
Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A counter-example to the Hirsch conjecture
arXiv:1006.2814

Francisco Santos
http://personales.unican.es/santosf/Hirsch

Departamento de Matemáticas, Estadística y Computación
Universidad de Cantabria, Spain

EUROPT Workshop, Aveiro, July 10, 2010

1

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Polyhedra and polytopes

Definition
A (convex) polyhedron P is the intersection of a finite family of
affine half-spaces in Rd .

The dimension of P is the dimension of its affine hull.

2

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Polyhedra and polytopes

Definition
A (convex) polytope P is the convex hull of a finite set of points
in Rd .

The dimension of P is the dimension of its affine hull.

2

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Polyhedra and polytopes

Polytope = bounded polyhedron.
Every polytope is a polyhedron, but not conversely.

The dimension of P is the dimension of its affine hull.

2

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Polyhedra and polytopes

Polytope = bounded polyhedron.
Every polytope is a polyhedron, but not conversely.

The dimension of P is the dimension of its affine hull.

2

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Faces of P

Let P be a polytope (or polyhedron) and let

H = {x ∈ Rd : a1x1 + · · · adxd ≤ a0}

be an affine half-space.

3

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Faces of P

If P ⊂ H we say that ∂H ∩ P is a face of P.

4

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Faces of P

If P ⊂ H we say that ∂H ∩ P is a face of P.

4

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Faces of P

Faces of dimension 0 are called vertices.

4

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Faces of P

Faces of dimension 1 are called edges.

4

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Faces of P

Faces of dimension d − 1 (codimension 1) are called facets.

4

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.

5

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.

5

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The distance d(u, v) between vertices u and v is the length
(number of edges) of the shortest path from u to v .

For example, d(u, v) = 2.

5

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The graph of a polytope

Vertices and edges of a polytope P form a graph (finite,
undirected)

The diameter of G(P) (or of P) is the maximum distance among
its vertices:

δ(P) = max{d(u, v) : u, v ∈ V}.

5

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

Theorem (S. 2010+)
There is a 38-dim. polytope with 76 facets and diameter 39.

Theorem (S. 2010+)
There is an infinite family of non-Hirsch polytopes with diameter
∼ (1 + ε)n, even in fixed dimension. (Best so far: ε = 1/43).

6

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

Theorem (S. 2010+)
There is a 38-dim. polytope with 76 facets and diameter 39.

Theorem (S. 2010+)
There is an infinite family of non-Hirsch polytopes with diameter
∼ (1 + ε)n, even in fixed dimension. (Best so far: ε = 1/43).

6

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The Hirsch conjecture

Conjecture: Warren M. Hirsch (1957)
For every polytope P with n facets and dimension d ,

δ(P) ≤ n − d .

Fifty three years later...

Theorem (S. 2010+)
There is a 38-dim. polytope with 76 facets and diameter 39.

Theorem (S. 2010+)
There is an infinite family of non-Hirsch polytopes with diameter
∼ (1 + ε)n, even in fixed dimension. (Best so far: ε = 1/43).

6

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Motivation: linear programming

A linear program is the problem of maximization / minimization
of a linear functional subject to linear inequality constraints.
That is:

Given
a matrix M of size n × d ,
a vector b ∈ Rn

a vector z ∈ Rd (cost, objective function)

Find a x ∈ Rd that minimizes 〈z, x〉
Among those satisfying Mx ≤ b.

7

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Motivation: linear programming

A linear program is the problem of maximization / minimization
of a linear functional subject to linear inequality constraints.
That is:

Given
a matrix M of size n × d ,
a vector b ∈ Rn

a vector z ∈ Rd (cost, objective function)

Find a x ∈ Rd that minimizes 〈z, x〉
Among those satisfying Mx ≤ b.

7

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Motivation: linear programming

A linear program is the problem of maximization / minimization
of a linear functional subject to linear inequality constraints.
That is:

Given
a matrix M of size n × d ,
a vector b ∈ Rn

a vector z ∈ Rd (cost, objective function)

Find a x ∈ Rd that minimizes 〈z, x〉
Among those satisfying Mx ≤ b.

7

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Motivation: linear programming

A linear program is the problem of maximization / minimization
of a linear functional subject to linear inequality constraints.
That is:

Given
a matrix M of size n × d ,
a vector b ∈ Rn

a vector z ∈ Rd (cost, objective function)

Find a x ∈ Rd that minimizes 〈z, x〉
Among those satisfying Mx ≤ b.

7

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Motivation: linear programming

“If one would take statistics about which
mathematical problem is using up most of the
computer time in the world, then (not including
database handling problems like sorting and
searching) the answer would probably be linear
programming.”

(László Lovász, 1980)

8

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program starting at any feasible vertex and moving along
the graph of P, in a monotone fashion, until the optimum is
attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.

9

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program starting at any feasible vertex and moving along
the graph of P, in a monotone fashion, until the optimum is
attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.

9

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program starting at any feasible vertex and moving along
the graph of P, in a monotone fashion, until the optimum is
attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.

9

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program starting at any feasible vertex and moving along
the graph of P, in a monotone fashion, until the optimum is
attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.

9

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conection to the Hirsch conjecture

The set of feasible solutions P = {x ∈ Rd : Mx ≤ b} is a
polyhedron P with (at most) n facets.
The optimal solution (if it exists) is always attained at a
vertex.
The simplex method [Dantzig 1947] solves the linear
program starting at any feasible vertex and moving along
the graph of P, in a monotone fashion, until the optimum is
attained.
In particular, the Hirsch conjecture is related to the
question of whether the simplex method is a
polynomial-time algorithm.

9

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

As of today, for every deterministic pivot rule there is an
analogue of the Klee-Minty cube, which makes the simplex
method take an exponential number of steps:

Importance of δ(P)

The diameter δ(P) of a
polytope is a lower bound
for the number of steps of
any pivot rule in the simplex
method.

10

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

11

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

11

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m
equality constraints in n nonnegative variables is
almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2010)

11

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The number of steps to solve a problem with m
equality constraints in n nonnegative variables is
almost always at most a small multiple of m, say 3m.

The simplex method has remained, if not the method
of choice, a method of choice, usually competitive
with, and on some classes of problems superior to, the
more modern approaches.

(M. Todd, 2010)

11

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

There are more recent algorithms for linear programming which
are proved to be polynomial: (ellipsoid [1979], interior point
[1984]). But the simplex method is still one of the most often
used, for its simplicity and practical efficiency:

The simplex method was chosen one of the “10
algorithms with the greatest influence on the
development and practice of science and engineering
in the 20th century” in the selection made by the
journal Computing in Science and Engineering in the
year 2000.

11

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They
are polynomial in the “bit model” but not in the “real machine
model” [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.

... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.

12

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They
are polynomial in the “bit model” but not in the “real machine
model” [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.

... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.

12

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They
are polynomial in the “bit model” but not in the “real machine
model” [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.

... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.

12

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They
are polynomial in the “bit model” but not in the “real machine
model” [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.

... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.

12

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Complexity of linear programming

Besides, the methods known are not strongly polynomial. They
are polynomial in the “bit model” but not in the “real machine
model” [Blum et al. 1989]).

Finding strongly polynomial algorithms for linear programming
is one of the “mathematical problems for the 21st century"
according to [Smale 2000]. A polynomial pivot rule would solve
this problem in the affirmative.

... in any case, ...
Knowing the behavior of polytope diameters
is one of the most fundamental open
questions in geometric combinatorics.

12

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Some known cases

Hirsch conjecture holds for
d ≤ 3: [Klee 1966].
n − d ≤ 6: [Klee-Walkup, 1967] [Bremner-Schewe, 2008]
H(9,4) = H(10,4) = 5 [Klee-Walkup, 1967]
H(11,4) = 6 [Schuchert, 1995],
H(12,4) = 7 [Bremner et al. >2009].
0-1 polytopes [Naddef 1989]
Polynomial bound for network flow polytopes [Goldfarb
1992, Orlin 1997]

13

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with n facets:

δ(P) ≤ nlog2 d+2.

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity
at most

eO(
√

n log d).

14

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with n facets:

δ(P) ≤ nlog2 d+2.

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity
at most

eO(
√

n log d).

14

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with n facets:

δ(P) ≤ nlog2 d+2.

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity
at most

eO(
√

n log d).

14

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A quasi-polynomial bound

Theorem [Kalai-Kleitman 1992]
For every d-polytope with n facets:

δ(P) ≤ nlog2 d+2.

and a subexponential simplex algorithm:

Theorem [Kalai 1992, Matousek-Sharir-Welzl 1992]
There are random pivot rules for the simplex method which, for
any linear program, yield an algorithm with expected complexity
at most

eO(
√

n log d).

14

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]
For every d-polytope with n facets:

δ(P) ≤ n2d−3.

... with an algorithm by [Megiddo 1984].

15

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]
For every d-polytope with n facets:

δ(P) ≤ n2d−3.

... with an algorithm by [Megiddo 1984].

15

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

A linear bound in fixed dimension

Theorem [Barnette 1967, Larman 1970]
For every d-polytope with n facets:

δ(P) ≤ n2d−3.

... with an algorithm by [Megiddo 1984].

15

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter ε (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is
polynomial in d and ε−1, and polylogarithmic in n.

16

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Polynomial bounds, under perturbation

Given a linear program with d variables and n restrictions, we
consider a random perturbation of the matrix, within a
parameter ε (normal distribution).

Theorem [Spielman-Teng 2004] [Vershynin 2006]
The expected diameter of the perturbed polyhedron is
polynomial in d and ε−1, and polylogarithmic in n.

16

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.

17

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.

17

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.

17

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.

17

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound?

It holds with equality in simplices (n = d + 1, δ = 1) and
cubes (n = 2d , δ = d).
If P and Q satisfy it, then so does P ×Q: δ(P ×Q) =
δ(P) + δ(Q). In particular:

For every n ≤ 2d , there are polytopes in which the
bound is tight (products of simplices).
We call these “Hirsch-sharp” polytopes.

For every n > d , it is easy to construct unbounded
polyhedra where the bound is tight.

17

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet):

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet):

d-step conjecture
It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v .

“d-step conjecture”⇒ Hirsch for n = 2d .

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

Assume n = 2d and let u and v be two complementary vertices
(no common facet):

d-step conjecture
It is possible to go from u to v so that at each step we abandon
a facet containing u and we enter a facet containing v .

“d-step conjecture”⇒ Hirsch for n = 2d .

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture
It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path⇒ Hirsch.

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (2)?

Hirsch conjecture has the following interpretations:

More generally, given any two vertices u and v of a polytope P:

non-revisiting path conjecture
It is possible to go from u to v so that at each step we enter a
new facet, one that we had not visited before.

non-revisiting path⇒ Hirsch.

18

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n < 2d , because every pair of vertices lie in a common
facet F , which is a polytope with one less dimension and
(at least) one less facet (induction on n and n − d).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n < 2d , because every pair of vertices lie in a common
facet F , which is a polytope with one less dimension and
(at least) one less facet (induction on n and n − d).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n < 2d , because every pair of vertices lie in a common
facet F , which is a polytope with one less dimension and
(at least) one less facet (induction on n and n − d).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n > 2d , because every pair of vertices lies away from a
facet F . Let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n > 2d , because every pair of vertices lies away from a
facet F . Let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n > 2d , because every pair of vertices lies away from a
facet F . Let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Why is n − d a “reasonable” bound (3)?

Theorem [Klee-Walkup 1967]
Hirsch⇔ d-step⇔ non-revisiting path.

Proof: Let H(n,d) = max{δ(P) : P is a d-polytope with n
facets}. The basic idea is:

· · · ≤ H(2d − 1,d − 1) ≤ H(2d ,d) ≥ H(2d + 1,d + 1) ≥ · · ·

If n > 2d , because every pair of vertices lies away from a
facet F . Let P ′ be the wedge of P over F . Then:

dP′(u′, v ′) ≥ dP(u, v).

19

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Wedging, a.k.a. one-point-suspension

w

F

1

2

F

2

1

F

w

w

20

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Wedging, a.k.a. one-point-suspension

v
u

2

1
w

w

F
2

F
1

F w

1

1
u

d(u ,v)=3

v
2

2

d(u,v)=2

20

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Two ingredients

The construction of our counter-example has two parts:

1 A “generalized d-step theorem” for spindles/prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.

21

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Two ingredients

The construction of our counter-example has two parts:

1 A “generalized d-step theorem” for spindles/prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.

21

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Two ingredients

The construction of our counter-example has two parts:

1 A “generalized d-step theorem” for spindles/prismatoids.
2 The construction of a prismatoid of dimension 5 and

“width” 6.

21

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Spindles and prismatoids

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v .

u u

vv

Definition
The length of a
spindle is the
graph distance
from u to v .

22

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Spindles and prismatoids

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v .

u u

vv

Definition
The length of a
spindle is the
graph distance
from u to v .

22

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Spindles and prismatoids

Definition
A prismatoid is a polytope Q with two facets Q+ and Q−

containing all vertices.

Q+

Q−

Q

Definition
The width of a
primatoid is the
dual graph
distance from Q+

to Q−.

23

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Spindles and prismatoids

Definition
A prismatoid is a polytope Q with two facets Q+ and Q−

containing all vertices.

Q+

Q−

Q

Definition
The width of a
primatoid is the
dual graph
distance from Q+

to Q−.

23

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The generalized d-step Theroem

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with
length δ.
Then there is another spindle P ′ of dimension d + 1, with n + 1
facets and with length δ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ δ + n − 2d > n − d) that violates the Hirsch conjecture.

24

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The generalized d-step Theroem

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with
length δ.
Then there is another spindle P ′ of dimension d + 1, with n + 1
facets and with length δ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ δ + n − 2d > n − d) that violates the Hirsch conjecture.

24

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The generalized d-step Theroem

Theorem (Generalized d-step, spindle version)

Let P be a spindle of dimension d, with n > 2d facets, and with
length δ.
Then there is another spindle P ′ of dimension d + 1, with n + 1
facets and with length δ + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d .

Corollary
In particular, if a spindle P has length > d then there is another
spindle P ′ (of dimension n − d, with 2n − 2d facets, and length
≥ δ + n − 2d > n − d) that violates the Hirsch conjecture.

24

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The generalized d-step Theroem

Theorem (Generalized d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices, and
with width δ.
Then there is another prismatoid Q′ of dimension d + 1, with
n + 1 vertices and with width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .

25

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The generalized d-step Theroem

Theorem (Generalized d-step, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices, and
with width δ.
Then there is another prismatoid Q′ of dimension d + 1, with
n + 1 vertices and with width δ + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, until n = 2d .

25

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The generalized d-step Theroem

Proof.

Q ⊂ R2

Q+

Q−
Q̃−

Q̃ ⊂ R3

Q̃+

w

Q̃− := o.p. s.v(Q−)

Q+

w

o.p. s.v(Q) ⊂ R3

v

u

u

26

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The prismatoid

Q := conv

8>>><>>>:

0BB@

x1 x2 x3 x4 x5

1+ 18 0 0 0 1
2+ −18 0 0 0 1
3+ 0 18 0 0 1
4+ 0 −18 0 0 1
5+ 0 0 45 0 1
6+ 0 0 −45 0 1
7+ 0 0 0 45 1
8+ 0 0 0 −45 1
9+ 15 15 0 0 1
10+ −15 15 0 0 1
11+ 15 −15 0 0 1
12+ −15 −15 0 0 1
13+ 0 0 30 30 1
14+ 0 0 −30 30 1
15+ 0 0 30 −30 1
16+ 0 0 −30 −30 1
17+ 0 10 40 0 1
18+ 0 −10 40 0 1
19+ 0 10 −40 0 1
20+ 0 −10 −40 0 1
21+ 10 0 0 40 1
22+ −10 0 0 40 1
23+ 10 0 0 −40 1
24+ −10 0 0 −40 1

1CCA

0BB@

x1 x2 x3 x4 x5

1− 0 0 0 18 −1
2− 0 0 0 −18 −1
3− 0 0 18 0 −1
4− 0 0 −18 0 −1
5− 45 0 0 0 −1
6− −45 0 0 0 −1
7− 0 45 0 0 −1
8− 0 −45 0 0 −1
9− 0 0 15 15 −1
10− 0 0 15 −15 −1
11− 0 0 −15 15 −1
12− 0 0 −15 −15 −1
13− 30 30 0 0 −1
14− −30 30 0 0 −1
15− 30 −30 0 0 −1
16− −30 −30 0 0 −1
17− 40 0 10 0 −1
18− 40 0 −10 0 −1
19− −40 0 10 0 −1
20− −40 0 −10 0 −1
21− 0 40 0 10 −1
22− 0 40 0 −10 −1
23− 0 −40 0 10 −1
24− 0 −40 0 −10 −1

1CCA

9>>>=>>>;

27

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The prismatoid

Theorem

The prismatoid Q of the previous slide has width six.

28

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The prismatoid

Theorem

The prismatoid Q of the previous slide has width six.

Corollary
There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.

28

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The prismatoid

Theorem

The prismatoid Q of the previous slide has width six.

Proof 1 of the Theorem.
It has been verified with polymake that the dual graph of Q
has the following structure:

IC

D

F

E G J

H

BA K L

28

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The prismatoid

Proof 2 of the Theorem.
Analyzing the combinatorics of a d-prismatoid can be done in a
d − 2-sphere. . .

Q+

Q−

Q ∩ H
H

Q

. . . so, the proof is basically 3-dimensional.

29

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

There are two ways in which a smaller non-Hirsch could be
obained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is equivalent to

Open Question
Find two (geodesic, polytopal) maps in the 2-sphere such that,
when you overlap the two, there is no way of going from one to
the other in two steps.

30

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

There are two ways in which a smaller non-Hirsch could be
obained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is equivalent to

Open Question
Find two (geodesic, polytopal) maps in the 2-sphere such that,
when you overlap the two, there is no way of going from one to
the other in two steps.

30

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

There are two ways in which a smaller non-Hirsch could be
obained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is equivalent to

Open Question
Find two (geodesic, polytopal) maps in the 2-sphere such that,
when you overlap the two, there is no way of going from one to
the other in two steps.

30

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

There are two ways in which a smaller non-Hirsch could be
obained:

Find a smaller 5-prismatoid of width > 5, or
Find a 4-prismatoid of width > 4.

The latter is equivalent to

Open Question
Find two (geodesic, polytopal) maps in the 2-sphere such that,
when you overlap the two, there is no way of going from one to
the other in two steps.

30

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

Fact: if the latter does not exist then the reason is “global” and
not “local”. Periodic examples in the plane do exist:

31

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

Fact: if the latter does not exist then the reason is “global” and
not “local”. Periodic examples in the plane do exist:

31

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Towards a smaller counter-example

Fact: if the latter does not exist then the reason is “global” and
not “local”. Periodic examples in the plane do exist:

31

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conclusion

Via glueing and products, the counterexample can be
converted into an infinite family that violates the Hirsch
conjecture by about 2%.
This breaks a “psychological barrier”, but for applications it
is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

(V. Klee and P. Kleinschmidt, 1987)

32

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conclusion

Via glueing and products, the counterexample can be
converted into an infinite family that violates the Hirsch
conjecture by about 2%.
This breaks a “psychological barrier”, but for applications it
is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

(V. Klee and P. Kleinschmidt, 1987)

32

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

Conclusion

Via glueing and products, the counterexample can be
converted into an infinite family that violates the Hirsch
conjecture by about 2%.
This breaks a “psychological barrier”, but for applications it
is absolutely irrelevant.

Finding a counterexample will be merely a small first
step in the line of investigation related to the
conjecture.

(V. Klee and P. Kleinschmidt, 1987)

32

Introduction Linear programming Cases and bounds Why n − d? The counter-example Conclusion

The end

T H A N K Y O U !

33

	Introduction
	Polytopes

	Linear programming y el simplex method
	Linear programming

	Cases and bounds
	

	Why n-d?
	

	The counter-example
	

	Conclusion
	

