A Process for Aspect-Oriented Platform-Specific Profile
Checking

Thiago Gottardi
Computing Department —
Federal University of S&o

Carlos — UFSCar

Rodovia Washington Luis, Km
245, CEP 13.565-905
Séo Carlos, S&o Paulo, Brazil
thiago_gottardi@dc.ufscar.br

Rosangela Aparecida
Delosso Penteado
Computing Department —
Federal University of Sdo
Carlos — UFSCar
Rodovia Washington Luis, Km

245, CEP 13.565-905
Séo Carlos, Sao Paulo,
Brazil

Valter Vieira de Camargo
Computing Department —
Federal University of S&o

Carlos — UFSCar

Rodovia Washington Luis, Km

245, CEP 13.565-905

Séo Carlos, Sao Paulo, Brazil

valter@dc.ufscar.br

rosangela@dc.ufscar.br

ABSTRACT

Several modeling profiles for aspect-oriented software have
been proposed in the literature; however, many of them lack
important concepts or have deficiencies when used for code
generation. These problems indicate a disparity between the
required basic concepts of the paradigm and the concepts
provided by the notation. In this paper we propose a process
to evaluate UML profiles in order to allow the detection of
inconsistencies between what is provided by the profile and
what is required by the paradigm. As a result, we found
several inconsistencies after applying our process to evaluate
a real aspect-oriented profile; these detections are beneficial
to attain correct profiles allowing complete use of concepts
and correct code generation.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—model checking; D.3.2 [Programming Languages]:
Language Classifications— Design languages, UML, AspectJ;
D.2.10 [Design]: Representation

General Terms
Algorithm,Design, Verification

Keywords
UML Model, UML Profile, Profile Checking, Aspect-Oriented

1. INTRODUCTION

Aspect-Oriented Programming (AOP) was created to allow
better software modularization, however, aspect-oriented soft-
ware development needs further efforts to allow concern sep-
aration since earlier phases. Among efforts to solve this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

EA'11, 21-MAR-2011, Porto de Galinhas, Brazil

Copyright 2011 ACM 978-1-4503-0645-4/11/03 ...$10.00.

problem, researchers proposed UML (Unified Modeling Lan-
guage [10]) extensions, providing new modeling notations to
represent aspect-oriented software [1] [4] [2] [5] [7] [3] [8]-

A software model is an alternative representation to software
code, it may be equivalent to code or with higher levels of
abstraction. Also, a model can be linked to a graphical view,
referred as diagram. Models can be formally defined with
models, which are also known as metamodels. UML formal
definition uses metamodels and metametamodels [10].

UML extensions can be made by either modifying or ap-
pending the metamodel, respectively Heavy Weight or Light
Weight [8]. Heavy Weight extensions are UML metamodel
modifications while Light Weight are UML profiles, a set
of stereotypes, tags and constraints. Stereotypes are defi-
nitions allowing to extend elements in model level, tags are
stereotype properties (attributes) and constraints are logi-
cal expressions evaluated to assure better model semantics.
The standard language to define constraints for UML is the
OCL (Object Constraint Language) [10].

It is important that the profile is correctly defined to avoid
incorrect definitions, impracticable software projects or re-
stricting project from using valid concepts. When dealing
with MDD (Model Driven Development)[11][12], where soft-
ware code can be generated directly from models, incorrect
notations may lead to erroneously generated code that can-
not be compiled.

In this paper, a process to generate evaluation guidelines
for UML profiles is proposed, allowing to detect profile in-
consistencies. Inside a case study, we detected several in-
consistencies after applying our process to evaluate a real
aspect-oriented profile. The detections are also helpful for
corrections, which should be done in order to attain a better
semantic level, improving concept use and code generation.

This paper is structured as follows: In Section 2 is shown an
earlier proposed profile; in Section 3, our validation process
is presented; in Section 4, there are found inconsistencies
and in Section 5, there are the conclusions.

2. ASPECTJPROFILE

AspectJ Profile is a UML Profile which allows detailed de-
sign models for aspect-oriented systems. It was proposed by
Evermann specifically for AspectJ [3].

According to Evermann, his approach is light weight and ad-
dresses all aspect-oriented programming concepts and does
not include textually declarations in diagrams as is done by
other approaches[8]. Heavy weight approaches are defined
by modifying UML metamodel [10] and its use demands spe-
cific tools [8]. As a light weight extension, the profile can be
used in any available UML tool which supports profiling [3].

In Figure 1 there is a diagram representing the most im-
portant elements of AspectJ Profile. The boxes marked
with <stereotype>> are stereotype specifications and those
marked with <enumeration>> are enumerations. By us-
ing generalizations (transparent tipped arrow), a stereotype
may inherit all properties of the generalized stereotypes and
their ancestors. Inside each box, above its name, (between
brackets) there is the name of the specialized metaclass.
Enumerations are type definitions, when applied to stereo-
types, they list possible advice types (“before”,“around” and
“after”), possible pointcut types (“not”, “or” and “and”) and

aspect instanciation types (“per this”, “per target”, etc.).

<<stereotype>>
PointCut
[StructuralFeature]

1 -composee <<enumeration>>

pointcut e Srconpo=> PointCutCompositionType

OperationPointCut g:‘d
[StructuralFeature] Not
-operation : Operation [1..*]

<<stereotype>>
CompositePointCut
[StructuralFeature]

K

-compositionType

0..*
<<stereotype>> <<enumeration>>
Advice AdviceExecutionType
[BehavioralFeature] AroundAdvice
BeforeAdvice

AfterAdvice
-adviceExecution

<<stereotype>>

Aspect

[Class]
-isPrivileged : boolean [1]
-perType : AspectinstantiationType
-perPointCut : PointCut [0..1]
-declaredParents : Generalization [0..*]
-declaredlmplements : InterfaceRealization [0..*]

<<stereotype>>
CallPointCut
[StructuralFeature]

<<stereotype>>
ExecutionPointCut
[StructuralFeature]

<<stereotype>>
StaticCrossCuttingFeature
[Feature]

-onType : Type [1..*]

0..1 L-precededBy 0..1J -precedes

Figure 1: AspectJ Profile Subset [3].

The < Aspect>> stereotype extends the Class metaclass, be-
cause of their similarities. In model level, an aspect has
dynamic and static properties and may extend classes and
implement interfaces. Since classes contain behavioral and
structural features, <Aspect>> does not need another tag
for pointcuts and advices. The < Advice>> stereotype ex-
tends BehavioralFeature, for being similar to operations. It
is associated with its type and a pointcut. Feature meta-
class is extended by <« StaticCrosscuttingFeature>> to al-
low intertype declarations. This is done because Feature is
superclass of BehavioralFeature and StructuralFeature, al-
lowing properties and operations being inserted by an as-
pect into another class. <PointCut>> was created to rep-
resent pointcuts in model level. It is abstract, then only
substereotypes may be applied in model level, for example,
< CallPointCut>> and <ExecutionPointCut>>.

A UML profile can be used in every UML tool which sup-

ports profiling mechanism, making it more accessible to use
than heavy weight approaches. After loading the profile
in a specific tool, stereotypes may only be applied to in-
stances of the extended metaclass (or submetaclass), for in-
stance, < Aspect>> extends Class, then every UML class
may receive an <Aspect>> stereotype to represent an as-
pect. In order to represent an advice, an operation inside
an aspect must be stereotyped <Advice>, also, set eze-
cution type and a pointcut to define its join points. To
represent a <PointCut>>, a property of an aspect must be
stereotyped with a specific pointcut, for instance, stereo-
types < CallPointCut>> or <SetPointCut>>. PointCuts may
be combined using <CompositePointCut>> and setting a
boolean composition operator.

However, it must be verified if the profile can correctly rep-
resent aspect-oriented software and can be used to generate
AspectJ code.

3. PROPOSED PROCESS

In this section, it is proposed a process to check if a UML
profile is representing required concepts correctly and if it is
not allowing invalid models. The process is an algorithm
whose inputs are required concepts, profile elements, ex-
tended metamodel and mapping between concepts and pro-
file elements. The first and the last informations must be
entered by the user, since they cannot be completely au-
tomatized. The process is explained along with a practical
example in order to comply with size limitations.

The possible inconsistencies of a UML profile are divided
into two categories, as shown on Table 1; these categories
are referred as “Validation Categories” when detected by our
process.

Table 1: Validation Categories

Category Name Description
15t Mandatory Usage must be allowed
ond Prohibited Usage should not be allowed

In first category, which is named “Mandatory”, are the prob-
lems caused when the profile does not allow to model valid
concepts, consequently restricting models from representing
valid usages, problems of this category inhibit software de-
velopers from creating software taking advantage from spe-
cific concepts.

The second category of inconsistencies is named “Prohib-
ited”. These inconsistencies are caused by incorrect defined
stereotypes being excessively permissive, allowing models
representing software which cannot be compiled.

In Figure 2 there is an activity diagram illustrating the pro-
posed process. After identifying which profile to analyze, in
this case AspectJ Profile, the process is divided into three
activities: Identify Required Concepts, Identify Actually
Addressed Concepts and Elaborate the Mapping.

Identify Required Concepts: The first activity is in-
tended to identify which concepts are mandatory for being
represented by models applying the profile. AspectJ profile
requirements are found on AspectJ Language Specifications,

.—>< Identify Profile
Begin \L

Identify Required Concepts

Identify Actually Addressed Concepts

Elaborate the Mapping

Identify
required
concept

[no stereotype identified]

Identify Profile
Stereotype

[concept

[no concept

[stereotype identified]

Identify Profile
Element

[element

identified] identified]

List all
required
properties

List
Stereotype
Tags

identified]

Identify

‘ <<datastore>>

Matrix of Tag per Stereotype

L [no metaclass identified]

vp
Metaclasses

[no element identified]

[metaclass identified]

Unify data into
matrix

Unify data into
matri

Identify
concept
represented

Unify data into
matrix

<<datastore>>
Properties per MetaClass

<<datastore>>

‘ <<datastore>> ‘ ‘

<<datastore>>
Matrix of Properties per Profile Element

Matrix of
Profile Element-Concept

L

Mapping

.

Matrix of Required Properties
<<datastore>=>

Matrix of Inconsistencies

c e
Martrixes

.\

—

[has inconsistencies]

[no inconsistencies] ,T

End

[first category]

Add
Elements to
Profile
[second category] Constrain
Profile

Figure 2: Validation Process.

in this example, the AspectJ grammar defined for ABC (As-
pectBench Compiler) [9] is considered.

For example, the Identified Concept for this iteration is “Ad-
vice” and in Figure 3 it is defined the grammar for an Advice
declaration. Identifiers between less (“(”) and greater (¥)”)
symbols are non terminals, between single quotes (“’”) are
terminals. Non terminals ending in “opt” are optional.

(advice_declaration) ::=

{(modifiers opt) {(advice spec) (throws opt) ’:’
(pointcut_expr) (method_body)

(advice_spec) 1=

st_opt))’

i_opt) ’)’°

f_opt))’ ’returning’
t_opt) ’)’ ’returning’

‘before’ *(C (formal_parameter
‘after’ > (formal_pararme
‘after’ *(C (formal_para
‘after’ '(° (formal_parameter_lis

IR

11m.e

>

‘after’ " (formal_parameter_list_opt) ’)’ ‘returning
¢ (formal_parameter))’
‘after’ *(C (formal_parameter-

’after’ *(C (formal_parameter
500 0y

list_opt) °)’ >throwing’
st_opt) ’)’ ’throwing’

‘after’ *((formal_parameter_list_opty)’ *throwing’
*C (formal_parameter))’

(type) ’around’ *(C (formal parameter list opt) °)’

*void’ ’around’ ’(C {(formal parameter list opt) ’)’

Note: The only valid modifier for an advice_declaration is strictfp.

Figure 3: Grammar for Advice Declaration [9].

By analyzing the grammar, it is possible to identify several
concepts, for instance, advices may be defined with: op-
tional strictfp modifier; exactly one pointcut; execution type;
formal parameters. Every non fundamental typed property
should be taken as another concept; this recursive process
should then be executed until all concepts are analyzed. The
strictfp modifier is used to ensure that float point calcula-
tions, within the method body scope, are made in confor-

mance to IEEE 754 [6]. Ezecution type and formal parame-
ters are concepts discovered at this iteration and should be
analyzed in next iterations. Fxecution type is a redundant
definition found in grammar, each type can be listed as an
enumeration, which are later identified as before, after, after
throwing, after returning and around; these must be evalu-
ated in next iterations as well. After identifying properties
of Around concept, it is identified that around advices must
have one type.

The information identified is then unified into Matrix of Re-
quired Properties, containing owner concept with its prop-
erties and multiplicities. For instance, Table 2 is the Ma-
trix of Required Properties for profile validation regard-
ing Advice concept. The multiplicities contain lower bounds
(minimum) and higher bounds (maximum). When the lower
bound is 0, the property is optional, otherwise, obligatory if
it is 1. Other possible multiplicity is “enumeration”. Enu-
merations are listed values. A concept defined as an enu-
meration must be used with exactly one of listed values.

Identify Actually Addressed Concepts: The concepts
actually addressed by profile are identified during the execu-
tion of this activity. Each stereotype of the profile should be
identified and all tag definitions listed. Every non fundamen-
tal typed property should be analyzed recursively, including
enumeration definitions. Every stereotype extends at least
one metaclass. These metaclasses must be identified as well,
since they contain properties which are also important for
stereotyped element usage. For example, when analyzing
< Advice>>, there are two tags: pointcut and adviceEzecu-
tion. <Advice>> extends BehavioralFeature, in model level,
the stereotype can be applied to Operation. Every prop-
erty from Operation must be also listed and appended to

Table 2: Matrix of Required Properties

Concept Property Multiplicity
Advice strictfp 0..1
Advice pointcut 1..1
Advice execution type 1..1
Advice throws option 0..1
Advice method body 1..1
Advice parameter (list) 0..*
execution type before enumeration
execution type after enumeration
execution type after throwing enumeration
execution type after returning enumeration
execution type around enumeration
around type 1..1

< Advice>> addressed properties. The origin of each prop-
erty is visible on table (between parenthesis). Both lists are
then unified into Matrix of Profile Element-Concept Map-
ping. For instance, Table 3 shows some interesting proper-
ties addressed by the profile.

Table 3: Matrix of Properties per Profile Element

Profile Element Property Mult.
< Advice>> (stereotype) | pointcut 1.1
< Advice>> (stereotype) | adviceExecution 1.1
< Advice> (metaclass) Abstract 0..1
< Advice>> (metaclass) Static 0..1
< Advice> (metaclass) Final 0..1
< Advice> (metaclass) Return type 0..1
< Advice>> (metaclass) Parameters 0..*
AdviceExecutionType Before enumeration
AdviceExecutionType After enumeration
AdviceExecutionType Around enumeration

Elaborate the Mapping: The Matrix of Profile Element-
Concept Mapping for AspectJ Profile validation links profile
elements to concepts found as required. This phase is im-
portant for comparing both matrices. For instance, Table 4
shows some interesting relations.

Table 4: Matrix of Profile Element-Concept Map-
ping
Concept
Advice
execution type

Profile Element
< Advice>
AdviceExecutionType

Notice that the “Matrix of Required Properties” is a data
artifact containing requirements; it is related to the first val-
idation category, while the “Matrix of Properties per Profile
Element” is the reverse way which is related to the second
validation category.

After completing the earlier matrices, by using “Matrix of
Profile Element-Concept Mapping”, it is possible to compare
the requirements to what was addressed. Therefore, there
are three possible results from each execution:

1. If every required concept property matches one profile
property, then profile is considered correct.

2. If there is a required concept unmatched by the pro-
file properties, then there is a first category problem:
profile is not allowing a valid usage.

3. If there is a profile property unmatched by required
properties, then there is a second category problem:
profile is being excessively permissive.

However, it is frequently needed to review the requirements
matrix, as identifiers regarding the same property may be
different. If an inconsistency is already constrained by cor-
rectly defined OCL code, then the inconsistency should be
ignored. It is important to identify these issues before as-
suming a profile as incorrect.

After comparing both matrices, the unmatched properties
indicate inconsistencies, as seen on Table 5. Different mul-
tiplicities also indicate inconsistencies, although not shown
in the example. It is possible to identify that profile does
not allow to use strictfp modifier, after throwing and af-
ter returning, requirements specified on Matrix of Required
Properties. These are first category inconsistencies.

The profile allows advices with abstract, static and final
modifiers. Return type (marked with an asterisk) is spe-
cific for around advices, therefore, it should not be available
for every advice. These are second category inconsistencies.

Table 5: Matrix of Inconsistencies

Cat. | Concept Property Req. | Add.

15t Advice “strictfp” Yes No

15t execution “after throwing” Yes No
type

15t execution “after returning” Yes No
type

ond Advice “Abstract Modifier” No Yes

ond Advice* “return type” No Yes

ond Advice “Static Modifier” No Yes

ond Advice “Final Modifier” No Yes

The outcome of the execution was detecting inconsistencies
of first and second categories, other important inconsisten-
cies can be found in Section 4.

4. PROFILE INCONSISTENCIES

In this Section there are more detected inconsistencies of As-
pectJ Profile, identified by our process. Only a few of them
are shown for each concept, however, they are enough to
notice the complexity of evaluating the profile and that the
inconsistencies are not restricted to advices. It is important
to apply the process exhaustively in order to attain optimal
detection and, consequently, improved problem correction.

Validating PointCuts, on Table 6, there are differences be-
tween the requirement and what was addressed by the pro-
file, respectively, PointCut from AspectJ and <PointCut>>
stereotype, which are applied on Operations. As identified
earlier as required, PointCuts can be abstract, Also, among
addressed properties, it was identified that profile allows
PointCuts with type, type modifier and default value, prop-
erties unmatched by the requirements matrix.

Table 6: <PointCut>> applied on Property

Cat. | Property Required Addressed
ond “Type” No Yes
ond “Type Modifier” No Yes
ond “Default Value” No Yes
1t “Abstract” Yes No

On Table 7 there are differences between Aspect from As-
pectJ and <Aspect>> stereotype, which is applied to to
classes, allows in model level. It was identified that the pro-
file allows class extending aspects, concrete aspects being
inherited, and intertype declarations edit static definitions
of aspects; these uses are not allowed for AspectJ codes.

Table 7: < Aspect>> applied on Class

Cat. | Property Req. | Add.
ond “Classes may Inherit Aspects” No Yes
ond “Concrete Aspect Inheritance” No Yes
ond “InterType Targeting Aspects” No Yes

On Table 8 there are differences between InterType dec-
laration from AspectJ and < StaticCrosscuttingFeature>>
stereotype, which is applied on Features.

Table 8: <StaticCrosscuttingFeature> applied on
Operation or Property

Cat. | Property Req. | Add.

ond “InterType Declarations Inside No Yes
Classes”

ond “External PointCut declaration” No Yes

ond “External Advice declaration” No Yes

5. CONCLUSIONS

A process to check UML profiles was proposed in this paper.
It is capable of detecting inconsistencies in AspectJ Profile,
which can be fixed in order to reach a better semantic level.
The main objective is to make model validations easier, im-
proving the quality of profiles and models.

Aspect-oriented software developers are in need of a detailed
design notation and UML profiles may solve this problem,
which encouraged us to create an improved version of the
profile. Most of the inconsistencies found in second category
and every of the first category were corrected. A prototype
of a tool helping to apply the process was also created. These
are not shown due to size limitations.

This paper, however, shows only one profile being evalu-
ated. It is preferable to apply the proposed process in more
UML profiles and, optionally, comparing different profiles to
choose the best option for each use.

Another limitation is that we did not verify if the exhaus-
tive application of the process is enough to identify all pos-
sible inconsistencies. Also, we could not demonstrate if a
given profile is completely correct. It is also unclear how to
detect inconsistencies caused by inheritance among model
elements.

As a future work, we intend to analyze the possibility of
using an fixed version ofthe profile with Model Driven De-
velopment for AspectJ code generation. It is also intended
to conduct an experiment similar to the one performed by
Uetanabara [13].

6. ACKNOWLEDGMENTS

Thiago Gottardi would like to thank CNPq for funding (Pro-
cesses 132996/2010-3 and 560241/2010-0). Also, FAPESP
for grant number 2009/16173-6.

7. REFERENCES

[1] S. Clarke and E. Baniassad. Aspect Oriented Analysis
and Design: The Theme Approach. Addison-Wesley
Professional, 1°¢ edition, 2005.

[2] T. Cottenier, A. van den Berg, and T. Elrad. Motorola
WEAVR: Aspect orientation and model-driven
engineering. Journal of Object Technology, Special
Issue: Aspect-Oriented Modeling, 6(7):51-88, August
2007.

[3] J. Evermann. A meta-level specification and profile for
aspectj in UML. In AOM ’07: Proceedings of the 10th
international workshop on Aspect-oriented modeling,
pages 21-27, New York, NY, USA, 2007. ACM.

[4] L. Fuentes and P. Sdnchez. Designing and weaving
aspect-oriented executable uml models. Journal of
Object Technology (JOT), Special Issue on
Aspect-Oriented Modelling, 6(7):109-136, August 2007.

[5] G. Georg, R. France, and 1. Ray. Composing aspect
models. In The 4th AOSD Modeling With UML
Workshop, San Francisco, CA, 2003.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
(TM) Language Specification. Addison Wesley, third
edition, 2005.

[7] L. Groher and T. Baumgarth. Aspect-orientation from
design to code. In Workshop on Early Aspects, AOSD,
Lancaster, UK, 2004.

[8] Y. Han, G. Kniesel, and A. Cremers. Towards visual
aspectj by a meta model and modeling notation. In
AOSD - AOM, 2005.

[9] L. Hendren, O. D. Moor, A. S. Christensen, and
the abc team. The ABC scanner and parser.
http://abc.comlab.ox.ac.uk/documents/scanparse.pdf,
November 2010.

[10] Object Management Group. Unified Modeling
Language Infrastructure Specification.
http://www.omg.org/spec/UML/2.3/Infrastructure/,
May 2010.

[11] P. Sénchez, A. Moreira, L. Fuentes, J. Aratjo, and
J. Magno. Model-driven development for early
aspects. Inf. Softw. Technol., 52(3):249-273, 2010.

[12] A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, and
R. France. Using aspect oriented techniques to support
separation of concerns in model driven development.
In Proc. 29th Computer Software and App. Conf.
COMPSAC 2005, volume 1, pages 121-126, 2005.

[13] J. Uetanabara Jr., R. A. D. Penteado, and V. V.
Camargo. An overview and an empirical evaluation of
UML-AOF: A UML profile for aspect-oriented
frameworks. In ACM Annual Symposium On Applied
Computing (ACM-SAC), pages 1-6, Cross-Montana,
2010.

