } d\text{-polytope with } f \text{ facets}\}$. The basic idea is:

$$\cdots \leq H(2d-1,d-1) \leq H(2d,d) \geq H(2d+1,d+1) \geq \cdots$$

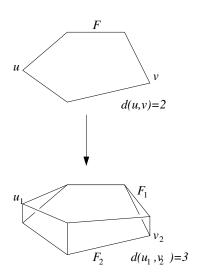
$$d_P(u,v)=d_{P'}(u,v).$$

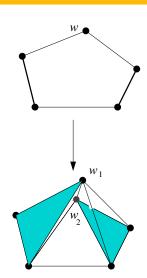
Wedging, a.k.a. one-point-suspension





Wedging, a.k.a. one-point-suspension





The feasible region of a linear program can be an unbounded polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:

The diameter of any polyhedron P with dimension d and f facets is at most f - d.

Remark: this was the original conjecture by Hirsch.

The feasible region of a linear program can be an unbounded polyhedron, instead of a polytope.

Unbounded version of the Hirsch conjecture:

The diameter of any polyhedron P with dimension d and f facets is at most f - d.

Remark: this was the original conjecture by Hirsch.

For the simplex method, we are only interested in monotone, w. r. t. a certain functional ϕ .

Monotone version of the Hirsch conjecture:

For any polytope/polyhedron P with dimension d and f facets, any linear functional ϕ and any initial vertex v: There is a monotone path of length at most f-d from v to the ϕ -maximal vertex.

For the simplex method, we are only interested in monotone, w. r. t. a certain functional ϕ .

Monotone version of the Hirsch conjecture:

For any polytope/polyhedron P with dimension d and f facets, any linear functional ϕ and any initial vertex ν :

There is a monotone path of length at most f - d from v to the ϕ -maximal vertex.

W. I. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d-1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

For any simplicial sphere of dimension d-1 with f vertices, the adjacency graph among d-1-simplices has diameter at most f-d.

W. l. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d-1)-sphere.

W. l. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d-1)-sphere.

Once we are there, why not remove polytopality:

W. l. o. g. we can assume that our polytope is simple... and state the conjecture for the polar (simplicial) polytope, which is a simplicial (d-1)-sphere.

Once we are there, why not remove polytopality:

Combinatorial version of the Hirsch conjecture:

For any simplicial sphere of dimension d-1 with f vertices, the adjacency graph among d-1-simplices has diameter at most f - d.

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

- There are unbounded polyhedra of dimension 4 with 8
- There are polytopes of dimension 4 with 9 facets and
- There are spheres of diameter bigger than Hirsch [Walkup

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8
- There are polytopes of dimension 4 with 9 facets and
- There are spheres of diameter bigger than Hirsch [Walkup

Three Counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978, dimension 27; Mani-Walkup 1980, dimension 11].
 Altshuler [1985] proved these examples are not polytopal spheres.

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup

Three counterexamples

Any of these three versions (combinatorial, monotone, unbounded) would imply the Hirsch conjecture...

... but the three are false (although all known counter-examples are only by a linear factor):

- There are unbounded polyhedra of dimension 4 with 8 facets and diameter 5 [Klee-Walkup, 1967].
- There are polytopes of dimension 4 with 9 facets and minimal monotone paths of length 5 [Todd 1980].
- There are spheres of diameter bigger than Hirsch [Walkup 1978. dimension 27; Mani-Walkup 1980, dimension 11]. Altshuler [1985] proved these examples are not polytopal spheres.

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:

The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:

 $H(9,4) = 5 \Rightarrow$ counter-example to unbounded Hirsch

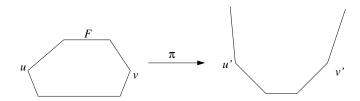
The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:

H(9,4) = 5 \Rightarrow counter-example to unbounded Hirsch From a bounded (9,4)-polytope you get an unbounded (8,4)-polytope with (at least) the same diameter, by moving the "extra facet" to infinity.

The unbounded Hirsch conjecture is false

The counter-examples to the monotone and the unbounded Hirsch conjectures can both be derived from the existence of a 4-polytope with 9 facets and with diameter 5:



The monotone Hirsch conjecture is false

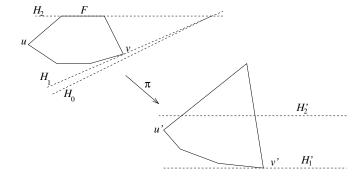
H(9,4) = 5 \Rightarrow counter-example to monotone Hirsch

In your bounded (9,4)-polytope you can make monotone paths from u to v necessarily long via a projective transformation that makes the "extra facet" be parallel to a supporting hyperplane of one of your vertices u and v

The monotone Hirsch conjecture is false

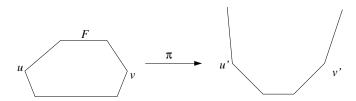
H(9,4) = 5 \Rightarrow counter-example to monotone Hirsch

In your bounded (9,4)-polytope you can make monotone paths from u to v necessarily long via a projective transformation that makes the "extra facet" be parallel to a supporting hyperplane of one of your vertices u and v



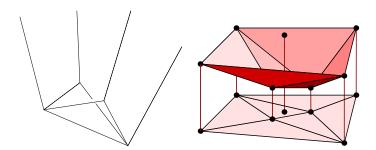
The "unbounded trick" is reversible

From an unbounded 4-polyhedron with 8 facets and diameter five we can get a bounded polytope with 9 facets and sme diameter:

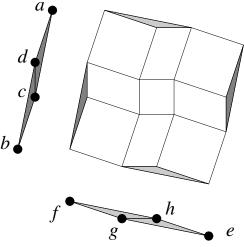


And remember that

"The polar of an unbounded 4-polyhedron with nine facets is a regular triangulation of eight points in \mathbb{R}^3 ".



This is a (Cayley Trick view of a) 3D triangulation with 8 vertices and diameter 5:



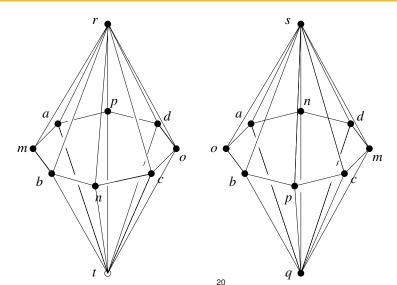
These are coordinates for it, derived from this description:

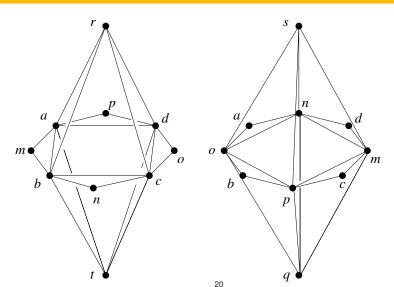
$$a := (-3,3,1,2),$$
 $b := (3,3,-1,2),$ $f := (-3,-3,-1,2),$ $c := (2,-1,1,3),$ $g := (-1,-2,-1,3),$ $d := (-2,1,1,3),$ $w := (0,0,0,-2).$

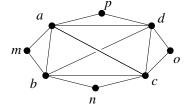
Mani and Walkup constructed a simplicial 3-ball with 20 vertices and with two tetrahedra abcd and mnop with the property that any path from abcd to mnop must revisit a vertex previously abandonded.

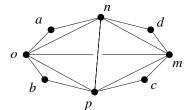
Mani and Walkup constructed a simplicial 3-ball with 20 vertices and with two tetrahedra abcd and mnop with the property that any path from abcd to mnop must revisit a vertex previously abandonded.

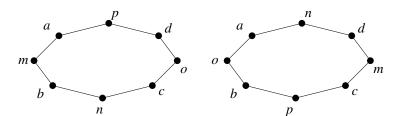
The key to the construction is in a subcomplex of two triangulated octagonal bipyramids.











Hirsch tight

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance":
 Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5
 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Hirsch tight

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Hirsch tight

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Hirsch tight

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance":
 Out of the 1142 combinatorial types of polytopes with d = 4 and f = 9 only one has diameter 5
 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Hirsch tight

- For f < 2d they are easy to construct (e.g., products of simplices).
- For d < 3 (and f > 2d): they do not exist. $H(f,d) \sim \frac{d-1}{d}(f-d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance": Out of the 1142 combinatorial types of polytopes with d=4 and f=9 only one has diameter 5 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Hirsch tight

- For f ≤ 2d they are easy to construct (e.g., products of simplices).
- For $d \le 3$ (and f > 2d): they do not exist. $H(f, d) \sim \frac{d-1}{d}(f d)$.
- H(9,4) = 5 [Klee-Walkup 1967], but "only by chance":
 Out of the 1142 combinatorial types of polytopes with
 d = 4 and f = 9 only one has diameter 5
 [Altshuler-Bokowski-Steinberg, 1980].
- H(10,4) = 5, H(11,4) = 6, H(12,4) = 7.

Theorem:

- f ≤ 2d.
- f = 9, d = 4, [Klee-Walkup]
- $f \le 3d 3$, [Holt-Klee, 98]
- d ≥ 14, [Holt-Klee, 98]
- $d \ge 8$, [Holt-Fritzsche, 05]
- $d \ge 7$, [Holt, 04

Theorem:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- $f \leq 3d 3$, [Holt-Klee, 98]
- $d \ge 14$, [Holt-Klee, 98]
- $d \ge 8$, [Holt-Fritzsche, 05]
- $d \ge 7$, [Holt, 04]

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- f < 2d.
- f = 9, d = 4,
- f < 3d 3.
- d > 14.
- \bullet d > 8, [Holt-
- d > 7.

f – 2d	0	1	2	3	4	5	6	7	
d									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=								
5	\geq								
6	\geq								
7	> > > > >								
8	\geq								
:	:								
•	•								

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- f < 3d 3.
- d > 14.
- \bullet d > 8, [Holt-
- d > 7.

f – 2d	0	1	2	3	4	5	6	7	• • •
d									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=	=							
5	=								
6	\geq								
7	\wedge								
8	\geq								
:	:								
•	•								

Theorem:

For the following f and d, Hirsch-sharp polytopes exist:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- f < 3d 3.
- d > 14.
- \bullet d > 8, [Holt-
- d > 7.

f – 2d	0	1	2	3	4	5	6	7	• • •
d									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=	=	<	<	<				
5	=	=	=						
6	=	=							
7	\geq								
8	\geq								
÷	:								

Theorem:

For the following *f* and *d*, Hirsch-sharp polytopes exist:

- $f \leq 2d$.
- f = 9, d = 4, [Klee-Walkup]
- $f \leq 3d 3$, [Holt-Klee, 98]
- $d \ge 14$, [Holt-Klee, 98]
- $d \ge 8$, [Holt-Fritzsche, 05]
- $d \ge 7$, [Holt, 04]

f – 2d	0	1	2	3	4	5	6	7	• • •
d									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=	=	<	<	<				
5	=	=	=						
6	=	=	\geq	\geq					
7	\geq	\geq	\geq	\geq	\geq				
8	\geq	\geq	\geq	\geq	\geq	\geq			
÷	:	:	:	÷	:	÷	٠.		

Theorem:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- f < 3d 3. [Holt-Klee, 98]
- d > 14. [Holt-Klee, 98]
- \bullet d > 8, [Holt-
- d > 7.

f – 2d	0	1	2	3	4	5	6	7	• • •						
d															
2	=	<	<	<	<	<	<	<							
3	=	<	<	<	<	<	<	<							
4	=	=	<	<	<										
5	=	=	=												
6	=	=	\geq	\geq											
7	\geq	\geq	\geq	\geq	\geq										
8	\geq	\geq	\geq	\geq	\geq	\geq									
:	:	:	:	÷	÷	:	٠.								
≥ 14	\geq	\geq	\geq	\geq	\geq	\geq									
			(f, d)	vers	H(f,d) versus $(f-d)$.										

Theorem:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- f < 3d 3. [Holt-Klee, 98]
- d > 14. [Holt-Klee, 98]
- \bullet d > 8, [Holt-Fritzsche, 05]
- d > 7,

f – 2d	0	1	2	3	4	5	6	7	
	_								
<u>d</u>									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=	=	<	<	<				
5	=	=	=						
6	=	=	\geq	\geq					
7	\geq	\geq	\geq	\geq	\geq				
8	\geq								
•	:	:	:	:	÷	:	:	÷	
≥ 14	\geq								
		H((f,d)	vers	us (i	f – d).		

Theorem:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- f < 3d 3. [Holt-Klee, 98]
- d > 14. [Holt-Klee, 98]
- \bullet d > 8, [Holt-Fritzsche, 05]
- d > 7, [Holt, 04]

f – 2d	0	1	2	3	4	5	6	7	
d									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=	=	<	<	<				
5	=	=	=						
6	=	=	\geq	\geq					
7	\geq								
8	\geq								
:	:	:	:	÷	÷	:	:	÷	
≥ 14	\geq								
			(f, d)	vers	us (i	f - d).		

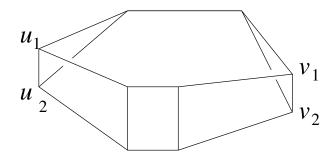
Theorem:

- f < 2d.
- f = 9, d = 4, [Klee-Walkup]
- $f \leq 3d 3$, [Holt-Klee, 98]
- d ≥ 14, [Holt-Klee, 98]
- d ≥ 8, [Holt-Fritzsche, 05]
- $d \ge 7$, [Holt, 04]

f – 2d	0	1	2	3	4	5	6	7	• • •
d									
2	=	<	<	<	<	<	<	<	
3	=	<	<	<	<	<	<	<	
4	=	=	<	<	<	?	?	?	
5	=	=	=	?	?	?	?	?	
6	=	=	\geq	\geq	?	?	?	?	
7	\geq								
8	\geq								
÷	:	:	:	:	:	:	:	:	
≥ 14	2	\geq							
		H	(f, d)	vers	us (i	f - d).		

Hirsch-sharpness for $f \leq 3d - 3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope . . .

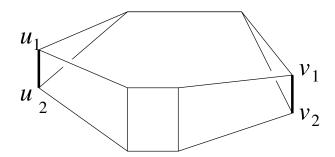


Hirsch-sharpness for $f \leq 3d - 3$ [Klee-Holt]

When we wedge in a Hirsch-sharp polytope ...

... we get two edges with Hirsch-distant vertices...

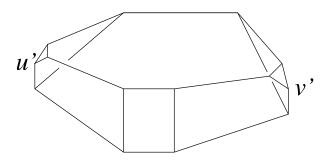
... so we can cut a corner on each side



Hirsch-sharpness for $f \leq 3d - 3$ [Klee-Holt]

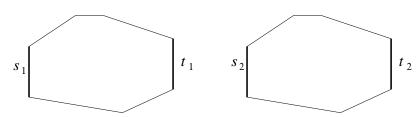
When we wedge in a Hirsch-sharp polytope . . .

- ... we get two edges with Hirsch-distant vertices...
- ... so we can cut a corner on each side

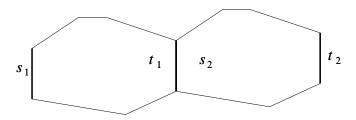


(polar view)

(polar view)

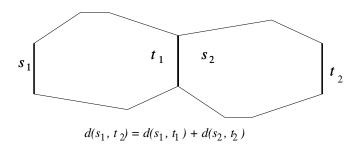


(polar view)



$$d(s_1, t_2) = d(s_1, t_1) + d(s_2, t_2) - 1$$

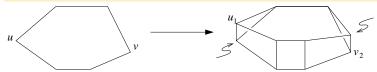
(polar view)



(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we also create "forbidden neighbors"



(polar view)

When we glue two (simplicially) Hirsch-sharp polytopes along a facet ... the new polytope is "Hirsch-sharp-minus-1"... unless before glueing (at least) half of the neighbors of the glued faces were not part of Hirsch paths.

When we wedge we do not only preserve Hirsch-sharpness, we also create "forbidden neighbors"

Theorem [Holt-Fritzsche '05]

After wedging 4 times in the KW (9,4)-polytope, we can glue and preserve Hirsch-sharpness

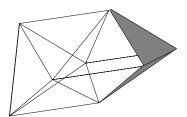
Hirsch-sharpness for d = 7 [Holt]

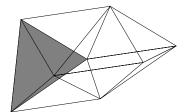
(polar view)

Hirsch-sharpness for d = 7 [Holt]

(polar view)

Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.

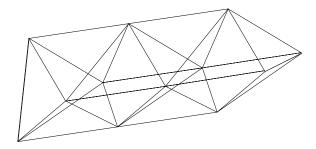




Hirsch-sharpness for d = 7 [Holt]

(polar view)

Same idea, but instead of based on forbiden neighbors, based on gluing along more than one simplex: Wedging three times on the KW (9,4)-polytope creates two "cliques of four simplices on eight vertices". We can glue on those eight vertices.



Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

For each edge e

- $0 \le x_e$.
- For each vertex v, the sum

$$\sum_{e \text{ exits } v} x_e - \sum_{e \text{ enters } v} x_e$$

equals the supply (positive) or demand (negative) at u

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

$$\sum_{e \text{ exits } v} X_e - \sum_{e \text{ enters } v} X_e$$

equals the supply (positive) or demand (negative) at v.

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

$$\sum_{e \text{ exits } v} x_e - \sum_{e \text{ enters } v} x_e$$

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

• For each edge e $0 \le x_e$.

$$0 < x_{e}$$
.

• For each vertex v, the sum

$$\sum_{e \text{ exits } v} x_e - \sum_{e \text{ enters } v} x_e$$

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

- For each edge e
- $0 \le x_e$.
- For each vertex v, the sum

$$\sum_{e \text{ exits } v} x_e - \sum_{e \text{ enters } v} x_e$$

equals the supply (positive) or demand (negative) at v.

Network

Directed graph, with demands (negative numbers) or supplies (positive numbers) associated to its vertices.

Transportation problem in a network

Minimize a certain linear functional ("cost") having one variable for each edge x_e and the restrictions:

- For each edge e $0 \le x_e$.
- For each vertex v, the sum

$$\sum_{e \text{ exits } v} x_e - \sum_{e \text{ enters } v} x_e$$

equals the supply (positive) or demand (negative) at ν .

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension d < E - V and number of facets f < E.

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97] Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

The flow polytope (set of feasible flows) in a network with V vertices and E edges has dimension $d \le E - V$ and number of facets $f \le E$.

Its diamater is polynomial:

Theorem [Cunningham '79, Goldfarb-Hao '92, Orlin '97]

Every network flow polytope has diameter bounded by $O(EV \log V)$, that is, $O(f^2 \log f)$.

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \text{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{j} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10,6), b = (4,5,7).$

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ii}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

Example

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

10 6

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

Example

$$m = 2, n = 3;$$

 $a = (10, 6), b = (4, 5, 7).$

$$m = n$$
; $a = b = (1, ..., 1) \Rightarrow$ Birkhoff polytope.

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \text{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

Theorem

Every transportation polytope has linear diameter $\leq 8(f-d)$ [Brightwell-van den Heuvel-Stougie, 2006].

Transportation polytope

The network flow polytopes of complete bipartite graphs.

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \text{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

Transportation polytope

The network flow polytopes of complete bipartite graphs.

Also: the set of contingency tables with specified marginals: given two vectors $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$, the matrices (x_{ij}) with

$$\sum_{i} x_{ij} = a_i \quad \forall i \quad \mathbf{y} \quad \sum_{i} x_{ij} = b_j \quad \forall j.$$

Theorem

Every transportation polytope has linear diameter $\leq 8(f - d)$. [Brightwell-van den Heuvel-Stougie, 2006].

3-way transportation polytopes

We now consider tables with three dimensions.

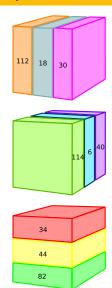
Definition

Given $a \in \mathbb{R}^I$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, the 1-marginal 3-way transportation polytope associated to them is defined in lmn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$



3-way transportation polytopes

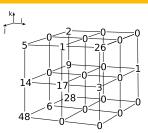
Definition

Given $a \in \mathbb{R}^{I}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in lmn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$



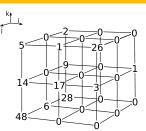
Definition

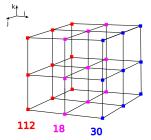
Given $a \in \mathbb{R}^{l}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in lmn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,k} x_{i,j,k} = c_k \ \forall k.$$





3-way transportation polytopes

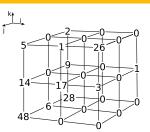
Definition

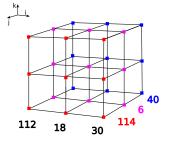
Given $a \in \mathbb{R}^{I}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in Imn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the I+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,k} x_{i,j,k} = c_k \ \forall k.$$





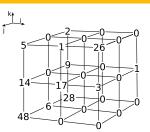
Definition

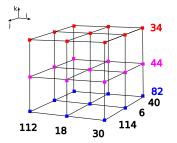
Given $a \in \mathbb{R}^{I}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$





Definition

Given $a \in \mathbb{R}^{I}$, $b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$, the 1-marginal 3-way transportation polytope associated to them is defined in *Imn* non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$

2-marginal version

Same definition but with Im + In + mn equations.

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^l$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, the 1-marginal 3-way transportation polytope associated to them is defined in lmn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$,

$$\sum_{k} x_{i,j,k} = A_{ij} \ \forall i,j,$$

$$\sum_{i} x_{i,j,k} = B_j \ \forall i, k,$$

$$\sum_{i} x_{i,j,k} = C_k \ \forall j,k.$$

Definition

Given $a \in \mathbb{R}^l$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, the 1-marginal 3-way transportation polytope associated to them is defined in Imn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the I+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$.

$$\sum_{k} x_{i,j,k} = A_{ij} \ \forall i,j,$$

$$\sum_{i} x_{i,j,k} = B_j \ \forall i, k,$$

$$\sum_{i} x_{i,j,k} = C_k \ \forall j,k.$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^l$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, the 1-marginal 3-way transportation polytope associated to them is defined in Imn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the I+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$,

$$\sum_{k} x_{i,j,k} = A_{ij} \ \forall i,j,$$

$$\sum_{i} x_{i,j,k} = B_j \ \forall i, k,$$

$$\sum_{i} x_{i,j,k} = C_k \ \forall j,k.$$

3-way transportation polytopes

Definition

Given $a \in \mathbb{R}^l$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$, the 1-marginal 3-way transportation polytope associated to them is defined in lmn non-negative variables $x_{i,j,k} \in \mathbb{R}_{\geq 0}$ with the l+m+n equations

$$\sum_{j,k} x_{i,j,k} = a_i \ \forall i,$$

$$\sum_{i,k} x_{i,j,k} = b_j \ \forall j,$$

$$\sum_{i,j} x_{i,j,k} = c_k \ \forall k.$$

2-marginal version

Given three matrices $A \in \mathbb{R}^{lm}$, $B \in \mathbb{R}^{ln}$ and $C \in \mathbb{R}^{mn}$.

$$\sum_{k} x_{i,j,k} = A_{ij} \ \forall i,j,$$

$$\sum_{i} x_{i,j,k} = B_j \ \forall i, k,$$

$$\sum_{i} x_{i,j,k} = C_k \ \forall j,k.$$

Theorem [De Loera-Onn 2004

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to *P*.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients.

- There is a 2-marginal 3-way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to *P*.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients.

- There is a 2-marginal 3-way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007]

Theorem [De Loera-Onn 2004]

Given any polytope *P*, defined via equations with rational coefficients,

- There is a 2-marginal 3-way transportation polytope isomorphic to P.
- There is a 1-marginal 3-way transportation polytope with a face isomorphic to P.
- Moreover, both can be computed in polynomial time starting from the description of P.

Theorema: De Loera-Kim-Onn-Santos 2007]

The end

THANK YOU!