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Abstract

We study a constructive method to find an algebraic curve in the real pro-
jective plane with a (possibly singular) topological type given in advance. Our
method works if the topological model 7" to be realized has only double sin-
gularities. In that case, it gives an algebraic curve of degree 2N + 2K, where
N and K are the numbers of double points and connected components of 7.
This bound is generically optimal and the topological models T" for which the
degree is optimal have a combinatorial characterization.

The construction is based on a preliminar topological manipulation of the
topological model followed by some perturbation techniques to obtain the poly-
nomial defining the algebraic curve. This paper considers only the case in which
T is orientable. The non-orientable case will appear in a separate paper.

1991 Mathematics Subject Classification: 14P25, 14Q05

1 Introduction

In a previous paper by the author [Santosl] it is shown that any real algebraic
plane nodal curve with N singular (double) points and K connected components
in the projective plane is isotopic to a real algebraic plane curve of degree at most
AN + 2K. Also, the conjecture is raised that the degree bound can be lowered to
2N + 2K.

In this paper we settle down the conjecture in the afirmative, for orientable
curves. Moreover, we give a topological-combinatorial characterization of curves for
which the degree bound is optimal. The conjecture also holds in the non-orientable
case [Santos2]. The proof of the non-orientable case is more intrincate and will be
detailed in a forthcoming paper [Santos3].

Let us fix some concepts and notation. Throughout this paper we will use the
term algebraic curve as an abbreviation for real projective algebraic plane curve.
By this we mean a non-zero real homogeneous polynomial f € IR[X,Y, Z] in three
variables. Sometimes, by abuse of language, we will call algebraic curve the zero set
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V(f) C RIP? of the polynomial f. We will normally assume that we have an affine
chart given for the projective plane. This allows us to speak of the line at infinity
and to say, for example that a certain conic is an ellipse, or a circle.

An algebraic curve f is called orientable if its zero set V(f) has an open neigh-
borhood which is orientable; equivalently, if it can be moved by an isotopy to the
affine chart in the projective plane. An algebraic curve f is called nodal if all its
singularities are order 2 singular points with two different tangents, real or complex.
If the tangents are real the singular point is called a node. If they are complex, we
will call it a simple double isolated point.

Two algebraic curves (in general, two subsets V and W of IRIP %) are said to have
the same topological type if there exists a global homeomorphism of the plane into
itself sending V to W, that is, if the pairs (RTP%, V') and (RIP, W) are topologically
equivalent. Note that this condition is equivalent to V' and being isotopic to W, and
stronger than V' and W being homeomorphic. Qur main result in this paper is the
following, which is a re-writting of Theorem 4.3:

Theorem 1.1 Let f be an orientable nodal algebraic curve with K connected com-
ponents and N nodes. Then, f is topologically equivalent to a certain nodal algebraic
curve f. of degree 2N + 2K . Moreover, one can find such an f. as being a small
perturbation of the form f. := [+ cg, where f is a product of N + K ellipses and
g s the product of 2N + 2K lines.

Of course, for most curves the degree bound in our theorem can be significantly
lowered. For example, the classical optimal bounds by Bezout and Harnack indicate
that for every N and K there are algebraic curves with N double points and K con-
nected components with degree, essentially, /2N + 2K . However, we can say that
our bound is generically optimal in the following sense: for every N and every K,
there are orientable, nodal algebraic curves with N double points and K connected
components which have not the topological type of any algebraic curve of degree
lower than 2V + 2K . This is shown in Section 5. Moreover, in that section, we give
a topological characterization of algebraic curves for which the degree in our main
theorem cannot be lowered (see Theorem 5.2 and its Corollary 5.3 for the precise
characterization )

The structure of the paper is as follows. In Section 2 we introuce the notion of
a topological model for an algebraic curve and the basic notions and results needed
in our topological construction. Section 3 shows the main construction of a compli-
cated topological model from simple pieces, in which our construction of algebraic
curves is based. The algebraic part of the construction consists in a perturbation
technique, which is shown in Section 4. Finally, Section 5 shows under which con-
ditions our construction produces optimal degree.

2 Topological preliminaries.

We want to find an algebraic curve whose zero set has the same topological type of
a certain algebraic curve given in advance. Equivalently, we could say that we are
given a certain subset 7 C IRIP? in the projective plane and want to find an algebraic
curve f such that V(f) has the same topological type as 7. The conditions that
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such a 7" must satisfy for this to be possible are contained in the following definition
(cf. for exampe [Boch-Cos-Roy]).

Definicition 2.1 Let T be a subset of IRIP2. We say that T is a topological model
for an algebraic curve if it is homeomorphic to a graph with an even (possibly zero)
number of edges incident to each vertex. We say that an algebraic curve f realizes
a topological model T if its zero set V(f) C RIP? has the same topological type as
T.

By a nodal (topological) model we mean a topological model such that all of
the vertices of the underlying graph G7 have degrees 0, 2 or 4. We say that a
topological model is orientable if it can be isotopically moved to a position where
it does not intersect the line at infinity (equivalently, if it has an orientable open

neighborhood).

Let T be a nodal, orientable topological model in IRIP2. The points where T
is locally homeomorphic to a line will be called regular. The rest of the points
are the vertices of degrees 0 and 4 of the underlying graph G and will be called,
respectively, isolated points and double points (or vertices) of T. A double point P
will be called disconnecting if T'\ P has one connected component more than 7.

Our basic topological operation on a topological model T' will be the desingular-
ization of some of its vertices. Let P a vertex (double point) of 7". The desingualar-
ization of T" at P consists in considering a suitable small open neighborhood U of P
and substituting T'N U for two disjoint open curves in such a way that we get a new
model with one vertex less. This operation was called a ‘flip’ in [G.Corb.-Recio]
and [G.Corb.-Santos]. There are exactly two ways, up to topological equivalence,
of desingularizing a double point. These are shown in Figure 1. If the double point
was disconnecting, one of the two desingularizations leaves the number of connected
components unchanged and the other one increases it by one.

Whenever we perform a desingularization of a curve, we will mark the place
where it has been done with a bonding line which joins the two branches which we
have inserted. In all our figures, bonding lines will appear in greyish, dotted lines.
The reason for including bonding lines is that topological models are considered
modulo topological equivalence. Thus, we are allowed to transform them by glob-
al homeomorphisms. The transformed bonding lines will tell us what topological
change is needed to recover the original topological type from the desingularized

e

Figure 1: Desingularization of a double point P.

We call faces of T the connected components of IRIP? \ T. Clearly T has a
unique non-orientable face Fp. We will call depth of an arbitrary face F' of T the
minimal number of crossings with 7" needed to go from Fy to F' (a crossing at a
double point of T' counts twice). It is a well-known property that the parity of the
intersection number with 7" of a path joining F to Fy does not depend on the path
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(this is not true in general for non-orientable models). Thus, adjacent faces have
depths which differ by 1. Figure 2 shows the depth diagram of a certain topological
model.

Sb%

Figure 2: Depth of faces.

Let P be a vertex of T'. Since the four faces around P have consecutive depths,
we have two possibilities for the distribution of depths around P (see Figure 3):

r+1 r-1
r r r r
r+l r+l
Figure 3: Possible depth distributions around a vertex
e we will say that P is a vertex of Type I if the depths of faces around P are r,

r—+1,r and r + 1, for some r > 0

e we will say that P is a vertex of Type II if the depths of faces around P are
r, 7+ 1,7+ 2and r + 1, for some r > 0.

We will say that a desingularization of T" at some of its vertices is depth-consistent
if the two faces which are joined by the desingularization of each vertex have the
same depth. Figure 4 shows a depth-consistent desingularization of the curve ap-

pearing in Figure 2.
] @\
_/
1

Figure 4: A depth-consistent desingularization of the curve in Figure 2.

Depth-consistency can be equivalently stated saying that each face of the desin-
gularized model T’ has the same depth as all the faces of T from which it has been
obtained. Note that the different faces of the original model T" which form a face
of T" are still ‘separated’ by the bonding lines. If the desingularization is depth-
consistent, then there is no ambiguity in considering the bonding lines or not for
computing the depth of a face of 7. Both desingularizations of a vertex of type II
are depth consistent, but only one for vertices of type L.
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3 Main Construction

Figure 4 suggests the fact that for any topological model T, a non-singular model
T’ obtained from T by a depth-consistent dsingularization can be drawn as a union
of disjoint ellipses with bonding lines being straight line segments. This property
will be the basis for our algebraic construction. However, we will perform a partial
desingularization of T'. That is, some vertices of T will not be desingularized. In
the following results T is supposed to be connected. Only in Theorem 3.5 we will
deal with non-connected models.

Proposition 3.1 Let T be a connected, nodal, orientable topological model in RIP2.
Then, there is a connected, nodal, orientable topological model T' obtained as a
desingularization of T' in some of its vertices, and with the following properties (see

Figure 5):
(i) The desingularization is depth-consistent.
(it) Every vertex of T' disconnects T" and is of type I1.

(iti) Let b be a bonding line of T'. Let r be the depth of the face in which b is.
Then, at least one of the two faces adjacent to the extremal points of b has
depth r — 1.

Figure 5: Desingularization of the model in Figure 2 which satisfies the conditions
in Proposition 3.1.

Proof: Let P be a vertex of type 1. Let fy and f; be the two faces of maximal
depth r + 1 around P and let f; and f3 be the faces of depth r. We claim that
the desingularization at P that joins fo to f, does not disconnect T. Indeed, if
the desingularization disconnects T, then for going from one of f; or f3 to the
unbounded face it will be necessary to cross the new face obtained joining fy and
f2. This contradicts the fact that this face has a higher depth. The claim will still
be true if we desingularize all vertices of type I in the way that joins faces of the
maximal depth. Moreover, this way of desingularizing ensures condition (i¢¢) for
the bonding lines obtained.

After desingularizing all vertices of type I, we proceed to desingularize non-
disconnecting vertices of type Il one by one, until all the remaining vertices are
disconnecting vertices. Condition (i¢7) is automatically satisfied for the unique
depth-consistent desingularization of a vertex of type II. a

Proposition 3.2 Let T be a connected, nodal, oriented topological model in RIP2.
Then, a partial desingularization T of T satisfying the conditions of Proposition 3.1
can be transformed by a global homeomorphism of RIP? into the following form:
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o T’ is the union of a certain number of ellipses.

o if two of the ellipses intersect at a point P, then they do it tangentially and
one is inside the other.

e the bonding lines are straight line segments.

Moreover, the points of the unique outermost ellipse in T' which are intersections
with other ellipses or extremes of bonding lines can be prescribed from the beginning
(maintaining their circular order).

Proof: The proof will use induction on the maximal depth of faces in T77. If the
maximal depth is 1 then 7”7 has no vertices and consists on a unique oval with some
bonding lines. Bonding lines must lie inside the oval, because of condition (¢i¢) in
Proposition 3.1. Thus, 7”7 can be transformed into an ellipse with the bonding lines
being straight line segments.

If the maximal depth of a face in T is r > 1, we still have very particular
properties for T”: for a certain vertex P of T”, the depth-consistent desingularization
of T" at P is precisely the one that disconnects 7’. Moreover, one of the connected
components resulting is inside the other one, because P is a vertex of type II. Let
us call the inner one the ear at vertex P.

Then, T’ consists of an outer oval with some of these ‘ears’ attached to it in its
inner side. Fach ear itself is a topological model in the conditions of Proposition
3.1, but with maximal depth strictly less than r. Moreover, different ears are not
connected to each other by bonding lines, because of condition (¢¢¢) in Proposition
3.1. However, an ear may have bonding lines connecting it to the outer oval, or
there might be bonding lines connecting the outer oval to itself, through its inner
face. Let us do the following:

First of all, draw the outer oval as an ellipse and prescribe along it the extremal
points for bonding lines and the points where ears are to be attached, in a way that
their circular order is preserved. Secondly, realize inner bonding lines of the outer
oval as line segments joining the prescribed points. Then insert a small tangent
ellipse at each point where an ear has to be attached (small enough for not inter-
secting other ears or bonding lines. Then, draw tha bonding lines joining the ears to
the prescribed points in the outer ellipse. This can be done in a unique way modulo
topological equivalence. Finally, prescribe in each inner ellipse the points where
inner ears and bonding lines are to be attached, and draw them using inductive
hypothesis.

The fact that the resulting topological model and bonding lines is topologically
equivalent to 7" follows automatically from the fact that each step in the ‘drawing’
process of 7" is unique, modulo topological equivalence. a

Corollary 3.3 Let T be a connected, nodal, orientable topological model with N
vertices (N > 0). Then, there is a connected, nodal, orientable topological model T
from which T can be obtained by desingularization of some vertices, in the following
conditions:

o 7 is a union of ellipses, one of which has the others inside.

o any two ellipses of T which intersect, do it tangentially.

e 7 has N + 1 ellipses and at most 2N wvertices (tangencies between ellipses)
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Figure 6: The topological model 7 of Corollary 3.3.

e The singular points of T are in general position (no three of them on the same

line).

Proof: Consider the topological model T’ obtained from T in Proposition 3.1, em-
bedded in the form described in Propoition 3.2. T has one ellipse more than it has
double points. In other words, T has Ny + 1 ellipses and N, bonding lines, with
Ny + Ny = N. Substitute each bonding line of 77 by a sufficiently narrow ellipse
joining the two ends of the bonding line, and tangent to the ellipses at the ends and
let 7 the topological model so obtained (see Figure 6).

Clearly, the topological model T' can be recovered (modulo topological equiva-
lence) by desingularizing one of the two tangency points of these new ellipses. This
is exhibited in Figure 7 which shows the full sequence of topological manipulations
done at a vertex.

Figure 7: Topological changes at a vertex.

General position of the tangency points can be obtained thanks the freedom we
have in Proposition 3.2 for choosing the extremal points of bonding lines and the
tangency points of ellipses. |

Remark 3.4 Suppose that the original topological model T’ has a non-disconnecting
vertex. We claim that, in these conditions, the numbers of ellipses and vertices of
7 in Corollary 3.3 can be decreased by one.

Indeed, if T has a non-disconnecting vertex, then the desingularized model T’ has
at least one bonding line connecting two nested ellipses. In this case, the insertion
of the inner ellipse (the ‘ear’) in the proof of Proposition 3.2 can save one bonding
line with the following trick: instead of inserting the ear as a small ellipse, insert
it as an ellipse (as narrow as needed) joining the contact point of the ear to the
extremal point of the bonding line. Then, add the other bonding lines if any (see
Figure 8). The resulting model is not in the conditions of Proposition 3.1, but it
still serves for the construction in Corollary 3.3.

Let us finally apply our last result to the non-connected case.
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Figure 8: Saving one bonding line with a non-disconnenting vertex.

Theorem 3.5 Let T be a nodal, orientable topological model with N1 double points
and Ny isolated points. Then, there is a nodal, orientable topological model T from
which T can be obtained by desingularization of some vertices, in the following
conditions:

o 7 is a union of N1 + K ellipses and Ny isolated points.

o any two ellipses of T which intersect, do it tangentially. There are at most
2N1 such tangency points.

o The singular (i.e., double or isolated) points of T are in general position (no
three of them on the same line).

Proof: Follows from Corollary 3.3. Let Ty,...,Tx be the connected components
of T. Starting with the outermost ones, apply the Corollary to the connected
components which have double points and realize the others by ellipses or isolated
points. Place a copy of the resulting models 7y in the appropriate part of IRIP?
(reducing them as needed) in order to get 7 in the required conditions. O

4 Perturbation of algebraic curves.

In order to obtain our main theorem 4.3 from Theorem 3.5, we only need to consider
the topological model 7 obtained there as being an algebraic curve of degree 2N +
2K and algebraically perturb it in order to desingularize some singular points. One
way to do this could be enlarge some of the ellipses in small amounts so that every
tangency point becomes two transversal crossings (nodes). Then we could use the
classical Brussotti’s Theorem (cf. [Gudkov, p. 12]. This result says that a singular
curve having only nodal points can be perturbed to a curve of the same degree
where some of the singular points are desingularized in an arbitrary, prescribed,
way.

Nevertheless, we will show an explicit way to perturb the curve 7 of Theorem
3.5 in the desired way, which makes our results more algorithmic. Let us first
of all formalize the concept of a perturbation of an algebraic curve. Perturbation
techniques are quite standard in the study of the topology of real algebraic curves

(see [Gudkov, Viro]).

Let fo be an algebraic curve with finitely many singularities. Let (f.)e € R
be a family of algebraic curves defined by polynomials f. of the same degree as
fo and whose coeflicients vary continuously with €. Then, for ¢ sufficiently close
to zero, the zero-sets V(f.) are contained in an arbtrarily small neighborhood of
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V(fo) and their topology coincides with the topology of V(fy) except, maybe, at
small neighborhoods of the singular points of fy. Moreover, the possible changes
of topology at the singular points can be predicted, if the singularities of fy are
sufficiently simple. Our perturbations will be explicitly given in the form f. = f+eyg,
where ¢ is a polynomial of the same degree as f and with a finite number of common
zeroes with f.

The change in the topology of a curve in a neighborhood of a singular point will
be called a dissipation. In our perturbations, the singular points appearing will be
double points with two different analytic branches. If the two branches are complex
the point appears as an isolated point in V(f). If the two branches are real the
topology of the curve in a neighborhood of the singular point is that of a topological
double point, and we call it a node. These two types of singularities are classified
as Af and Ap (with an odd k) in [Viro, p. 1098 ff.] and are diffeomorphic to the
ones in Y2 4+ X*+1 and Y? — X+ respectively (see also [Arn-Var-GusZ]). Finally,
we will assume that a point P which is singular for f is either non-singular or nodal
for g.

Lemma 4.1 Let f € R[X,Y, Z] be a homogeneous polynomial of a certain degree d,
only having singularities in the A: or A, series. Let f. = [+ ¢eg be a perturbation
of f by a certain homogeneous plynomial g € R[X,Y,Z] of the same degree d.
Suppose that for every singular point P of f, either g is non-singular at P or P is
nodal for g. Then, the only possible dissipations of f are those appearing in Figure
9.

Ay
e -

Figure 9: Dissipations of an A: or A, singularity.

Proof: For the case of the A; and the Ai" we are not saying anything new; the two
possibilities shown are the only dissipations possible (except, of course, leaving the
singular point unchanged). For the case of the A: and A, some other things could
happen but we can say the following things:

e 10 ‘new ovals’ can appear near a singular point P by a perturbation of the
type [ + eg, except in the A: case. In this case only one such oval can
appear and, if it appears, then the perturbed curve consists on only that oval
(in a neighborhood of P): this claim follows from the fact that in a certain
small neighborhood of a singular point P of f, the curves f., and f., have no
common zeroes (except maybe the point P itself), for different values e; # ¢,
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of the parameter. This, together with the fact that any new oval should
collapse to P, prevents new ovals from appearing except if that oval contains
P and decreases its radius to zero as € goes to zero. In this case no other parts
of the perturbed curve can appear in the dissipation, because they should also
isotopically move towards P as € goes to zero.

e in a small neighborhood U of a singular point P of f, the perturbed curve
has no singular point except, maybe, P itself: indeed, in U N {g = 0} \ {P}
there are no singular points because f # 0. In UN{g # 0}, a singular point of
f+ g is the same thing as a critical point of the function — f/g, with critical
value ¢. Sard’s Lemma tells us that the set of such critical values is discrete.

e a singular point P of f is a singular point of the perturbed curve if and only
if it is a singular point of g; in this case, P is a nodal point of f.: this follows,
for example, from a development of f and ¢ as Taylor polynomials around P,
in a suitable affine chart.

The above three properties only permit the five dissipations shown in Figure 9,
for the A: and A, cases. However, the last one is easily ruled out by counting
intersection numbers with a suitable vertical line (the intersection numbers cannot
increase by a small perturbation). All the others are possible. a

We can specify a bit more what dissipation will be produced in the following
cases, which will be the only cases needed in our construction:

For the A] and A] cases the singular point P (and the topology in a neighbor-
hood of P) will change in a perturbation if and only if P is not a singular point of
g. If this is the case, only one of the two possible dissipations is compatible with
the signs of f and g in a neighborhood of P (in particular, a change in the sign of
¢ changes the dissipation obtained).

For the A case, if g has a nodal singularity at P, than f + ¢g has a nodal
singularity at P and we can say that:

- if one of the tangents to g coincides with the unique tangent to f, then the
dissipation is the third one in the right column of Figure 9.

- if none of the two tangents to ¢ coincide with the tangent to f, then the third
and forth dissipations are obtained, depending on the signs of f and eg.

Theorem 4.2 Let Cy € RRIP? be an algebraic curve defined by a homogeneous
polynomial f of degree d. Suppose that all the singularities of f are a certain number
of A: or Ay points Py, ..., Py and of A points Q1,...,Q;. Suppose that we want
to perturb f preserving all the P;, converting a number ly of the (); in nodes (with no
change in the topology), and desingularizing the other ly =1 —1; Q; in a prescribed
way.

Suppose finally that the singular points of f are in general position, i.e. no three
of them on the same line, and that we have [y +k+1/2 < d. Then, these dissipations
can be simultaneously obtained in the form f. = [+ eg, where g is a product of d
different lines.

Demostracion: Assume ¢ > 0. According to what we said above, the following
conditions on g are sufficient to guarantee the desired perturbation:
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e Lor the £ A; points to be preserved, that g has a singular (nodal) point at
each of them.

e For the l; tangency points to be desingularized, that g does not vanish at
them, and has the appropriate sign.

e For the [ tangency points to be converted in nodes, that g has a singular
(nodal) point at each of them, and the appropiate distribution of signs in a
neighborhood of them.

Let ry,..., 74, bestraight lines, each passing through two of the singular points
to be preserved and such that each of the points lies in two of them. Then, the
product gy of those k 4 [; straight lines has a nodal singular point at each of them,
because of the general position assumption on the points.

Let s1,...,84_—;, be lines, each passing through two of the points ¢);, not
passing through the points P; and so that each of the ¢); lies in exactly one of them.
These lines exist, because of the condition {/2 < d — k — ;. Then, the lines can be
slightly moved (as shown in Figure 10) in such a way that the product g of them
has a prescribed sign at each point ¢);.

[ ) [ ]
[ ] (]
K
L : ® E—
[ ] e
[ ] [ ]

Figure 10: Obtention of the adequate sign at a point by moving s;.

So, make the signs of g at the points ¢J; be the ones that we need in order
to obtain g = g1g2 with the appropriate signs, and take ¢ sufficiently small and
positive. a

This, together with Theorem 3.5, gives our main theorem:

Theorem 4.3 Let T be an orientable, nodal topological model with N double points
and K connected components. Then, T can be algebraically realized by a curve
f: == [+ ¢eg of degree 2N + 2K, with [ being a product of N + K ellipses or
degenerate conics and g being a product of 2N + 2K lines.

Proof:

Let f be the product of the ellipses obtained in the model 7 of Theorem 3.5,
and a factor of the form (¢X — aZ)? + (bX — aY)? + (¢Y — bZ)? for each isolated
point (a,b,¢) € RIP? of 7. Each connected component T; of T' contributes N; + 1
ellipses or degenerate conics to f, where N; is the number of double points in T;.
Thus, f is as in the statement.

Now,li+k=Nand =10 +13 <2N. Thus, 1 + k+1/2 < 2N < d. Then,

Theorem 4.2 proves the assertion. |

5 Optimality of the construction

The degree produced by our construction is generically optimal, for any given K and
N. Indeed, let K and N be given positive integers. Consider a topological model
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generalizing the one in Figure 11, for N = 3. Insert inside it K — 1 additional ellipses
inside the innermost face, one inside another. This produces a nodal, orientable
topological model with N vertices and K connected components. By our Theorem
4.3, this model can be realized with a nodal algebraic curve of degree 2N + 2K . In
the other hand, it cannot be realized by any algebraic curve of degree lower than
that because, in any realization of the model, any straight line passing through
the innermost face intersects the curve (at least) 2N 4 2K times, counted with
multiplicity.

Figure 11: A simple model, not realizable with degree lower than 8.

Nevertheless, for most topological models our construction does not yield an
optimal degree. Let us remark that a construction producing the optimal degree
for any given model will provide a constructive answer to Hilbert’s XVI problem
for nodal curves, while a general answer for the simpler case of non-singular curves
is only known up to degree 7 [Gudkov, Viro, Wilson]. Thus, there is no hope in
obtaining such an optimal construction. The purpose of this section is to show
in what cases our construction is really optimal. This will give us the somehow
surprising result that the only obstructions to lowering the degree in the construction
are those which are obvious (as the one in the example above).

As a first result, in remark 3.4 we mentioned that if the topological model T
has a non-disconnecting vertex, then the degree of the construction can be lowered,
at least, by two. Thus, we only need to consider the case of topological models
with only disconnecting vertices. This condition is necessary but not sufficient: for
example, the seven topological models in Figure 12 can easily be constructed with

I oo/ o<

. 0 o 0
. . .. 0 00

Figure 12: Some models which can be realized with degree 4.

Let T be a nodal, orientable topological model, all of whose double points discon-
nect it. Let N be the number of double points of T" and K the number of connected
components. If we desingularize every vertex of T in the way that disconnects T we
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get a non-singular topological model Ty with N + K connected components. The
topological structure of Ty can be represented in a rooted tree, with a node for each
connected component of Ty and an extra node (the root of the tree) ‘at infinity’.
A component 'y is a son of a second component C'y in the tree if and only if C is
inmediately inside C';. The sons of the root node are the outermost components.

This tree structure of Ty easily suggests a different construction procedure for
an algebraic realization ofthe topological model T, which produces the same degree
2N + 2K: starting with the outermost components, realize each of them indepen-
dently, either with an ellipse or with a degenerate conic. Then, attach one by one the
other components in the place indicated by their bonding line if they are connected
to an exterior one, or in the appropriate face if they are not. After all components
have been inserted, perturb the curve so obtained, using Theorem 4.2, in order to
obtain a nodal algebraic curve.

The interesting point is that now a necessary condition for the model not being
realizable with degree lower than 2N 42K is that the tree of connected components
of Ty has at most two leaves (innermost connected components): if this is the case,
then, for any algebraic realization of Ty any line intersecting the two innermost
components will cut every connected component of Ty at least twice (counted with
multiplicities). If 7" was realizable with degree lower than 2N + 2K, then T would
also be, by means of a small perturbation (via, e.g., Brussotti’s Theorem). Thus, T
itself cannot be realized with degree lower than 2N + 2K . This necessary condition
turns out to be also sufficient:

Lemma 5.1 In the above conditions, if N + K > 3 and the tree of connected
components of Ty has at least three leaves, then T can be realized with degree 2N +
2K — 2.

Demostracion: For N+ K = 3 all the possibilities are shown in Figure 12. The first
one is obtained by perturbing the product of two ellipses. The second one, by the
curve Y272 = X272 _X*, The first in the second row by X2Y24X2724Y272 All
the others, by perturbations of the above. Moreover, in any of the cases, different
connected components can be realized as small as one wants and passing through
prescribed points in the projective plane.

In the case N + K > 3, consider the construction procedure described above, by
means of the tree of connnected components of T;. As the tree has at least three
leaves, we can consider these three leaves as the three last components and insert
them at the same time by adding degree 4 to the construction, instead of 6. This
is possible using the curves in Figure 12 and having into account that we don’t
really need the connected components to be attached being tangent to the previous
ones. We can place them with two nodal intersections and then perturb (using, e.g.,
Brussotti’s Theorem) in order to desingularize one of them in the appropriate way.
O

Theorem 5.2 Let T be a nodal, orientable topological model such that all its double
points disconnect it. Let Ty the desingularized model obtained from T disconnecting
at every vertex. Then:

(i) If the tree of connected components of Ty has at most two leaves, then T' cannot
be algebraically realized with degree lower than 2N + 2K.
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(ii) If the tree of connected components of Ty has at least three leaves, then T' can
be algebraically realized with degree 2N + 2K — 2. a

Finally, we can rewrite Theorem 5.2 in the following way. The statement tells us
that the only topological models which cannot be algebraically realized with degree
lower than 2V 4+ 2K are those for which this is evident, because such a realization
has 2N + 2K intersection points with a certain line.

Corollary 5.3 Let T be a nodal, orientable topological model in the projective plane
with K connected components and N double points. Then, the following conditions
are equivalent:

(i) T is not topologically equivalent to any algebraic curve of degree lower than
2N + 2K.

(ii) there are two points in the projective plane such that any pseudoline passing
through them intersects T in at least 2N +2K points, counted with multiplicity.

Proof: That the first statement implies the second follows from Theorem 5.2. That
the second implies the first is obvious. a
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