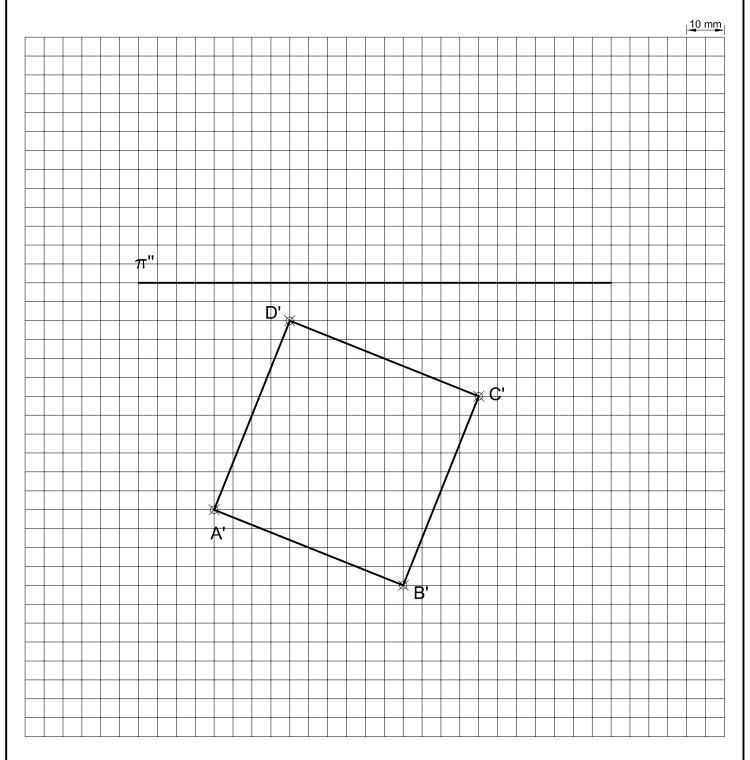
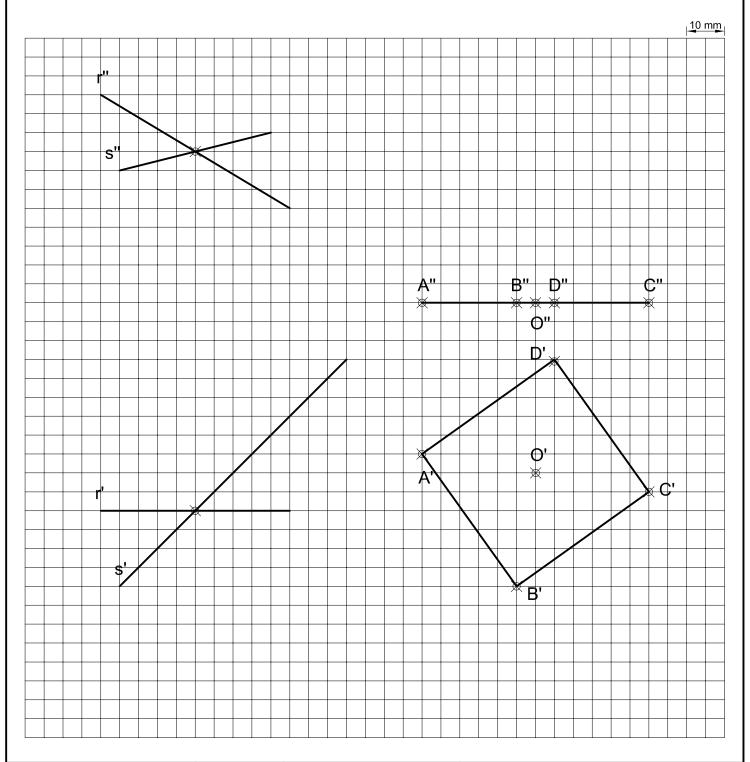

El triángulo **V.A.B.**, representa una de las caras laterales de una pirámide regular de base triangular.


- 1. Dibujar las proyecciones de la pirámide.
- 2. Determinar la intersección y verdadera magnitud de la sección producida en la misma por el plano definido por los puntos **1,2,3**.
- 3. Dibujar el desarrollo y transformada de la superficie de la pirámide.

Departamento I.G. y Técnicas Expresión Gráfica		Referencia Técnica UC016	Tipo de documento Docencia	Alumno			
	UNIVERSIDAD DE	Creado por	Titulo. Título suplementario	Nº de identificación. Titulación			
V	CANTABRIA E.T.S. Ingenieros Industriales y Telecom.	Aprobado por		Escala 1:1	Fecha 08/02/2002	Idioma Es	Hoja 1/1

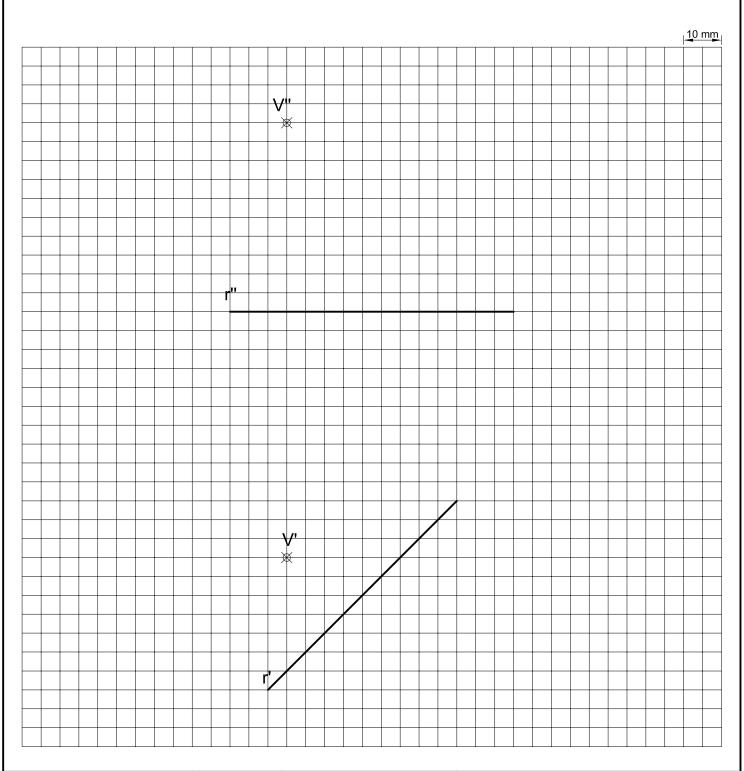
La figura representa la base de una pirámide regular cuadrangular, cuyas aristas forman 60° con el plano horizontal.

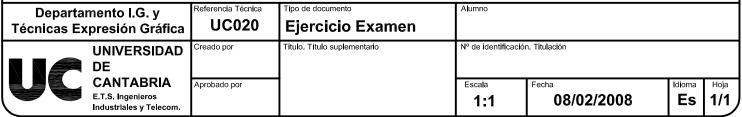

- 1. Representar las proyecciones de la pirámide
- 2. Hallar la sección producida por un plano perpendicular a la arista lateral **VC**, en un punto situado a un tercio de su longitud, medido a partir de **V**.
- 3. Verdadera magnitud de la sección.
- 4. Desarrollo y transformada de la sección.

Departamento I.G. y Técnicas Expresión Gráfica		Referencia Técnica	Tipo de documento	Alumno			
		UC017	Docencia				
	UNIVERSIDAD	Creado por	Titulo. Título suplementario	Nº de identificació	n. Titulación		
	DE						
	CANTABRIA	Aprobado por		Escala	Fecha	Idioma	Hoja
	E.T.S. Ingenieros Industriales y Telecom.			1:1	07/02/2003	Es	1/1

La base de una pirámide oblicua es el cuadrado **ABCD**, siendo el eje (recta que une el vértice **V** con el centro **O** de la base) perpendicular al plano β (**r**,**s**). La longitud del eje mide **80 mm**.

- 1. Representar las vistas diédricas de la pirámide.
- 2. Sección de la pirámide con el plano $\beta(\mathbf{r},\mathbf{s})$ y su verdadera magnitud.
- 3. Desarrollo y transformada de la sección.
- 4. Angulo que forma la cara CBV con el horizontal.

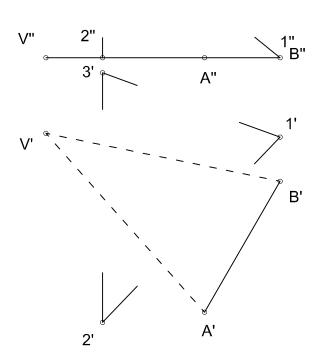



Departamento I.G. y Técnicas Expresión Gráfica		Referencia Técnica UC019	Tipo de documento Ejercicio Examen	Alumno			
	UNIVERSIDAD DE	Creado por	Titulo. Titulo suplementario	Nº de identificació	n. Titulación		
V	CANTABRIA E.T.S. Ingenieros Industriales y Telecom.	Aprobado por		Escala 1:1	Pecha 04/12/2003	Idioma Es	Hoja 1/1

Represéntese el cono recto de base circular, apoyado sobre el horizontal, de altura 80 mm y radio de la base 40 mm, siendo el vértice V el que se indica en el dibujo. Se corta el cono por un plano que contiene a la recta r y pasa por el punto de la altura situado a $\frac{3}{4}$ de la base.

SE PIDE:

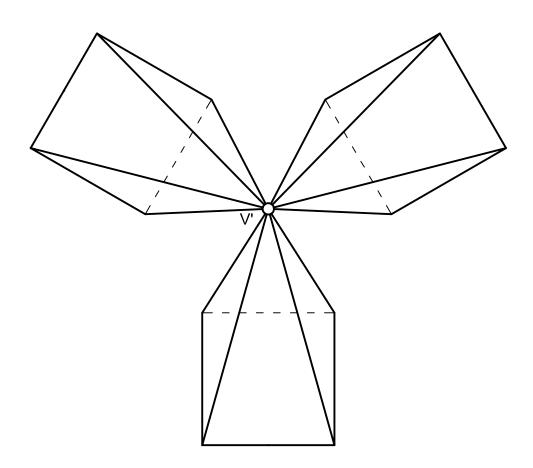
1. Obtener la sección y el desarrollo del cono truncado.



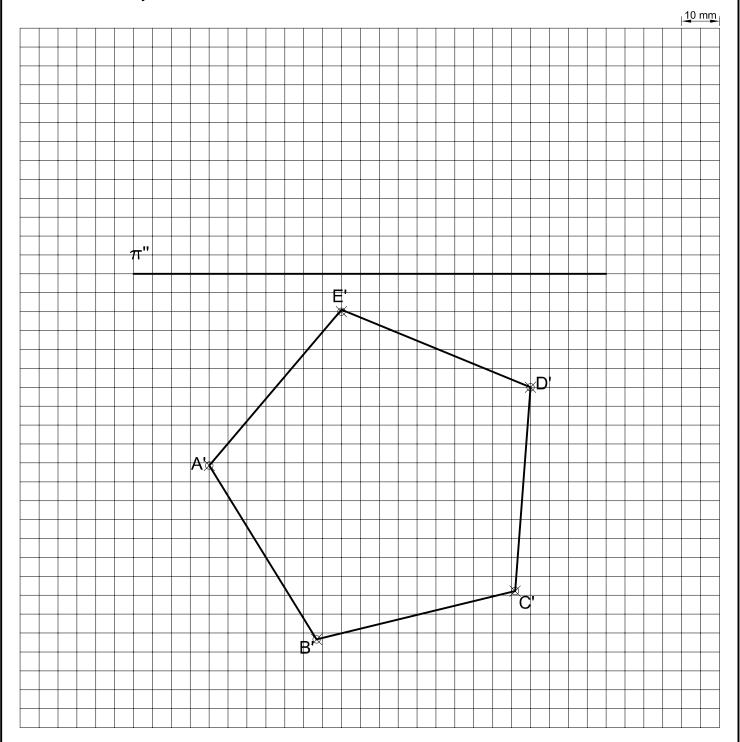
El triángulo VAB, representa una de las caras laterales de una pirámide regular de base cuadrada. Se pide:

- 1. Dibujar las proyecciones de la pirámide.
- 2. Determinar la intersección y verdadera magnitud de la sección producida en la misma por el plano definido por los puntos 1, 2, 3.
- 3. Dibujar el desarrollo y transformada de la superficie de la pirámide.

Ejercicio propuesto el 7 de Setiembre de 2002. Puntuación 10 p. Tiempo. 1 h.



Dadas tres pirámides iguales, apoyadas sobre el horizontal, de base cuadrada y vértice común "V" (según se muestra en la figura adjunta), siendo la cota de "V" 60 mm, se trata de seccionarlas por medio de tres planos de modo que se pueda apoyar sobre el punto medio de dichas secciones una esfera de centro "V" y radio 25 mm (el plano que secciona cada pirámide es perpendicular al eje de la misma). Se pide:


- a) Realizar la figura resultante (las tres pirámides y la esfera apoyada en ellas).
- b) Representar las proyecciones vertical y horizontal de dicha figura.
- c) Angulo de la sección con el plano horizontal

V" O

La figura representa la base de una pirámide regular pentagonal, cuyas caras laterales forman 60° con el plano horizontal.

- 1. Representar las proyecciones de la pirámide
- 2. Determinar el ángulo diedro formado por las caras laterales de la arista VE.
- 3. Hallar la sección producida por un plano perpendicular a la arista **VC**, en un punto situado a un cuarto de su longitud, medido a partir de **V**.
- 4. Verdadera magnitud de la sección.
- 5. Desarrollo y transformada de la sección.

Departamento I.G. y Técnicas Expresión Gráfica		Referencia Técnica UC018	Tipo de documento Docencia	Alumno			
	UNIVERSIDAD DE	Creado por	Titulo. Título suplementario Nº de identificación. Titulación				
V	CANTABRIA E.T.S. Ingenieros Industriales y Telecom.	Aprobado por		Escala 1:1	Fecha 15/02/2003	Idioma Es	Hoja 1/1