On the Integration of the Feature Model and PL-AOVGraph

Lidiane Santos
Computer Science Department

Federal University of Rio Grande do
Norte (UFRN)

diane_lid@hotmail.com

ABSTRACT

In this paper we propose PL-AOVGraph, an extensmithe
aspect-oriented requirements modeling language, A8aph,
to support the definition of software product lireguirements.
With PL-AOVGraph it is possible to specify requirents and
variabilities. In general SPL variabilities are megented using
the Feature Model, however, this model does natessmt the
requirements of the system. PL-AOVGraph and thatufe
Model are complementary approaches as they reprdstanent
perspectives of a system. With the goal of insgrtidL-
AOVGraph in the SPL development process, this vpodposes
a bi-directional mapping between PL-AOVGraph anc th
Feature Model.

Categories and Subject Descriptors
D.2.1 [Software Engineerind: Requirements/Specifications

General Terms
Documentation, Design, Languages.

Keywords
Software Product Line,
requirements, variabilities

1. INTRODUCTION

Software Product Line Development (SPL) [2] suppaitie
creation of a portfolio of similar products usingcammon
software infrastructure to assembly and configungspdesigned
to be reused across products. SPL approaches fidenti
commonalities of all family members, as well as features that
vary among members of the family, tivariabilities. Thus,
members of a family have a basic set of commontiomns with
many variants. A fundamental challenge in this erhis to
manage the variabilities by defining the variatoints and the
dependencies between them. A same feature canréadsand
tangled in a same product. In order to handle ¢hisscutting
nature of common and variable features, Aspechteck
software development (AOSD) [3] has been recengbtared in
the development of SPLs. In general such crosaguéiements
cannot be suitably modularized with conventionafialkility
mechanisms, such as conditional compilation orritdnece [2].

Feature Model, PL-AOVgraph,

Permission to make digital or hard copies of alpart of this work for

personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,

requires prior specific permission and/or a fee.

EA'11, 21-MAR-2011, Porto de Galinhas, Brazil
Copyright 2011 ACM 978-1-4503-0645-4/11/03...$10.00.

Lyrene Silva
Computer Science Department

Federal University of Rio Grande do
Norte (UFRN)

lyrene@gmail.com

Thais Batista
Computer Science Department

Federal University of Rio Grande do
Norte (UFRN)

thaisbatista@gmail.com

Therefore, AOSD can be used to support improved utaoiy
of crosscutting concerns, expressing them as aspect

Following this tendency of integrating SPL and AQSD this
paper we propose PL-AOVGraph [7], an aspect-oriente
requirement language that extends AOV-Graph [9hdhysting

its aspect-oriented abstractions to support the &Ricepts. PL-
AOVGraph includes a new type of relationship anaperties.

Feature models represent commonalities and variabilities in
terms offeatures. A feature is a concept that is prominently
visible to any stakeholder involved in the develepin of
applications. This model provides a clear repreg@nt of the
features that are relevant to the product line fardomain.
However, the high level of abstraction of the featmodel lets
several requirements details aside. Thus, therfieatodel must
be integrated with other requirements model in otdeprovide
more detailed and meaningful information to theadepment of
a SPL. In this context, we propose PL-AOVGraph,aapect-
oriented requirement modeling language that reptedeoth the
variability and the requirement information. Thenaof PL-
AOVGraph is to complement the feature model byd@jailing
the requirements with SPL information, and (ii)ritiing and
modularizing crosscutting concerns.

As the feature model is already part of the SPLetippment
process and with PL-AOVGraph it is possible to tifgnand

modularize the crosscutting concerns, in this weekpropose a
bi-directional mapping between the Feature Modell &M-

AOVgraph. Via this mapping it is possible to asateithe
elements of the feature model and the PL-AOVgrdpments
and to include PL-AOVGraph in the development psscof
SPL using existing feature model. The mapping a@efim this
work was implemented in the ReqSys tool [5] — adipSe

plug-in that allows the automatic generation ofLaAOVGraph

specification from a feature model and vice-verBais paper
also presents a case study that illustrates theltre$ the

mapping.

This paper is structured as follows. Section 2 @mst a brief
presentation about the feature model. Section 3epts PL-
AOVGraph. Section 4 contains the details about the

directional mapping. Section 5 presents the castysSection 6
present some related work and Section 7 contaipsfitial

remarks.

2. FEATURE MODEL

As previously mentioned, features are organizedfeiature
models that are hierarchical graphs where theisotbite context
of the model and the descendent nodes are feakaagires can
be classified into: (i)Mandatory: all products of the family
must contain this feature; (iQptional: the products can contain
this feature or not; (iiiAlternative: the products must contain

exactly one feature from a group of features; [hglusive-or:
the products must contain at least one from a goddigatures.

Feature models can contain additional informatiarths as
cardinality, groups, attributes, references, anchotations
defined by the users.

Figure 1 shows a part of the Mobile Media featumzlet, a SPL
to mobile devices. “Media Selection”, “View Photo*Play
Music”, and “Play Video” are mandatory. “Capturled®” and
“Capture Video” are optional and “Photo”, “Musicand
“Video” are inclusive-or, representing the variiisk.

Mobile LEGEND
Media
l @ Mandatory
Media QO Optional
Selection
Inclusive-or
Photo Music Video

Capture View Play Play Capture
Photo Photo Music Video Video

Figure 1. Mobile Media Feature Model (partial).

3. PL-AOVGraph

PL-AOVGraph is an extension of the AOV-Graph gaaisdel
that inherits all its properties. It can repres@uositive and
negative conflicts among the requirements (goalftgsals, and
tasks). It also modularizes the crosscutting carer AOV-
Graph is open to include new properties to the ggoabdel by
using the property element. Thus, PL-AOVGraph does not
include new elements it semantically enriches &dsAOV-
Graph elements by including the following propestie support
variabilities: cardinalityMin, cardinalityMax, grqieature,
cardinalityGroupMin, cardinalityGroupMax, and isfa®.

The cardinalityMin and cardinalityMax properties are used to
associate the minimum and maximum cardinality to a
component, respectively. The PL-AOVGramoupFeature,
property specify the members of a group and the
cardinalityGroupMin and cardinalityGroupMax propest are
used to determine the cardinality of the group. Tdkeature
property indicates if a PL-AOVGraph component isiigeglent

or not to a feature. This is a decision of the meguents
engineer when elaborating the PL-AOVgraph spedifica
because depending on the abstraction level, arsgent is not
always a feature. For instance, the feature mdédelfocuses on
users in general does not present implementatiuirements.

PL-AOVGraph also includes a new type of contribatio
relationship, namedhc-or, to indicate that at least one and at
most all elements with this relationship must belided in the
product line.

Figure 2 presents the PL-AOVGraph representatioMolile
Media, (a) graphical notation (b) textual notatidme “Media
Selection” task has three contributions of #oe type (Photo,
Music, and Video), that indicates that one of thosest be
included in the product line. The “Photo” task hbaso
contributions: (i)or type (Capture Photo), indicating that this
element can be included or not in the product (@hd type
(View Photo), indicating that this element is alwancluded.
The “Music” task has just one contributiamd (Play Music)

and the “Video” task has two contributions: @hd (Play
Video), (ii) or (Capture Video).

task Media Selection (T1; and) {

1
2 task Photo (T1.1; xor) {

3 task Capture Photo (T1.1.1; or) {}
4. task View Photo (T1.1.2; and) {}
5. }

6 task Music (T1.2; xor) {

7 task Play Music (T1.2.1; and) {}
8. }

9. task Video (T1.3; xor) {

10. task Play Video (T1.3.1; and) {}
1. task Capture Video (T1.3.2; or) {}
12. }

13. }

Figure 2. PL-AOVgraph example: (a) Graphic Notation (b)
Textual Notation.

4. BIDIRECTIONAL MAPPING

This section describes a bidirectional mapping amdhne
feature model and PL-AOVgraph. Section 4.1 explaiow this
mapping can be inserted in SPL development pro&sstion
4.2 presets a running example — the Smart Homeersyst
Section 4.3 defines the mapping rules, associdtingelements

of these artifacts, features models and PL-AOVGraph
specifications. Section 4.4 reports some consgairfitthis bi-
direction mapping.

4.1 The process

Silva et al [10] explain two situations to use thidirectional
mapping in the SPL development: (i) when therenly a PL-
AOVGraph specification, and (ii) when there is ondyfeature
model. In the first case, a PL-AOVGraph model isated from
requirements and it will be input to the bidireat mapping,
generating a feature model. In the second cases tha feature
model generated from the requirements and it véllthe input
to the bidirectional mapping, generating a PL-AO¥@T

specification. After that, in both of cases, thepois must be
analyzed in order to identify and correct mistalted omissions
and then go back to the bidirectional mapping agsithen

corrections are not necessary, the PL-AOVGraplipation

and the feature model can be used to help the aaweint of
the architecture and other design models.

4.2 Running Example — Smart Home
Smart Home [7, 9] is a SPL to residential systeAmssmart
home can contain several floors, with many rooragheroom
can contain controllers, such as, weather, dodrgjaws, lights
controllers, fire detector, and presence simuld&r.

Sanchez et al [6] defines the Smart Home featuei(Figure
3) and describes its functional requirements. Basedthis
requirements and non-functional requirements ddflneTomas
et al [11], we create a PL-AOVGraph specificatifr
presented in Figure 4.

Smart Home

~_ [0." o)
o 5k ;
0T
:
i
s W S
gl \ \ 7 [Ceu
\ < ———————- s -
\io » ~Ss——nl ’) /
__-% [0 \[0-] =~ H /
7 V BasicFacilities | | ComplexFacilities | | PresenceSimulation
) [BasicFacives | [Gomw I ;
/ DR
| 0.7 _— \\
! [LightSwitch ey
\ o)
\
. [vindowSensor |[WindowActuator |

N
N
~

MeasurementUnits
BlindActuator

Figure 3. Smart home feature model.

1. goal_model (Smart Home; GML){ . _Rule 1: “Smart Home” root in the_ feature model ispped
2. task Fire Detection (or; T2;){ into the Smart Home goal model in PL-AOVgraph.
3. task Enable Alarm (or; T2.1;{
;1- tasl; ﬁctivate f}irin (i(rm-or; TTZéll-lé)%orlerty{i{sFgature=n0)}}}) ¢ Rule 2: All hierarchy of this feature model is magpnto a

. task Activate Lights (inc-or; T2.1.3;){property{isFeature=no . ; : R .
6 task Sprinkle Water (and: T2.2:(} } similar hlerarchy in PL-AOVgraph. In this case, tieas
7. task Light Management (or; T3;){ are mapped into tasks.
8. task Regulate Intensity Light Automaticdly (inc-or; T3.1;){} . - .
9. task Select Predefined Values [Light{ar; T3.2;){ ¢ Rule 3: Mandatory (for instance, “BlindActuador’ng
10 task Select mode [TV watching] (inc-08.2.1){} optional features (for instance, “FloorGUI"), areapped
11. task Select mode [Reading] (inc-or; T3)2} . d ibuti ivel
12. task Select mode [Normal] (inc-or; T3;8} into AND and OR contributions, respectively.
13. task Select mode [Ambient] (inc-or; T3; "
14 task Presence Simu,gﬁon (or;]T(5;){ o1 e Rule 4: Featur_es with cardlnal_lty (for |nsta_1nce_thn_) are
15. task_ref = (Regulate Blinds AutomaticallyT1.2; inc-or;) } transformed into tasks with cardinalityMin and
16. task Minimize Waste of Energy (or; T6;){ inali i
17. task Measure Luminosity (and; T6.1;){} cardlnalltyMax prOpertleS'
18. task Detect Movement (and; T6.2;){} . H « ”
19. task_ref = (Regulate Heater Automaticali,2.1; inc-or;) } ¢ Rule 6: . Reference _features (fOI’ instance, “GUI b ar
20. softgoal Security (S1;){ mapped into task_ref in PL-AOVgraph.
21. softgoal Maintaining Privacy (S1.1;){ Rul Deseri
22. softgoal Access Control (S1.1.1;)(} } S EHIUEIE
23. softgoal Protect Communications (S1.2}){} 1 Each feature model generates a goal model.
24. softgoal Availability (S2;){
25. softgoal Availability [Controllers] (S2){} 2 Each goal model generated consists of a hierari#ytical to the feature mode
26. softgoal Availability [Sensors] (S2.2;){} hierarchy, i.e., a feature father will be transfedhinto a task father in PL-AOV-
27. softgoal Availability [Actuators] (S2.3)} graph, and so on.
28 correlation (hurt){ o 3 Mandatory, optional, alternative and o r-inclesieatures are represented by a
29. source = softgoal_ref = (Ava||§blllty52;) or, xor, and inc-or contribution relationships,pestively.
30. target = softgoal_ref = (Security; S1}) _ _ _ _ _
31. crosscutting (source = Light Managemen))T3 4 Features with cardinality are transformed intsksawith cardinalityMin and
32. pointcut (PC1): include(Presence Simulath; T5;) and cardinalityMax properties.
33.) include(Miniré Waste of Energy; T6;) 5 Grouped features with cardinality are transforniatb grouped tasks with
34. advice (around): PC1{ groupFeature, cardinalityGroupMin and cardinalityGsMax properties.
35. task_ref = (Regulate Intensity LighAutomatically; T3.1; inc-or;)} } } _

6 Features defined as reference are mapped toréésk_

Figure 4. Smart Home PL-AOVgraph specification.

7 If a feature has an annotation about a correlatadationship (hurt, break, make
help, unknown) then it is mapped into a source ebaelation whose type an
43 Mapplng RUIeS target will be described by an annotation.

. : 8 If there are more than one reference to the daatare then this feature is mappe
Section 4.3.1 pr.e.sen.ts the mapping rules to gemetm PL- to an advice of a crosscutting relationship, feegulinked to that feature ar
AOVGraph specification from the feature model. 8sci4.3.2 mapped into pointcuts and the feature father disfeareferred is mapped into th
shows the mapping rules to transform the featurdehmto a source of this crosscutting refationship.

9 If a feature has an annotation defining one typePL-AOVGraph componentg

PL-AOVgraph specification.

(task, goal, softgoal), then this feature generatesmponent of the type describg
in this annotation.

[=Y

4.3.1 Mapping Features model to PL-AOVgraph
Table 1 summarizes the rules to transform Featuadels into
PL-AOVgraph.

By using these rules (described in table 1), tla¢ufe model of
figure 3 is mapped into the PL-AOVGraph specifioati
illustrated in Figure 5, as following:

Table 1: Rules to transform Feature Models into PL-

AOVgraph.

goal_model (Smart Home; GM1){
task Floor(int) (T1;){property{cardinalityMi1;cardinalityMax=n;}
task FloorGUI (or; T2;{
task_ref = (GUI; T26; and;) }
task Door (T3;){property{cardinalityMin=€ardinalityMax=n;}
task DoorSensor (or; T4;){}
task DoorOpener (or; T5;){} }
task Room(String) (T6;){property{cardirtgin=1;cardinalityMax=n;}
9. task RoomDevice (T7;){property{cardirtgMin=0;cardinalityMax=n;}}
10. task WaterSprinkler (T8;){property{cardlityMin=0;cardinalityMax=n;}}
11. task RoomGUI (or; T9;){
12. task_ref = (GUI; T26; and;) }
13. task Alarm (or; T10;){}
14. task Window (T11;){property{cardinalitylt0;cardinalityMax=n;}
15. task Blind (or; T12;){

N~ WNE

16. task BlindActuador (and; T13;){} }
17. task WindowActuator (or; T14;){}
18. task WindowSensor (or; T15;){} }

19. task Light (T16;){property{cardinalityM#0;cardinalityMax=n;}
20...

Figure 5. Smart Home PL-AOVGraph generated from the
Feature model (partial view).

In this case study, there are no situations torulee5, 7 and 9,
because there are no grouped features either gionstd' GUI”,
“BasicFacilities”, and “ComplexFacilities” featuresan be
considered advices of a crosscutting relationghgause there
are references repeated more than once (in acamdeith the
rule 8 in Table 1), however in the feature modelppsed by
Sanchez et al [6] each one of these features istiad feature
model (distinct tree). Therefore, these featuresukh be
analyzed by the requirement engineer. The Ruler®tispplied
in this case. But if we consider the example shawhRigure 6
we see that the "Regulate Light Intensity Autonahe
reference feature appears twice in the feature mtdeefore it
represents the advice of the crosscutting reldtipnswhile
"Presence Simulation" and "Minimize Waste of Enérage the
pointcuts because they are the features that hallféature
corresponding to advice. The source of the crosagut
relationship is "Light Management" because it is father of
the referenced feature, as shown in Figure 7 (liies5).

Minimize Waste
of Energy
/ P 2 \

Presence Simulation

Light Management

\ Regulate Blinds Regulate Intensity
I Detect Moviment ‘ / ‘\\ l Measure Luminosity | { Light i ‘
Regulate Heater Regulate Intensity ‘ ’ Select Predefined ‘ ‘ Regulate Intensity ‘
i Light i Values [Light] Light i
Figure 6. Identifying crosscutting relationship inthe feature
model.
1. goal_model (Smart Home; GM1){
2. task Minimize Waste of Energy (or; T1;){
3. task Measure Luminosity (and; T2;){}
4. task Detect Movement (and; T3;){}
5. task Regulate Heater Automatically (img34;) }
6. task Presence Simulation (or; T5;)X
7. task Regulate Blinds Automatically (inG-66;) }
8. task Light Management (or; T7;)}{
9. task Regulate Intensity Light Automatigdinc-or; T8;){}
10. task Select Predefined Values [Light] {ancT9;){} }
11. crosscutting (source = Light Management (T7))X{
12. pointcut (PC1): include(Presence Simulation; T5;) ad
13. include(Minimize Waste of Energy; T1;)
14. advice (around): PC1{
15. task_ref = (Regulate Intensity Light Automatically; T8; inc-or;) } } }

Figure 7. Crosscutting relationship generated fronthe feature
model.

4.3.2 Mapping PL-AOVGraph to the Feature

Model

Table 2 presents the rules to transform a PL-AOVWGra
specification into a Feature Model.

Rule Description
1 Each goal model is mapped into a feature modg! ro
2 Goals, softgoals and tasks hierarchy is mappedairsimilar feature hierarchy, i. e},

a task root is transformed into a feature rootpal ¢eaf is mapped into a feature
leaf, and so on.

3 And, or, xor and inc-or contributions are mappetb mandatory, optional,
alternative and or-inclusive features, respectively

4 Goals, softgoals and tasks with cardinalityMind acardinalityMax properties
generate features with these properties, as folldwsardinalityMin=0 then it is
generated an optional feature with cardinalityrf),.if cardinalityMin != 0 then it
is generated a mandatory feature with cardinalitynf], where n is given b
cardinalityMin and m is given by cardinalityMax.

5 Goals, softgoals, and tasks grouped with gfeipFeature property are mapped
into grouped features with cardinality [i..j], wikeri is given by
cardinalityGroupMin and j is given by cardinalityg&pMax.

6 Goals, softgoals, and tasks that are refereremasrgte references features.

7 Correlation relationships are mapped into animtatwith the type of correlation
and a feature related to target, this annotaticadited to the feature generated by
source of this correlation.

8 In crosscutting relationship, advices are mapipenl reference features related {o
features defined in pointcuts.

9 Components witfsFeature set to “no” are not mapped into a feature

10 The type of components in PL-AOVGraph (task,lgor softgoal) generates an
annotation in the feature, specifying this type.

Table 2. Rules to transform PL-AOVGraph into the Fature
Model.

By using these rules (table 2), the PL-AOVGraphcjmation
(Figure 4) is mapped into the feature model (Fig8je as
follows:

¢ Rule 1: “Smart Home” goal model (line 1) is mappetd a
feature model root.

e Rule 2: Features are generated from tasks, goals an

softgoals, following the same hierarchy describedPL-
AOVgraph.

. Rule 3: Tasks with AND (for instance, “Sprinkle \WHY
line 6), OR (for instance, “Fire Detection”, ling &nd inc-
or (for instance, “Regulate Intensity Light Autoncatly”,
line 8) contributions are mapped into mandatorytjonyal
and inclusive-or features, respectively.

e Rule 6: Task refs (for instance, “Regulate Blinds
Automatically”, line 15) are transformed into reface
features.

¢ Rule 7: Correlation relationships are mapped into
annotations, for instance, the hurt correlation mfro
“Availability” to “Security” (lines 28-30) is mappkinto an
annotation in Availability describing the type (Buand the
target (Security).

¢ Rule 8: As the crosscutting relationship has not a

representation in feature model, it is mapped fatdures,
for instance: the “Regulate Intensity Light Autoiatly”
advice (line 35) generates two reference featwekedad to
the features correspondent to its pointcuts: “Rrese
Simulation” (line 32) and “Minimize Waste of Enefgy
(line 33).

¢ Rule 9: PL-AOVgraph elements with théFeature
property equal to “no” are not transformed intoeattire.
For instance “ActivateSiren” (line 4) and “Activatéghts”
(line 5) tasks. It is necessary to stress thissitiand the
setting is not done by bidirectional mapping, iaisnanual
configuration.

¢ Rule 10: each feature is generated with an anootati
describing the type of the PL-AOVGraph componeatrfr
which it was originated. Figure 8 presents two dations,
in “Security” and “Presence Simulation” features.

In this case study rules 4 and 5 are not necessary.

‘Smart Home

o!
Fire Detection

Sprinkle
Water

Availabilty

Seaurity

Availabilty
[Controllers]

Availability
[Actuators]

Availability
[Sensors]

ol
Maintaining Protect Minimize Waste Regulate Intensity || Select Predefined
Privacy Communications of Energy Light Automatically Values [Light]

E 3

.\ Presence Simulation {0
Select mode Select mode -
[Ambient] [Normal]

A J
Regulate Heater || Regulate Intensity
. Selectmode | [Selectmode | [Regulate Binds
Automafically Light Automatically [Reading] [TV watching] | | Automatically

Figure 8. Smart Home feature model generated from [
AOVgraph.

‘ Detect Moviment ‘ | MeasureLummomly‘

Access
Control

Regulate Intensity
Light Automatically

4.4 Constraints

There are some constraints to be considered whesugrg the
bidirectional mapping between the feature model &id
AOVgraph:

Feature model to PL-AOVGraph — (i) tasks namingncarbe
appropriated because tasks names should contagnba while
features name cannot contain it; (ii) only the acbadvices are
generated. Intertype declarations are not generatethere are
limitations in the use of the resources offeredPhyAOVgraph.

PL-AOVGraph to the Feature model — feature modelstain
so many features, because each requirement (task, apd
softgoal) generates a feature (except when itieature
property is set to “no”). It can be seen as an athge, because
the generated feature model is more complete, ancbe seen
as a drawback, because this feature model carobdggo

5. CASE STUDY: SMART HOME

As illustrated in Figure 9, this case study cossigttwo stages
where in each one two transformations are performad
transformations have been automated by the Re@8¥/E5].

In the first stage, using the smart home PL-AOVG@rap
specification it was generated a Feature Model.nThébis
Feature Model was the source for the reverse wamstion,
producing a new specification PL-AOV-graph.

In the second stage, using the Feature Model dbbgeSanchez
et al [6], partly presented in figure 3, it was geated a PL-
AOVGraph specification which after was input to timwerse
transformation, producing a new Feature Model.

After the transformations, we compared the
results. These results are presented in section Bhak full
description is available at
https://sites.google.com/site/plaovgraph.

1
1
Feature Model 1.1 :
1
1

13 Stage Lo-ooomome

1 1
1 1
1 1

28 8tage Lo-ocoeoeomeneeeeene R e

1
1
Feature Model 2.2 :
1

Figure 9: Steps used to transform the case study.

5.1 Analysis of the Case Study

Sections 5.1.1 and 5.1.2 present the analysist@nts2nd stage
of this case study, respectively. Section 5.1.3cidess the
analysis involving the artifacts used in both steps

5.1.1 Analysisof 1st Sage

Comparing the PL-AOVGraph specifications 1.1 ang, $ome
tasks of the 1.1 specification do not appear in lte
specification. This occurs because on the spetificdl.1 these
tasks have thisFeature property set to “no”. Another difference
is that the identifier of the tasks always is imeemted but this
does not affect the consistency of the specificatio

In the PL-AOVGraph specification 1.2 there is nmlgem
regarding the constraint of naming of tasks singes t
specification was obtained from the Feature Modé&l dhich
was also generated from a PL-AOVGraph specification

Regarding the Feature Model 1.1 it has a large mundf
features since each requirement has been transfoimte a
feature, except only two, due to thsFeature property. We
conclude that this strategy make difficult the wilization of the
feature model and the analysis of variabilitiesisTiroblem is
worse in case of large specifications.

5.1.2 Analysisof 2st Sage

The Feature Models 2.1 and 2.2 are equal. Regattied’L-
AOVGraph specification 2.1, we observe the probtdmaming
tasks because the name of the features in therEddndel 2.1
is not always composed by a verb. An example és“Boor”
task. The noun “door” alone does not indicate amcfion that
the system needs to realize. Therefore it is megairement. In
this case it would be relevant to describe whigftfionalities of
the system would interact with the door, for exampl
“Open/Close Door automatically”.

5.1.3 General Analysis

Comparing the Feature Models 1.1 and 2.1 we coechhdt
they present different views of the system. Attfasme features
represent physical components of the house, ihésdase of
"Heater", "Window", and "Light", while in the secdnall

features represent requirements of the system.

Feature Models generated from PL-AOVGraph spetifioa

represent the system under a more detailed viewor@@nhand
this is an advantage because it makes the mode caonplete,
it provides more information to the developmentre®©n the
other hand, there is the drawback of the complexity the size
of the model, which can negatively interfere inuge.

Similarly, the PL-AOVGraph specifications 1.1 and.1 are
quite different since the first was developed based the
requirements of the Smart Home aiming at guiding th
development team regarding the functionalities thatsystem
needs to execute, while the second was generatadi mn the
features which in some instances makes the spatbific
confusing because of the vagueness of the requirtsme

Anyway, the ReqSys tool generates a Feature Mdusl Has
limitations but it serves as a basis for adjustméntorder to
have a more appropriate model. Similarly, spedifces
generated from the Feature Models, serve as dalirétease to

be corrected when necessary. Thus, in situatioreyenvtinere is
only one these artifacts ReqSys generates the other
automatically saving the requirements engineehefldurden of
developing the artifact from the scratch.

6. RELATED WORK

Alférez et al [1] presents two complementary apphes to
variabilities and requirements management in SPLD: (
Semantics-based Variability Modelling, through exted
Requirements Description Language (RDL) which nzaigt
semantic links between variabilities and requiretsierand (ii)
Variability Modeling Language for Requirements (VHRE), a
domain specific language that allows to specify aodrelate
variabilities to abstractions of requirements ezpesl in
different models of requirements.

Silva et al [8] present the language i*- ¢, an egten of i* with

support to cardinality for representation of theriafaility in

SPL, in addition the approach G2SPL (Goal to Sa#wrroduct
Line) that allows to identify features fromi* mddend
configuration of products within the SPL.

Both works have defined languages that allow reprisg
variabilities and some mechanism to relate thesahiéities to

the requirements. Our work is similar to them oitakefines the
extension of AOV-Graph for SPL aiming to fully regent the
variability. But our work also developed a bi-diieoal
mapping between PL-AOVGraph and the Feature
Model, automated by the ReqSys tool. We consideat th
the Feature Model and PL-AOVGraph are essential tfar
development of a SPL since they present different
complementary views. Therefore, these models masuged
simultaneously.

7. Final Remarks

In this work we presented PL-AOVGraph and a bidiceal
model between the Feature model and PL-AOVgraph. We
presented the transformation rules that allows abgociation
between PL-AOVGraph and the Feature model. Suds nkere
implemented by the ReqSys plug-in that automatesh su
activity. We used a well-known case study to amalynd
validate the mapping mechanism.

REFERENCES

[l] Alférez, M. et al. A Metamodel for Aspectual Reguirents Modelling and
Composition. AMPLE Project Deliverable D1.3, Sepbem2008.

[2] Brown, L. et al. A widget framework for augmenteteraction in SCAPE.

In Proceedings of the 16th Annual ACM Symp. on Userface Software

and Technology Canada, 2003. UIST '03. ACM Pressy Mork, NY, 1-10.

DOI= http://doi.acm.org/10.1145/964696.964697

Filman, R. E. et al. Aspect-Oriented Software Depeient. Addison-

Wesley, 2005.

Neiva, D. F. S. Engenharia de Requisitos para LideaProduto de

Software. Recife, 2008. Tech. Report — UFPE.

(3]
[4]

(5]
(6]

[7]

(8]

[9]

[10]

[11]

Rocha, D. K. F. Visualizagao de Requisitos a pddimodelos AOV-Graph.
Natal, 2009. 84p. Tech. Report. UERN

Sanchez, P. et al. A Metamodel for Designing SaféwArchitectures of
Aspect-Oriented Software Product Lines. AMPLE Peogeliverable D2.2,
September 2007.

Santos, L. O. PL-AOVgraph: Uma extensdo de AOV-@rppra Linha de
Produto de Software. Natal, 2010. 84p. TechnicapdRe UERN.
https://sites.google.com/site/plaovgraph.

Silva, C. et al. G2SPL: Um Processo de Engenldgrigequisitos Orientada
a Objetivos para Linhas de Produtos de Software.18th Workshop on
Requirements Engineering (WER 2010), 2010, CueRcaceeding of the
13th Workshop on Requirements Engineering, 2010-1L.

Silva, L. F. Uma Estratégia Orientada a Aspectom pjdodelagem de
Requisitos. Rio de Janeiro, 2006. 222p. PhD TheBdC-Rio.

Silva, L. et al. On the Role of Features and Gollisdels in the
Development of a Software Product Line. In: Int¢ior@al Workshop on
Early Aspects at AOSD’10, 2010.

Tomas, M. R. S. et al. SMART HOME. Technical Repbitiversidade
Nova de Lisboa, 2009.
http://subversion.assembla.com/svn/erdssmarthorfaRies/SmartHome.
pdf

