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Two quotes by Victor Klee:

A good talk contains no proofs; a great talk contains no
theorems.

Mathematical proofs should only be communicated in
private and to consenting adults.
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W A R N I N G

This talk contains material
that may not be suited for all audiences.
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W A R N I N G
This includes, but may not be limited to,
mathematical theorems and proofs,

pictures of highly dimensional polytopes,
and explicit coordinates for them.
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We declare this room to be private for the following 45 minutes.

By staying in it you acknowledge to be an adult, and consent to
be exposed to such material.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(a,b) between vertices a and b is the length
(number of edges) of the shortest path from a to b.

For example, d(a,b) = 2.
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The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

δ(P) = max{d(a,b) : a,b ∈ vert(P)}.
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The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Theorem (S. 2010+)
There is a 43-dim. polytope with 86 facets and diameter 44.

Corollary
There is an infinite family of non-Hirsch polytopes with diameter
∼ (1 + ε)n, even in fixed dimension. (Best so far: ε = 1/43).
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Motivation: linear programming

A linear program is the problem of maximization / minimization
of a linear functional subject to linear inequality constraints.

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program starting at any feasible vertex and moving along
the graph of P, in a monotone fashion, until the optimum is
attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.
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Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:
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There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m
equality constraints in n nonnegative variables is
almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2010)
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Complexity of linear programming

Besides, the methods known are not strongly polynomial. They
are polynomial in the “bit model” but not in the “real machine
model” [Blum-Shub-Smale 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.

... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.
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Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]
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General bounds

A “quasi-polynomial” bound
Theorem (Kalai-Kleitman 1992): For every d-polytope with n
facets

δ(P) ≤ nlog2 d+2.

A linear bound in fixed dimension
Theorem (Barnette 1967, Larman 1970): For every d-polytope
with n facets:

δ(P) ≤ n2d−3.

11



Introduction Theorem 1 Theorem 2 Conclusion

General bounds

A “quasi-polynomial” bound
Theorem (Kalai-Kleitman 1992): For every d-polytope with n
facets

δ(P) ≤ nlog2 d+2.

A linear bound in fixed dimension
Theorem (Barnette 1967, Larman 1970): For every d-polytope
with n facets:

δ(P) ≤ n2d−3.

11



Introduction Theorem 1 Theorem 2 Conclusion

General bounds

A “quasi-polynomial” bound
Theorem (Kalai-Kleitman 1992): For every d-polytope with n
facets

δ(P) ≤ nlog2 d+2.

A linear bound in fixed dimension
Theorem (Barnette 1967, Larman 1970): For every d-polytope
with n facets:

δ(P) ≤ n2d−3.

11



Introduction Theorem 1 Theorem 2 Conclusion

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter ε (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is
polynomial in d and ε−1, and polylogarithmic in n.
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Theorem 1: The d-step Theorem
Klee and Walkup, 1967
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Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

14



Introduction Theorem 1 Theorem 2 Conclusion

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Given any two vertices a and b of a simple polytope P:

14



Introduction Theorem 1 Theorem 2 Conclusion

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Given any two vertices a and b of a simple polytope P:

non-revisiting path conjecture
It is possible to go from a to b so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path⇒ Hirsch.

14



Introduction Theorem 1 Theorem 2 Conclusion

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

Given any two vertices a and b of a simple polytope P:

non-revisiting path conjecture
It is possible to go from a to b so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path⇒ Hirsch.

14



Introduction Theorem 1 Theorem 2 Conclusion

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

In particular: assume n = 2d and let a and b be two comple-
mentary vertices (no common facet):

14



Introduction Theorem 1 Theorem 2 Conclusion

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

In particular: assume n = 2d and let a and b be two comple-
mentary vertices (no common facet):

d-step conjecture
It is possible to go from a to b so that at each step we abandon
a facet containing a and we enter a facet containing b.

“d-step conjecture”⇒ Hirsch for n = 2d .

14



Introduction Theorem 1 Theorem 2 Conclusion

Why is n − d a “reasonable” bound?

Hirsch conjecture has the following interpretations:

In particular: assume n = 2d and let a and b be two comple-
mentary vertices (no common facet):

d-step conjecture
It is possible to go from a to b so that at each step we abandon
a facet containing a and we enter a facet containing b.

“d-step conjecture”⇒ Hirsch for n = 2d .

14



Introduction Theorem 1 Theorem 2 Conclusion

The d-step Theorem

Theorem 1 (Klee-Walkup 1967)
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The key step in the proof is to show that for any k :

· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·
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· · · ≤ H(2k − 1, k − 1) ≤ H(2k , k) = H(2k + 1, k + 1) = · · ·

That is to say:
1) H(n,d) ≤ H(n + 1,d + 1), for all n and d .
2) H(n − 1,d − 1) ≥ H(n,d), when n < 2d .
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Since n < 2d , every pair of vertices a and b lie in a
common facet F , which is a polytope with one less
dimension and (at least) one less facet. Hence,
dP(a,b) ≤ dF (a,b) ≤ H(n − 1,d − 1).
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1) H(n,d) ≤ H(n + 1,d + 1), for all n and d :
Choose an arbitrary facet F of P. Let P ′ be the wedge of
P over F . Then:

∀a,b ∈ vert(P), ∃a′,b′ ∈ vert(P ′), dP′(a′,b′) ≥ dP(a,b).
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facets}. The key step in the proof is to show that for any k :
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Wedging, a.k.a. one-point-suspension
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Wedging, a.k.a. one-point-suspension
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Spindles

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

u u

vv

Definition
The length of a
spindle is the
graph distance
from u to v .
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Spindles

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets and
length δ.
Then there is another spindle P ′ of dimension d + 1, with n + 1
facets and length δ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ δ + n − 2d > n − d) that violates the Hirsch conjecture.
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Prismatoids

Definition
A prismatoid is a polytope Q with two (parallel) facets Q+ and
Q− containing all vertices.

Q+

Q−

Q

Definition
The width of a
prismatoid is the
dual-graph
distance from Q+

to Q−.
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Prismatoids

Theorem (Generalized d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width δ.
Then there is another prismatoid Q′ of dimension d + 1, with
n + 1 vertices and width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .
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Prismatoids

Theorem (Generalized d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width δ.
Then there is another prismatoid Q′ of dimension d + 1, with
n + 1 vertices and width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .
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The generalized d-step Theroem

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := o. p. s.v(Q−)

Q+

w

o. p. s.v(Q) ⊂ R3

v

u

u
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Width of prismtoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d . Its number
of vertices and facets is irrelevant!!!

Question
Do they exist?

3-prismatoids have width at most 3 (exercise).
4-prismatoids have width at most 4 [S., July 2010].
5-prismatoids of width 6 exist [S., May 2010].
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Theorem 2: A non-Hirsch 4-polyhedron
Klee and Walkup, 1967
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Combinatorics of prismatoids

Analyzing the combinatorics of a d-prismatoid Q can be done
via an intermediate slice . . .

Q+

Q−

Q ∩ H
H

Q
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Combinatorics of prismatoids

. . . which equals the Minkowski sum Q+ + Q− of the two bases
Q+ and Q−. The normal fan of Q+ + Q− equals the “superposi-
tion” of those of Q+ and Q−.

+ 1
2

1
2 =
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Combinatorics of prismatoids
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q+ and Q−.

Remark
The normal fan of a d − 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d − 2-sphere.

Conclusion
4-prismatoids⇔ pairs of maps in the 2-sphere.

5-prismatoids⇔ pairs of “maps” in the 3-sphere.
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Example: (part of) a 4-prismatoid

4-prismatoid of width > 4
m

pair of (geodesic, polytopal) maps in S2 so that two
steps do not let you go from a blue vertex to a red vertex.
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The Klee-Walkup (unbounded) 4-spindle

Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and
diameter 5.
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The Klee-Walkup (unbounded) 4-spindle

Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)
There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”. What
is the corresponding “superposition of two (geodesic, polytopal)
maps” in a surface?
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The Klee-Walkup (unbounded) 4-spindle
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The Klee-Walkup (unbounded) 4-spindle
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The Klee-Walkup (unbounded) 4-spindle
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A 4-dimensional prismatoid of width > 4?

Replicating the basic structure of the Klee-Walkup polytope we
can get a “non-Hirsch” pair of maps in the plane:
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A 4-dimensional prismatoid of width > 4?
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A 4-dimensional prismatoid of width > 4?

Surprisingly enough:

Theorem (S., July 2010)
There is no “non-Hirsch” pair of maps in the 2-sphere.

Proof (rough idea of).
Every pair of non-Hirsch maps on a surface necessarily
contains certain “zig-zag alternating cycles”, and no such cycle
can bound a 2-ball.
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A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:

Theorem

The prismatoid Q of the next two slides, of dimension 5 and
with 48 vertices, has width six.
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A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:

Theorem

The prismatoid Q of the next two slides, of dimension 5 and
with 48 vertices, has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.
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A 5-prismatoid of width > 5

But, in dimension 5 (that is, with maps in the 3-sphere) we have
room enough to construct “non-Hirsch pairs of maps”:

Theorem

The prismatoid Q of the next two slides, of dimension 5 and
with 48 vertices, has width six.

Proof 1.
It has been verified with polymake that the dual graph of Q
(modulo symmetry) has the following structure:

H

C

D J

BA K L

I

E

F

G
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A 5-prismatoid of width > 5

Q := conv

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

x1 x2 x3 x4 x5

1+ 18 0 0 0 1
2+ −18 0 0 0 1
3+ 0 18 0 0 1
4+ 0 −18 0 0 1
5+ 0 0 45 0 1
6+ 0 0 −45 0 1
7+ 0 0 0 45 1
8+ 0 0 0 −45 1
9+ 15 15 0 0 1
10+ −15 15 0 0 1
11+ 15 −15 0 0 1
12+ −15 −15 0 0 1
13+ 0 0 30 30 1
14+ 0 0 −30 30 1
15+ 0 0 30 −30 1
16+ 0 0 −30 −30 1
17+ 0 10 40 0 1
18+ 0 −10 40 0 1
19+ 0 10 −40 0 1
20+ 0 −10 −40 0 1
21+ 10 0 0 40 1
22+ −10 0 0 40 1
23+ 10 0 0 −40 1
24+ −10 0 0 −40 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

x1 x2 x3 x4 x5

1− 0 0 0 18 −1
2− 0 0 0 −18 −1
3− 0 0 18 0 −1
4− 0 0 −18 0 −1
5− 45 0 0 0 −1
6− −45 0 0 0 −1
7− 0 45 0 0 −1
8− 0 −45 0 0 −1
9− 0 0 15 15 −1
10− 0 0 15 −15 −1
11− 0 0 −15 15 −1
12− 0 0 −15 −15 −1
13− 30 30 0 0 −1
14− −30 30 0 0 −1
15− 30 −30 0 0 −1
16− −30 −30 0 0 −1
17− 40 0 10 0 −1
18− 40 0 −10 0 −1
19− −40 0 10 0 −1
20− −40 0 −10 0 −1
21− 0 40 0 10 −1
22− 0 40 0 −10 −1
23− 0 −40 0 10 −1
24− 0 −40 0 −10 −1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5

Proof 2.
Show that there are no blue vertex a and red vertex b such that
a is a vertex of the blue cell containing b and b is a vertex of the
red cell containing a.

34



Introduction Theorem 1 Theorem 2 Conclusion

A 5-prismatoid of width > 5

Proof 2.
Show that there are no blue vertex a and red vertex b such that
a is a vertex of the blue cell containing b and b is a vertex of the
red cell containing a.
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Conclusion

Via glueing and products, the counterexample can be
converted into an infinite family that violates the Hirsch
conjecture by about 2%.
This breaks a “psychological barrier”, but for applications it
is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

(V. Klee and P. Kleinschmidt, 1987)
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The end

T H A N K Y O U !
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