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Abstract

We investigate the structure of the bisector of point sites under arbitrary
convex distance functions in three dimensions. Our results show that it is advan-
tageous for analyzing bisectors to consider their central projection on the unit
sphere, thereby reducing by one the dimension of the problem. From the con-
cept of “silhouettes” and their intersections we obtain simple characterizations
of important structural properties like the number of connected components of
the bisector of three sites. Furthermore, we prove that two related bisectors of
three sites may intersect in permuted order.
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1 Introduction

Voronoi diagrams for general distance functions in 3-dimensional space are interesting
and have important applications, but not much is really known about their structure
and how to compute them. Most of the few known results focus on their complexity.
Boissonat et al. [5] show an upper bound of O(n?) for the complexity of a Voronoi
diagram of n point sites under L; and L., as well as for a tetrahedral distance, and
generalizations of this for higher dimensions. Tagansky [23] obtains a more general
bound of O(k*a(k)n?logn) for polyhedral distances with & facets in 3-space. Lé [16]
shows that the complexity of Voronoi diagrams under L, distances is bounded in any
dimension, independent of p. Chew et al. [7] prove an upper bound of O(n?«(n)logn)
for the complexity of a Voronoi diagram of lines under a polyhedral distance.
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Two-dimensional Voronoi diagrams based on convex distance functions were first
studied by Shamos and Hoey [22] for Lo, by Lee [19] for the other L,-metrics, by Wid-
mayer et al. [24] for distance functions defined by convex polygons, and, at the same
time, by Chew and Drysdale [6] in the general case. Since convex distance functions
are a natural generalization of the Euclidean distance, investigating their Voronoi dia-
grams is a natural and necessary step towards a unifying theory on Voronoi diagrams,
as offered in dimension 2 by the concept of abstract Voronoi diagrams; see Mehlhorn
et al. [20] and Klein et al. [12, 13, 14]. For a survey on Voronoi diagrams we refer
to Aurenhammer [2] or Aurenhammer and Klein [3], for applications see Chew and
Drysdale [6] or the survey paper by Schwartz and Sharir [21]. A further generalization
of distances is proposed by Icking et al.[10]; here, every site is associated its own,
different distance function.

One of the reasons for the lack of results on Voronoi diagrams for higher dimen-
sions under arbitrary convex distance functions is the surprising, really abnormal,
structure of the bisectors which behave totally different from what is known for the
Euclidean distance. An example has been presented in [9], where Icking et al. show
that the bisector of four sites may consist of arbitrarily many single points, even for
a strictly convex and smooth distance and for sites in general position. Their struc-
tural results on bisectors for strictly convex distances in two and three dimensions are
generalized to smooth distances in arbitrary dimensions by Lé [15]. In [17] he proves
that for non-smooth distances in 3-space the bisector of three sites may consist of
many disconnected pieces, and in [18] he describes an algorithm which is suitable for
ellipsoid distances.

There is an astonishing result by Goodey [8] concerning ellipsoids in any dimension
greater or equal to three. Applied to our 3-dimensional case it says that for any
convex body K in R? there are two homothetic copies of K such that the intersection
of their boundaries is not planar. So we can always find four non-coplanar points
in the intersection of their boundaries, and therefore the bisector of these four sites
under distance K contains at least two points, compare [9] or our construction in
Section 4. This means that convex distance functions in 3-space are extremely hard,
or impossible to find which can guarantee to have only one point in the bisector of four
sites in general position. In other words, the “surprising” behavior of the 4-bisectors
described in [9] is not an exception, but the rule: it strikes nearly any convex distance,
except for the ellipsoids.

In this paper we prove new results on the behavior of the bisector of three sites. In
Section 2 we review some definitions. In Section 3 we investigate the structure of the
bisector. The central projection on the unit sphere turns out as a useful means, the
behavior of the bisector can be read from the intersection behavior of the silhouettes
on the unit sphere. From these results it should be not difficult to derive a sweep-
line algorithm for computing the bisector of three sites for e. g. polyhedral distances.
In Section 4 we show a surprising result on the intersection behavior of two or more
related bisectors of three sites: they may intersect in permuted order. All these results
are important steps towards the construction of such Voronoi diagrams.



2 Definitions, assumptions, and simple results

Let C be a compact, convex body in 3-space (not necessarily symmetric, smooth, or
strictly convex) which contains the origin O in its interior. For two points a, ¢, we
translate C' by vector a and consider the ray oﬂ)] from a through ¢. Let v denote the
unique point on the boundary of C' hit by this ray; see Figure 1. Then by
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a conver distance function d is defined. Here ||q — a|| denotes the Euclidean distance
between g and a. Clearly, C' is the unit ball of all points ¢ satisfying d(0,q) < 1,
equality holding only for the points on the boundary of C', the unit sphere 0C. Well-
known examples of convex distance functions are the L,-metrics, 1 < p < 0o, defined

by [|z|], = {)/|x1|p + |z2|P + |z3]P, among them the Euclidean distance, Ls.

—

Figure 1: A convex distance function.

The bisector B(ay,as) of two sites, a; and aq, is the set {¢;d(a1,q) = d(az2,q)}
of all points whose distance from a; equals the distance from ay. For brevity, we
write B(as,as,as) instead of B(ai,as) N B(ai,as) and B(ai,as,as,as) instead of
B(ay,as,a3) N B(ay,aq) for the bisector of three resp. four points. We also speak
of 2-bisectors, 3-bisectors, and 4-bisectors, if only the number of participating sites is
meant.

In some degenerate cases a bisector can contain 3-dimensional pieces, branchings,
or self-intersections. To avoid this, we make the following assumption on general
position: no line through two sites is parallel to a line segment which is contained in
0C'. This assumption is appropriate because a non-general position does not persist
after a small perturbation of the sites.



Given n point sites, aq,...,a,, the Voronoi diagram based on a convex distance
function d can be defined in the usual way. With each site a;, the Voronoi region
containing all points ¢ satisfying d(a;, q) = 1I<Ilj£1 d(aj,q) is associated. The boundary

i<n

of the region of a; consists of pieces of bisectors B(a;, a;) where i # j.

Let T';; be the set of all points on the surface of C' that admit a tangent parallel
to a; a;. We call I';; the silhouette for direction a; a;. For example, the silhouette on
a polytope consists only of edges of the polytope, due to general position.

Under the assumption of general position we obtain a number of useful properties.
Lemma 1 The silhouette I'yo for direction ay as is a simple closed curve.

Proof. The silhouette is (doubly) connected due to the convexity of C. It is a simple
curve due to the assumption of general position. O

By Lemma 1, a silhouette cuts the surface of C' into two open “half-spheres” which
are homeomorphic to a plane. Let H;; be the relatively open half-sphere of C' bounded

by the silhouette I';; that intersects the ray O (a;—a;). The two half-spheres H;; and
Hj; share the same boundary I';;, and they represent a disjoint partition of dC, i.e.

Any point p € R?\ {a;} can be mapped to the intersection point of the ray aip
and 0C' + a;, this is called the central projection centered at a;.

Lemma 2 The bisector B(ay,as) of two sites is homeomorphic to a plane.

Proof. The central projection centered at a; is a homeomorphism of B(ay, a2) onto
Hi5 + a1, which is homeomorphic to a plane. More details of the proof can be found
in [9] where the claim is proven under the assumption of strict convexity of C', but the
proof still holds, without any modification, under our weaker assumption of general
position. O

3 The structure of the bisector of three sites

There is a close relationship between the bisector of three sites in 2-space and in
3-space, as described in [9] and [17]. Let p be a point of B(as, as, as) in 3-space, and
let v; be its central projection centered at a;, for + = 1,2, 3, see Figure 2. The plane 7
through vy, vs, v3 is parallel to the plane through ai, as, as. Let K be the intersection
of m and C' + a;. We choose an interior point w; in K, and let w; = wy; — a; + a;, for
1 = 2,3. The lines w; v;, ¢ = 1,2, 3 intersect in a common point 7 that is the bisector
of wy, we, w3 with respect to the unit circle K in the plane 7.

Conversely, for each plane 7 parallel to ay, as, ag that intersects C'+a; we consider
a 2-dimensional bisector problem using (C'+ a;) N7 as the unit circle. It is not hard
to see that we can construct the corresponding bisector point r on 7, if it exists, and
obtain the points v; on (C'+a;) N7. From this, we finally get a point p € B(ay, az, a3)
as the intersection of the lines a; v;.

The mapping from p to the plane through the points v;, i.e. the construction by
central projection, is continuous in both directions, see [11] and [9, 17].
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Figure 2: The construction of a bisector point p by central projection shows the close
relationship between the 3-bisectors in two and three dimensions.

For the intersection of half-spheres we introduce an abbreviation, let H;j, = H;; N
H;;;. This notation is, of course, commutative in the second and third index, i.e.
Hije = Higj.

Lemma 3 The intersected half-spheres His3, Ho13, and Hsio are disjoint and parti-
tion the unit sphere, i. e. for their closures we have His3 U Ho13 U Hy1o = OC.

Proof. We have H123 N H213 = @ by deﬁnition, due to H12 N H21 = @

The silhouettes I'1o, I'13, and I's3 have at least two points in common, namely the
points of OC touched by the supporting planes parallel to aq, as, as from above and
below. At these points, each silhouette separates into two branches. The boundary
of Hio3 consists of one branch of I'js and one branch of I'y3. The “unused” branches
are contained in Hsio and Hs3, respectively. Therefore, they must partition the unit
sphere. O

In some cases, the intersected half-spheres H;j;, can be empty or disonnected. The
3-bisectors copy their behavior, as the next two lemmas show.

Lemma 4 The bisector B(ay, az, as) is not empty iff all three intersected half-spheres
Hio3, Ho13, and Hsz1o are not empty.



Proof. Let p be a point of B(ai,as,as). Its central projection centered at a; lies
in (Hia N Hy3) + a; = Hies + a1, compare the proof of Lemma 2. So Hies # (), and
analogously for the other intersected half-spheres.

Conversely, assume that His3, Ho13, and Hszo are all not empty. We consider a
plane 7 parallel to a;, as, as which intersects the unit sphere in more than just one
point. For brevity, we write Hj, = Hi2N, etc., for the intersection of the half-spheres
with the plane. It is clear that not all three of H{,s, Hj 5, and Hjy, can be empty, by
Lemma 3.

We even show that at most one of them is empty. So assume the contrary, say
Hi,s = Hy3 = 0. Then H{, N Hi; = 0, thus H}, = H},, and analogously H}, = Hj,.
Therefore, H},, = H}, N Hyy = Hi, N Hy = ), a contradiction.

Now we consider all possible positions of the plane 7. Due to the relative openness
of His3, Ho13, and H3io and the fact just proven, there must be a position of 7 such
that all three of Hi,5, Hjy 5, and Hj;, are non-empty. More precisely, there must be
such a position in any connected component of Hios.

For this particular position of 7, we consider a 2-dimensional bisector problem
using the unit circle C' N 7. It is easy to see that the we obtain a point of the
bisector B(a1, as, az) by using the construction by central projection presented at the
beginning of this section. O

The bisector of three sites can be disconnected and each component is homeomor-
phic to a line, as already observed in [17]. The reasons for this become clear in the
next lemma.

Lemma 5 The bisector B(ay, as, as) is connected iff all three intersected half-spheres
Hiss, Ho13, and Hs1o are connected. The number of connected components of B(a1, az, as)
plus 2 equals the number of connected components of the three sets.

Proof. Assume that B(ai,as,as3) is not empty and connected. From Lemma 4 we
know that the three sets Hio3, Ho13, and Hsio are not empty, and in its proof we have
even seen that we can find, using the construction by central projection, the image
of a bisector point in each connected component of His3 + ay, etc. But the central
projection is continuous and therefore maps connected sets to connected sets, so Hio3
etc. must be connected. For an empty B(as, as, as), which is connected by definition,
one of the three sets must be empty by Lemma 4, and therefore the other two must
be connected.

Conversely, if Hya3, Ho13, and Hsjo are all connected, then the construction by
central projection delivers one bisector point for every plane parallel to ay, as, az that
intersects Hio3 + ay, Ho13 + ao, and Hsio 4+ as. Since this construction is a continuous
mapping of a connected set of planes to the bisector, B(a1, as, as) must be connected,
too.

For the number of connected components we consider a moving plane parallel to aq,
as, az, sweeping the whole unit sphere, and we observe the bisector points constructed
by central projection. For the first part of B(aq,as,as3) that is constructed, we “use
up” one connected component of each of His3, Hsiz, and Hso. Whenever a new
piece of B(ay,as,as) begins, this is caused by a new connected component of one of



the three sets, because any connected component of one of them makes a non-empty
contribution to the bisector, see the proof of Lemma 4. O

We give a simple example for constructing a disconnected 3-bisector. Figure 3
shows three sites a1, as, az as well as the intersections of the unit spheres centered
at these sites with a plane parallel to ai, as, asz, at three levels, see Figure 4 for an
impression of the unit sphere in 3-space. At all levels, the intersection is a triangle,
but the triangle in the middle is rotated against the triangles above and below. Con-
sidering the three situations as planar bisector problems, there is a 3-bisector in the
upper and lower case, but no 3-bisector point in the middle. This corresponds to the
fact that there is an empty set H),5 in the middle position, while all three sets exist in
the other situations. Therefore, the 3-bisector in 3-space is interrupted, by Lemma 5.

H312 /\H123
A /N =

Figure 3: Three planar intersections through three unit spheres and the corresponding
sets Hioz, Ho13, and Hspo.



Figure 4: The unit sphere of the example in Figure 3, together with its bounding box.

4 The intersection of two related bisectors of three
sites

Now let us consider the bisector B(ay, as, as, as) of four sites. In the Euclidean case,
the bisector of four non-coplanar points is always one point, but for general distances
this is much more complicated, see [9]. Tt may contain curves in R and can consist
of arbitrarily many discrete points or connected components, even for sites in general
position, and even if we additionally assume the unit sphere C' to be smooth and
strictly convex. Here, we reveal another, also deterrent property of B(ay, as, as, a4).

The Voronoi region of a site is bounded by pieces of bisectors, and for computing
the structure of such a region one must look closely at the intersection of all bisectors
related to this site. From the construction by central projection, see Figure 2, the
bisector of three sites, which is always one-dimensional, is naturally ordered. One
might hope that two such bisectors, which appear in the common boundary of two
Voronoi regions, intersect nicely, i.e. the intersections appear in the same order (or
reverse) on both bisectors. This will be disproved in the following.

The intersection of two related 3-bisectors, say B(ai,as,as3) and B(aq,as,ay), is
the 4-bisector B(aq, as, as, as). We consider a point, p, of the 4-bisector and its central
projections, v;, centered at a;, for ¢+ = 1,2, 3,4, compare Figure 2. The tetrahedron
T'(v1,v2,v3,v4) is homothetic to the tetrahedron T'(aq, as, as, as) and also homothetic
to T'(v1 — a1, v2 — as, v3 — as, v4 — ay). In this way, for each point of the 4-bisector we
have one tetrahedron homothetic to T'(a1, as, as, as) whose vertices lie on 9C'.

Now we imagine several of such homothetic tetrahedra whose vertices lie on 0C,
and we consider a sweep plane parallel to ay, as, az, passing through C. It is also
parallel to one of the faces of the tetrahedra. The plane visits these faces in the



same, natural order as the corresponding points of the 4-bisector lie on B(aq, as, as).
This holds because the central projection of the 3-bisector B(ay, as, as) on 0C + a; is
strictly monotonic in the direction orthogonal to the plane through ai, as, as.

But this order in which the tetrahedra are visited is not necessarily the same for
all four faces. We can indeed construct an example of a 4-bisector containing at least
seven points such that the corresponding tetrahedra are visited in totally different
order, depending on the face.

To this end, we define seven tetrahedra as shown in the left picture of Figure 5.
Their coordinates are shown in Table 1, remark that all 28 vertices are in convex
position.

Figure 5: The left picture shows seven homothetic tetrahedra whose parallel faces
appear in permuted order. The right picture shows their convex hull, we observe that
all vertices of the tetrahedra are in convex position, i. e. they appear as vertices of the
convex hull. The convex hulls here and in Figure 4 were computed by Quickhull [4],
the pictures were rendered using Geomview [1].

The four families of parallel faces of the seven tetrahedra are visited in the orders
given by the following four rows.
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So, if we now choose the convex hull of the seven tetrahedra, see the right picture
in Figure 5, or any other convex body C containing the 28 vertices in dC as our unit



—14.0 180 2.0 20 —-18.0 14.0

. —20 180 20 7. 20 —180 2.0
I 80 100 8.0 5 80 —10.0 8.0
~80 10.0 —4.0 —4.0 —10.0 8.0
—9.0 19.0 0.0 —9.0 —7.0 0.0
. 90 190 00 . 90 =70 0.0
2 0.0 70 9.0 6 0.0 —19.0 9.0
0.0 7.0 —9.0 0.0 —19.0 —9.0
20 180 —2.0 ~2.0 —180 —2.0
q. 140 180 20 7. —20 —18.0 140
3 80 10.0 4.0 T 40 —10.0 —8.0
8.0 10.0 —8.0 ~80 —10.0 —8.0

~13.5 9.0 0.0

T - 13.5 9.0 0.0

0.0 -9.0 13.5
0.0 -9.0 —-13.5

Table 1: The coordinates of the seven homothetic tetrahedra of Figure 5.

sphere, and if we choose four sites that lie on the vertices of a tetrahedron which is
homothetic to the other seven, then the given permutations also apply to the order in
which the pieces of the 4-bisector appear on the four 3-bisectors. This strange behav-
ior is illustrated in Figure 6, which schematically shows how the central projections
centered at a; of three 3-bisectors B(ai,az,as), B(a1,as,as), and B(ay,as, as) and
their intersections look like.

Figure 6: Schematic view on the intersections of the three related 3-bisectors under
the polyhedral distance of Figure 5.

The described phenomenon does, of course, not depend on the polyhedral shape
of the unit sphere. We can easily construct a strictly convex and smooth body whose
surface also passes through the 28 vertices of the seven tetrahedra.
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5

Conclusions

The nice relationships between the behavior of the 3-bisectors and the intersections
of the silhouettes shows that there should be a rather simple sweep-line algorithm
to compute 3-bisectors under arbitrary convex distance functions. For computing
whole Voronoi regions, however, one has to be prepared to meet strange situations
like the one described in Section 4, which can not be “defined away” by assumptions
on general position of the sites or on smoothness or strict convexity of the unit sphere.
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