
Managing Variability in Business Processes: An
Aspect-Oriented Approach

Idarlan Machado
Computer Science

Department
University of Brasília

Brasília, Brazil
idarlan@yahoo.com.br

Rodrigo Bonifácio
Independent Consultant

Brasília, Brazil
rbonifacio@computer.org

Vander Alves
Computer Science

Department
University of Brasília

Brasília, Brazil
valves@unb.br

Lucinéia Turnes
Computer Science

Department
University of Brasília

Brasília, Brazil
lucineiaturnes@gmail.com

Giselle Machado
Computer Science

Department
University of Brasília

Brasília, Brazil
gisellegiba@gmail.com

ABSTRACT

Business processes specify key activities in an organization,
some of which can be automated. It is often the case that
replication of activities across such processes occur and fail-
ure in identifying such replication results in organizational
costs. To minimize this risk and optimize organizational re-
sources, in this paper we characterize variability in business
process and propose an approach to manage such a variabil-
ity. The characterization of variability relies on the study of
industrial-strength applications in the Human Resources do-
main. The management of variability is based on a composi-
tional and parametric approach with Aspect-Orientation. It
leverages and extends an existing tool to address variability
in such domain.

Categories and Subject Descriptors

D.2.1 [Requirements-Specifications]: Methodologies

General Terms

Management

Keywords

Software Product Lines, Business Processes, Aspects, Com-
position

1. INTRODUCTION
Business processes are a way for an organizational entity

to organize work and resources (people, equipment, infor-
mation, and so forth) to accomplish its aims [5]. These pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EA’11, 21-MAR-2011, Porto de Galinhas, Brazil
Copyright 2011 ACM 978-1-4503-0645-4/11/03 ...$10.00.

cesses specify key activities, roles, and artifacts produced in
a specific manner by an organization. Some activities are
performed manually and others can be automated by the
development of one or more systems. Such processes are es-
sential for achieving business goals and compliance to them
is an importance measure of organizational maturity [7].

Nevertheless, it has been reported that it is often the case
that replication of activities or even whole processes occur
and failure in identifying such replication results in unnec-
essary organizational costs regardless of the quality of the
underlying software supporting the existing processes [9].
For example, in an organization having different branches it
could happen that these branches have their own payroll sys-
tems, despite belonging to the same organization. Although
each branch has its own particular processes (reflecting some
possibly local legislation), it is expected that most of the pro-
cesses would be similar to other branches. This replication is
clearly against business goals (e.g, efficiency, maximization
of resource allocation, among others).

In order to minimize this risk and optimize allocation of
organizational resources, it is important first to be aware of
this replication and then to handle such commonality and
variability. Accordingly, in this paper we characterize vari-
ability in business process (Section 2) and then present a
preliminary approach–a detailed evaluation is outside the
scope of this paper–to manage such a variability (Section 3).
The characterization of variability relies on the study of
industrial-strength applications in the Human Resources do-
main. The management of variability is based on a composi-
tional and parametric approach based on Aspect-Orientation.
It leverages and extends an existing infra-structure with
new transformations, modeling of relevant artifacts (busi-
ness processes), their variability, and a new configuration
knowledge [4] mapping features expressions to such new
transformations. These transformations are responsible to
generate a product in another derivation phase. Unlike our
approach, the Cappelli’s approach [2] does not address vari-
ability issues in business processes, not focusing on thus con-
figuration and domain knowledge model. Related work is
considered in Section 4, and Section 5 offers concluding re-
marks.

2. BUSINESS PROCESS VARIABILITY IN

THE HUMAN RESOURCES DOMAIN
Our research is motivated by variability in the Human

Resources (HR) domain, realized in the context of a re-
search and development project. Using an extractive adop-
tion strategy, we aim at constructing a business process
product line in this domain. We briefly describe the ex-
tractive process and then characterize the variability in this
model, which motives our approach for variability manage-
ment presented in Section 3.

The extractive process was performed having as input ex-
isting business process models of three different organiza-
tions in the HR domain. These were specified in different no-
tations (textual and flowcharts). We lead a group of analysts
in performing the following tasks: 1) modeled such process
in BPMN, resulting in fifty two processes; 2) analyzed the
resulted modeled business processes for communality and
variability; 3) built the domain model (feature model). The
choice of BPMN was a constraint imposed by the sponsor
of the project. An excerpt of the resulting feature model in
the HR domain is shown in Figure 1. An instance of such a
model corresponds to a collection of business processes tar-
geted at a particular organization. For instance, in Brazil,
two such configurations could be the Civil Servant (bound
by Law 8.112) and CLT schemes (more common in private
organizations). In the later, for instance, leave for marriage
is three days, whereas for the former is eight days. Other
configurations are possible for a myriad of specific public
and private organizations and even countries. For instance,
the monitoring feature is not bound by Law 8.112, but is a
desirable feature to ensure the governance and quality con-
trol.

The business process commonality analysis considered the
existent conceptual grouping of these process, which could
be inferred by their names (recruitment, payroll, allowance,
tenure-track, leave, retirement, and so on) and their corre-
sponding activities. The variability analysis focused on iden-
tifying variability patterns involving activities within pro-
cesses sharing a significant amount of similarity. A total
of sixteen fine-grained variability patterns were identified,
which could be further classified into the following coarse-
grained patterns: 1) insert/removal/replacement of activi-
ty/flow of activities before/after/around activity/gateway/-
subprocess; 2) parameter value variability within flow ob-
jects; 3) variability of lanes to which activities belong.

For instance, Figures 2 and 3 illustrate business processes
corresponding to different kind of allowances in the feature
model (Figure 1), food and mobility, respectively. Due to
space reasons, the illustrations are simplifications of the ac-
tual processes, but are still representative of issues in the
original processes. The gray areas in Figures 2 correspond
to their variability: 1) the former has one gateway and an
extra activity inserted after the register activity, when com-
pared to the latter, in order to handle duplicate benefits; 2)
the processes also differ by the value to which a parameter
is bound in the Carry out financial arrangement activity.
This parameter is defined at the allowance feature. There-
fore, such processes exhibit variability patterns (1) and (2)
mentioned above. Variations such as these were observed in
among other processes as well.

Figure 2: Food Allowance Business Process

Figure 3: Mobility Allowance Business Process.

3. MANAGING VARIABILITY IN BUSINESS

PROCESS PRODUCT LINES
Our approach for managing product line variabilities in

business processes is built upon the variability model of
Modeling Scenario Variability as Crosscutting Mechanisms
(MSVCM) [1], which also provides a set of Haskell libraries
and tools for product line development (named Hephaes-
tus), and thus is characterized by the following: a) consid-
ers the contribution of the configuration knowledge, a ded-
icated model for relating features to transformations that
resolve product line variabilities in business processes; b)
uses aspect-oriented constructs and parameterization, lead-
ing to a modular specification of the core and variant assets
of a business domain.

We start this section by describing an BPMN extension
for representing product line variability. This extension in-
troduces a notion of business process aspects, which aims to
modularize variability in business processes. An abstract
representation of this extension is detailed in Section 3.1.
After that, in Section 3.2, we detail a customization of the
configuration knowledge [1], which here guides the evalua-
tion of specific transformations that solve PL variabilities in
business processes. Finally, Section 3.3 illustrates the use of
our approach to manage the running example of the Human
Resources Domain (Section 2).

3.1 BPMN Extensions
In order to manage variability in business processes, we

first extended the core elements of BPMN, in such a way that
we could represent the variant part of a process using aspect-
oriented constructs— mainly the notion of AspectJ advice-
pointcut composition— and parameterization. Second, we
proposed a set of transformations for resolving variability in
business processes models. These transformations comply
with the signature of the transformations first introduced
in [1]. For this reason, we could reuse both the structure
and interpreter of the MSVCM Configuration Knowledge.

Here we present the BPMN extensions and transforma-
tions using the Haskell functional programming language [8],
the same language used to implement Hephaestus. Such a
decision leads to a concise definition of the product deriva-
tion phase, as we explain in Section 3.2. We extended BPMN

Figure 1: Feature Model of the Human Resources Domain. Unfilled circles and arches denote optional features
and alternative features, respectively. Filled circles and arches denote mandatory features and or-features
(at least one must be chosen), respectively.

elements by means of a small embedded domain specific lan-
guage [6], which comprises a set of algebraic types and opera-
tors that an analyst can use to instantiate business processes
using Haskell as a host language.

The notion of process type (either a basic process or ad-
vice) is our main extension to BPMN (Listing 1, lines 10–12).
Usually, in our approach we model commonalities using ba-
sic business processes; whereas we represent flow variability
using processes of the advice type (which is further special-
ized as before, after or around). Each advice process has
a pointcut clause identifying the places within the business
process model where the aspect composition should occur.

Listing 1: abstract syntax excerpt of BPMN exten-
sion in Haskell

1 data BusinessProcessModel =

2 BPM { processes :: [BusinessProcess] }
3 data BusinessProcess =

4 BusinessProcess {
5 pid :: Id,
6 ptype :: ProcessType,
7 objects :: [FlowObject],
8 transitions :: [Transition]
9 }

10 data ProcessType =

11 BasicProcess |
12 Advice {advType :: AdviceType, pc :: Pointcut}
13 data FlowObject =

14 FlowObject {
15 fId :: Id,
16 fType :: FlowObjectType,
17 annotations :: [Annotation],
18 parameters :: [Parameter]
19 } | Start | End
20 data FlowObjectType = Activity | Gateway
21 data Pointcut = PC String
22 type Transition = (FlowObject, FlowObject, Condition)

We also extended BPMN so that we could assign anno-
tations (Line 20 of Listing 1) to the FlowObject data type,
which might be used to represent BPMN activities or gate-
ways, in order to expose joinpoints to the set of BPMN ad-
vice. A matches function (Listing 2) verifies if a given flow
object (f) matches the pointcut clause of an advice (adv). In
this case, the adv objects and transitions are introduced in
the business process (an operational semantics of this com-
position in Listing 4), either before, after, or around the
flow object f . It is possible to extend this joinpoint model
by means of introducing a new Pointcut constructor and
providing a new implementation of the matches function
(probably, using the Haskell pattern-matching capability).

Listing 2: A function that matches pointcuts and
annotation based joinpoints in Haskell

1 matches :: FlowObject → Pointcut → Bool
2 matches f (PC p) = p ∈ (annotations f)

A final extension to BPMN is that our FlowObject data
type is a parameterized entity (Line 21 of Listing 1). The
goal here is to enable fine-grained variability, such as re-
quired by the allowance feature discussed in Section 2. In
that case, we were not expecting to combine flow objects
and transitions with an existing business process; instead,
we just had to bind the values of a flow object parameter
with the selected option(s) of the allowance feature.

3.2 Configuration Knowledge and Transforma-
tions

The Configuration Knowledge is a specific asset of the
MSVCM approach that relates feature expressions to model
transformations. In more details, a configuration knowledge
corresponds to a list of Configuration Item, which represent a
mapping of feature expressions to transformations (List-
ing 3). If a feature expression is satisfied by an SPL member,
the related transformations are applied. In this way, the set
of suitable transformations are responsible for automatically
generating a product specification.

To customize the Configuration Knowledge (CK) to the
business process domain, we just have to change the sig-
nature of the Transformation Data Type. As shown in List-
ing 3, a transformation is any function that expect two argu-
ments (an SPL argument representing the SPL assets and a
Product argument representing a product on a specific stage
of the process derivation) and returns a refined version of
the product — with some variability resolved.

Therefore, our CK representation maps feature expres-
sions to transformations that might select or configure busi-
ness processes for a specific product configuration. Distinct
transformations deal with the types of variability discussed
in Section 2 and indeed take additional parameters. Nev-
ertheless, since these functions are curried, their partial ap-
plication leads to functions that obey the Transformation
signature. The mentioned transformations are as follows:

(a) Select Business Process: As we show in the code
snippet bellow, the selectBusinessProcess transforma-
tion first create a list bps which comprises the spl pro-
cesses whose identifiers equal bpId (the first argument)
and that are not present in the product processes. After
that, this transformation concatenates the the bps pro-
cesses with the processes already selected in the prod-
uct.

selectBusinessProcess bpId spl product =

let bps = [bp
| bp ∈ (processes spl)
, pid bp == bpId
, bp /∈ (processes product)]

in product {productBpm = [bps] ∪ (processes product)}

(b) Evaluate Advice: the evaluateAdvice transformation
first obtains a list of advice (advs) whose identifiers
equal advId. Our type checker (not covered in this pa-
per) do not allow more than one advice or basic business
process sharing the same advice. For this reason, we
just match advs with a list of a single element ([adv])
or the empty list ([]). In the first case, the resulting
business process model of the product is computed by
the application of the eval function to all process of the
product. In the second case (empty list), we just return
the product without applying any transformation. The
eval function just call the proper evaluation of a before,
after, or around advice.

evaluateAdvice advId spl product =

let advs = [a | a ∈ (processes spl)
, (pid a) == advId]

in case advs of
[adv] → product {productBpm = wovenProcesses }
[] → product
where wovenProcesses =

map (eval adv) (processes product)

eval adv bp =

in case ptype adv of
BasicProcess → bp
(Advice After _) → evaluateAfterAdvice adv bp
(Advice Before _) → evaluateBeforeAdvice adv bp
(Advice Around _) → evaluateAroundAdvice adv bp

(c) Bind Parameter: The next code snippet details the
bindParamter transformation. It first obtains the se-
lected options of the feature identified by the fId argu-
ment. For a given feature f, these options correspond
to the selected sub-features (children) of f in a product
configuration. Second, the bindParameter transforma-
tion computes a string representation of the selected op-
tions; and finally it bind this value to the flow objects
parameters identified by pId.

bindParameter pId fId spl product =

let
options = concat [children f | f ∈ (pc product)]
optionsStr = concat [name o | o ∈ options]
in
product {process = boundProcesses}
where
boundProcesses =◦ ..

Listing 3: Configuration Knowledge Extension in
Haskell.

1 type ConfigurationKnowledge = [ConfigurationItem]
2 data ConfigurationItem = ConfigurationItem {
3 expression :: FeatureExpression,
4 transformations :: [Transformation]
5 }
6 type Transformation = SPL → Product → Product
7 data SPL = SPL {
8 fm :: FeatureModel,
9 splBpm :: BusnessProcessModel

10 }
11 data Product = Product {
12 pc :: ProductConfiguration,
13 productBpm :: BusinessProcessModel
14 }

3.3 Revisiting Variability in the Human Re-
sources Domain

Considering the artifacts of the Human Resources Domain
(Section 2), this section details how we could manage busi-
ness process variability using the transformations just pre-
sented.

First of all, we have to separate the common and variant
behavior of the business processes shown in Figure 3 and
Figure 2. As dicussed in the previous sections, we create
(a) a basic business process with the shared flow objects
and transitions; and (b) an advice formed by the the variant
assets— in this case, an adtitional gatway and a new activity.
Figure 4 presents the resulting business processes.

Next, to enable the configuration of the common business
process, we have to relate the feature expression Allowance
to the transformation selectBusinessProcess “bpCommonAl-
lowance”, where bpCommonAllowance is the identifier of the
business processes that handles the commonality among the
allowance processes. In a similar way, in order to evalu-
ate the Food Allowance advice (Figure 4), we have to relate
the feature expression Food Allowance to the transforma-
tion evaluateAdvice “advFoodAllowance”, where advFoodAl-
lowance is the identifier of the Food Allowance advice de-
clared in the SPL assets. Figure 4-(c) shows a fragment of
the configuration knowledge with these transformations.

Therefore, the product derivation process applies the trans-
formations that are related to the valid expressions for a
product configuration. For instance, if a product is config-
ured with the Allowance and Food Allowance features, the
product will comprise a business process formed by the com-
position of the Allowance business process and the Food Al-
lowance advice, as Figure 2 shows. Differently, if the product
is not configured with the Food Allowance feature, the men-
tioned composition will not happen, since the evaluateAdvice
“advFoodAllowance” transformation will not be evaluated.

To sum up, the product derivation process evaluates whether
a feature expression is valid or not for a specific product, gen-
erating a list with the related transformations that should be
applied. After that, it calls each transformation iteratively,
resolving the variabilities of the input product.

4. RELATED WORK
Variability management [11, 10] in software product lines [3]

has been described at various level of abstractions. In partic-
ular, La Rosa et al. [9] propose a method and tool suite for
developing processes based on configurable process model.
This proposal addresses variability in connectors, gateways,
activities, organizational resources. Unlike our approach,
which is compositional, their approach is annotative, ba-
sically wrapping the variability with additional gateways
driven by the decision model, cluttering the process model
with configuration knowledge details, and hence not pro-
viding means for separating the solution and configuration
spaces [4] and hindering reusability of the variability.

Cappelli et al [2] propose an aspect-oriented approach to
modularize crosscutting concerns in business process model-

Listing 4: An interpreter-based, operational semantics of the evaluate after advice composition in Haskell.
1 evaluateAfterAdvice :: BusinessProcess → BusinessProcess → BusinessProcess
2 evaluateAfterAdvice adv bp = bp {
3 objects = nub ((objects bp) ∪ (objects adv)),
4 transitions = (
5 [(i,j,k) | (i,j,k) ∈ (transitions bp), not (i ‘matches‘ (pointcut adv))] ∪
6 [(i,y,z) | (i,j,k) ∈ (transitions bp), (x,y,z) ∈ startTransitions adv, i ‘matches‘ (pointcut adv)] ∪
7 [(x,j,z) | (i,j,k) ∈ (transitions bp), (x,y,z) ∈ endTransitions adv, i ‘matches‘ (pointcut adv)] ∪
8 [(x,y,z) | (x,y,z) ∈ (transitions adv), (x, y, z) /∈ ((startTransitions adv) ∪ (endTransitions adv))])
9 }

10 -- auxiliary functions
11 startTransitions :: BusinessProcess → [Transition]
12 startTransitions bp = [(i, j, k) | (i, j, k) ∈ (transitions bp), i == Start]
13 endTransitions :: BusinessProcess → [Transition]
14 endTransitions bp = [(i, j, k) | (i, j, k) ∈ (transitions bp), j == End]

Figure 4: Separating common and variant processes using our approach.

ing. They propose an extension of BPMN to express cross-
cutting concerns through the insertion of crosscutting pro-
cesses (represented by activities) and crosscutting relation-
ships (represented by flows among activities). Unlike our ap-
proach, their approach does not address variability issues in
business processes, thus not focusing on configuration knowl-
edge and domain model. We further provide operational se-
mantics of the advice types by leveraging and extending an
existing functional infra-structure, including a tool.

5. CONCLUSION
We have characterized variability in business process and

propose an approach to manage such a variability. The man-
agement of variability is based on a compositional and para-
metric approach with Aspect-Orientation. It leverages and
extends an existing tool to address variability in such do-
main. The approach has not been applied to production nor
evaluated within the industrial partner yet, but the organi-
zation has reacted positively to the proposed language as a
means to decrease replication. As future work, we will finish

the implementation for handling variability in lanes in busi-
ness processes. We are also finishing the implementation of
the around advice and of support for quantification. Fur-
ther, we plan to conduct a thorough empirical evaluation in
the HR domain.

6. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers

for valuable suggestions to improve this work.

7. REFERENCES

[1] R. Bonifácio and P. Borba. Modeling scenario
variability as crosscutting mechanisms. In Proc. of
AOSD ’09, pages 125–136. ACM, 2009.

[2] C. Cappelli, J. Leite, T. Batista, and L. Silva. An
aspect-oriented approach to business process modeling.
In Proc. Early Aspects, pages 7–12. ACM, 2009.

[3] P. Clements and L. M. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2002.

[4] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley Professional, June 2000.

[5] M. Dumas, W. van der Aalst, and A. H. ter Hofstede.
Process-aware information systems: bridging people
and software through process technology. John Wiley
and Sons, 2005.

[6] P. Hudak. Building domain-specific embedded
languages. ACM Comput. Surv., 28, December 1996.

[7] J. Jeston and J. Nelis. Business process management:
practical guidelines to successful implementations.
Butterworth-Heinemann, 2006.

[8] S. P. Jones et al. The haskell 98 report (revised).
Technical report, Cambridge University Press, 2002.

[9] M. L. Rosa, M. Dumas, A. ter Hofstede, and
J. Mendling. Configurable multi-perspective business
process models. Information Systems, 26(2), 2011.

[10] M. Svahnberg, J. van Gurp, and J. Bosch. A
taxonomy of variability realization techniques. Softw.,
Pract. Exper., 35(8):705–754, 2005.

[11] J. van Gurp, J. Bosch, and M. Svahnberg. On the
notion of variability in software product lines. In
WICSA, pages 45–54, 2001.

