Tema 2 Sistemas 2G-4G

Contenido

- Introducción
- TETRA y DMR
- GSM
- UMTS
- LTE
- Bibliografía

Introducción (I)

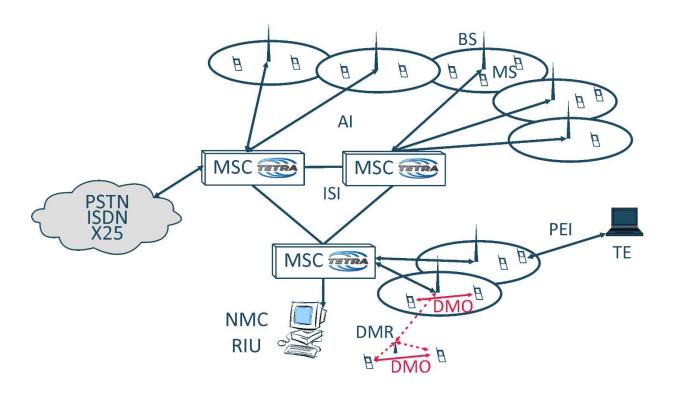
- Sistemas de radiotelefonía móvil profesional (PMR)
 - Redes de comunicaciones móviles de voz y datos de baja velocidad no conectado a la RTP para la gestión de la actividad de personas y flotas
 - Grandes áreas de cobertura, llamadas punto a punto, punto a multipunto, a grupos específicos, bandas de VHF y UHF
 - TETRA, DMR, dPMR
- Sistemas de comunicaciones móviles públicas terrestres (PLMN)
 - Redes de comunicaciones móviles basadas en sistemas celulares
 - Cobertura nacional o internacional y facilidades de itinerancia y traspaso
 - Soportan la transmisión de voz y datos
 - GSM, UMTS, LTE, LTE-A, 5G-NR y evoluciones intermedias (GPRS, HSPA, ...)

TETRA y DMR (I)

- TETRA (*Terrestrial Trunked Radio*)
 - ETSI EN 300 392, EN 300 396, TS 100 392, ...
 - ETSI: TETRA Release 1 y TETRA Release 2 (1995 / 2005)

- Usuarios PMR: Seguridad pública, gobiernos y militares, transporte y distribución, comercio e industria
- Interfaz radio
 - TDMA con 4 intervalos por trama
 - Radiocanales de 25 kHz
 - Modulación π/4 DQPSK
- Bandas de frecuencia
 - O UN-28, Seguridad del Estado, emergencia: 380-385 y 390-395 MHz
 - UN-31, redes móviles troncales: 410-470 MHz
 - UN-40, asignación dinámica de canales: 870-876 y 915-921 MHz

TETRA y DMR (II)


- Modos de funcionamiento
 - TETRA Release 1
 - \circ V + D (Voice + Data)
 - DMO (Direct Mode Operation)
 - PDO (Packet Data Optimized): sin desarrollo
 - TETRA Release 2
 - Extensión de rango TMO (Trunked Mode Operation)
 - TEDS (TETRA Enhanced Data Service)

Modulación	Canalización, velocidades en kbit/s (4 TS)						
Modulacion	25 kHz	50 kHz	100 kHz	150 kHz			
$\pi/4$ DQPSK	15,6						
π/8 D8PSK	24,3						
4QAM	11	27	58	90			
16QAM	22	54	116	179			
	33	80	175	269			
64QAM	44	107	233	359			
	66	160	349	538			

TETRA y DMR (III)

Arquitectura

Al: Air Interface

DMO: Direct Mode Operation

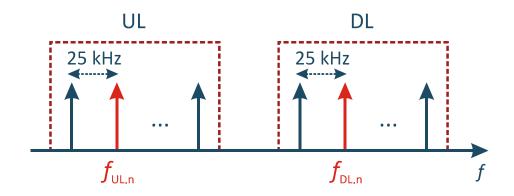
DMR: Direct Mode Repeater

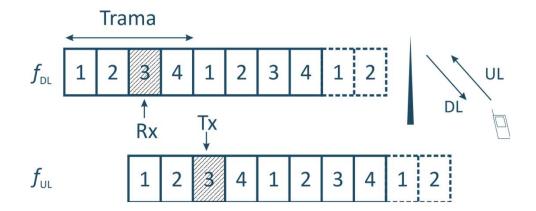
ISI: Inter-System Interface

MSC: Mobile Switching Center

NMC: Network Management Center

PEI: Peripheral Equipment Interface


RIU: Recording Information Unit


TE: Terminal Equipment

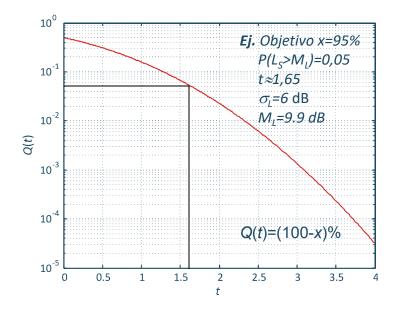
TETRA y DMR (IV)

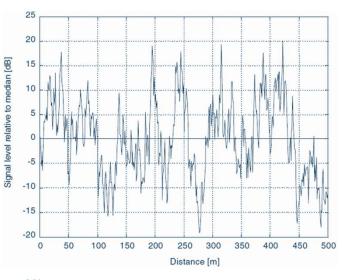
TETRA V+D: Multiacceso TDMA

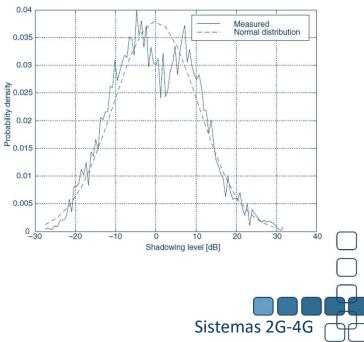
TETRA y DMR (V)

■ TETRA: balance de enlace y cobertura celular

Parámetro		DL	UL	Relación
Α	Potencia del transmisor, P_t (dBm)	40	35	BTS (clase 4) y MS (clase 3)
В	Pérdidas terminales, L_{tt} (dB)	3,5	0	
С	Ganancia antena transmisión, G_t (dBi)	5,5	0	
D	PIRE (dBm)	42	35	D=A-B+C
Е	Sensibilidad Rx, S (dBm)	-103	-106	
F	Degradación por ruido, D (dB)	3	2	
G	Margen desvanecimientos, M _L (dB)	8,3	8,3	$t \cdot \sigma_{L} \ (t \approx 1,28 \ (x=90\%) \ \text{y} \ \sigma_{L} = 6,5 \ \text{dB})$
Н	Ganancia antena recepción, G_r (dBi)	0	5,5	
1	Potencia isótropa, P _{iso} (dBm)	-91,7	-95,7	I=E+F+G
J	Pérdida máxima compensable, L_b (dB)	133,7	136,2	J=D+H-I
K	Cobertura rural, d (km)	15,45	18,20	Hata, h_b =30 m, h_m =1,5 m f =410 MHz

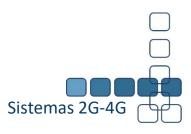

TETRA y DMR (VI)


Shadowing: margen log-normal


$$p(L_s) = \frac{1}{\sigma_L \sqrt{2\pi}} \exp\left[-\frac{L_s^2}{2\sigma_L^2}\right]$$

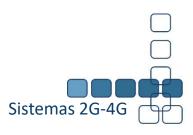
$$P[L_s > M_L] = \int_{M_L}^{\infty} p(L_s) dL_s = Q\left(\frac{M_L}{\sigma_L}\right)$$

$$M_L = t \sigma_L$$



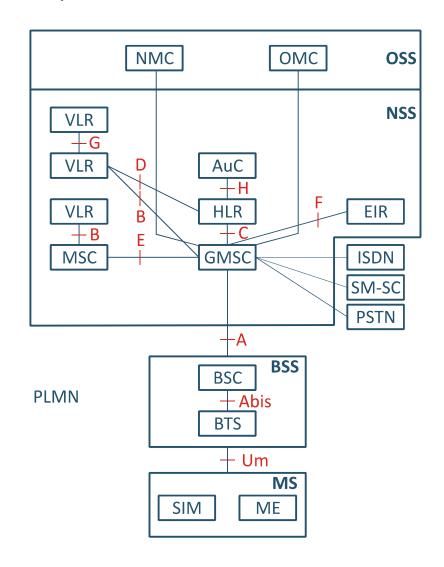
TETRA y DMR (VII)

- DMR (Digital Mobile Radio)
 - ETSI TS 102 361 parts 1-4, TR 102 398
 - Reemplaza a PMR analógicos de canales individuales y a los troncales MPT13XX
 - Proporciona servicios de voz (PTP y PTM) y datos
 - TDMA con 2 TS, modulación 4FSK y canalización de 12,5 kHz (Tier I y II)
 - Sistemas:
 - O DMR *Tier I* (2005): redes sin licencia en 446 MHz, pot. máxima de 0.5 w
 - Redes sencillas, cobertura reducida y sin repetidores. FDMA
 - O DMR *Tier II* (2005): redes con licencia en el rango 66-960 MHz
 - Sustituyen PMR analógicos, amplia cobertura, asignación rígida
 - O DMR *Tier III* (2012): sistema troncal en el rango 66-960 MHz
 - Soporta voz y datos (mensajes cortos o paquetes IP v4 o IP v6)



TETRA y DMR (VIII)

- dPMR (digital Private Mobile Radio)
 - ETSI TS 102 490 (Tier I) TS 102 658 (Tier II)
 - Solución PMR con capacidad de voz/datos de bajo coste y complejidad
 - FDMA, mod. 4FSK, 4800 bit/s y canalización de 6,25 kHz
 - Niveles funcionales dPMR (*Tier I, II*):
 - o dPMR 446: sistemas <u>sin licencia</u> en 446 MHz con cobertura reducida (6 km), sin repetidores (PTP)
 - Mode 1: redes PMR con licencia, sin repetidores (PTP)
 - Mode 2: PMR convencional con licencia, repetidores y estaciones base. Gran cobertura
 - Mode 3: sistema troncal multi-emplazamiento con gestión de acceso y máxima funcionalidad


GSM (I)

- GSM (Global System for Mobile communications)
 - FDD/TDMA, radiocanales de 200 kHz
 - Modulación: GMSK con $B \cdot T = 0.3$ (270,83 kbit/s , $\eta = 1.35$ bit/s/Hz)
 - PIRE máxima estaciones base (GSM 900): 500 W
 - Rp: co-canal 9 dB, canal advacente -9 dB
 - Dispersión Doppler compensable: 200 km/h
 - Dispersión temporal máxima ecualizable: 16 μs
 - Estructura celular 3/9 ó 4/12 (urbano) y omnidireccional (rural)

GSM (II)

Arquitectura

AuC: Authentication Center

BSC: Base Station Controller

BTS: Base Transceiver Station

EIR: Equipment Identity Register

GMSC: Gateway MSC

HLR: Home Location Register

ISDN: Integrated Services Digital Network

MS: Mobile Station

MSC: Mobile Switching Center

NMC: Network Management Center

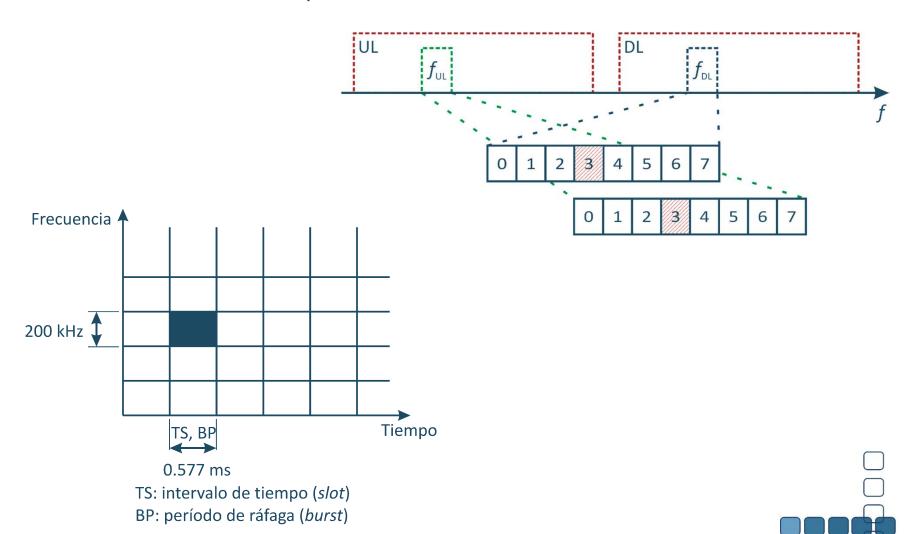
OMC: Operation and Maintenance Center

PLMN: Public Land Mobile Network

PSTN: Public Switched Telephone Network

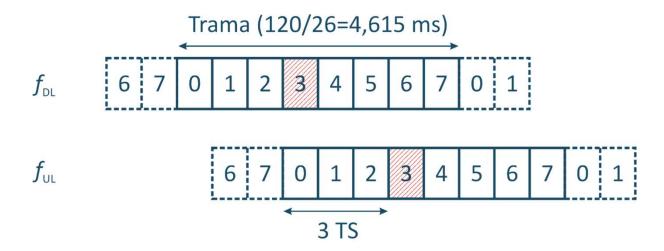
SM-SC: Short Message Service Center

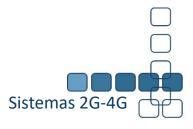
SIM: Subscriber Identity Module


VLR: Visitor Location Register

GSM (III)

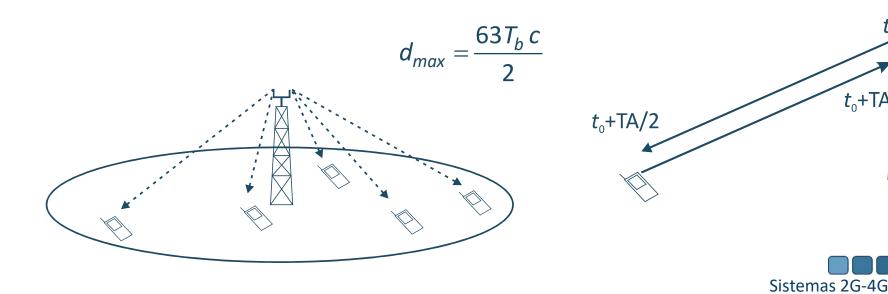
Canales


Canal físico: intervalo temporal de un radiocanal \rightarrow TDMA


Sistemas 2G-4G

GSM (IV)

TDMA: trama temporal



- Trama: 8 TS. Referencia de temporización: MF26 (120 ms) → TS=0,577 ms
- En 1 TS se transmiten 156,25 bits \rightarrow Velocidad interfaz radio 270,833 kbit/s
- En BTS el comienzo de trama en UL se retrasa 3TS \rightarrow Se evita duplexor en MS
- El MS aplica desplazamiento variable, TA (*Timing Advance*) \rightarrow Propagación
- Fuera del TS, el terminal realiza medidas

GSM (V)

- Avance temporal
 - Compensación de distancia
 - Evitar colisiones por efecto cerca-lejos
 - MS adelanta transmisión 3TS TA períodos de bit (TA, Timing Advance)
 - o Cada unidad TA: 550 m. Si TA=1, MS entre 550 y 1100 m
 - TA: se codifica con 6 bits $\rightarrow d_{max} \approx 35$ km

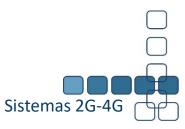
GSM (VI)

- Compensación de distancia
 - \circ Si TA = 1 T_b (000001)

$$T_b = \frac{t_{TS}}{156.25} = \frac{0.577 \cdot 10^{-3}}{156.25} = 3.6928 \,\mu\text{s}$$

$$d = T_b \cdot c = 1107.84 \,\mathrm{m}$$

$$d' = \frac{d}{2} = 553.92$$
m


$$d \in [553.92, 1107.84] \text{ m}$$

$$\circ$$
 Si TA = 63 T_b (111111)

$$d=63 \cdot T_b \cdot c = 69784.7 \text{m}$$

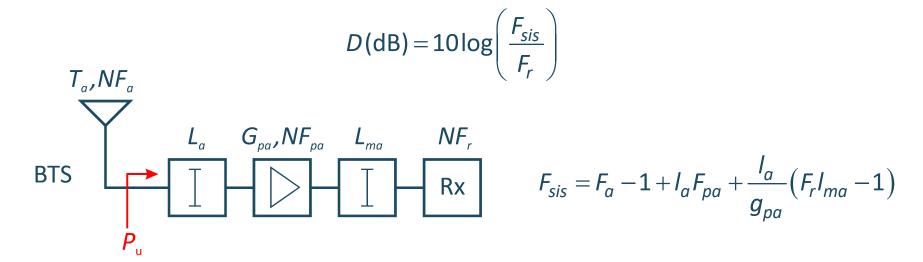
$$d_{max} = \frac{d}{2} = 34892.35$$
m

$$d_{max} \in [34892.35, 35442] \text{ m}$$

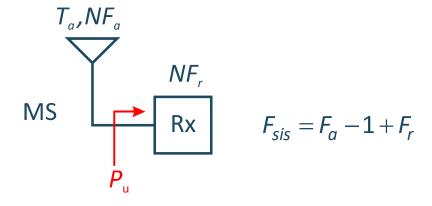
GSM (VII)

- Balance del enlace: sensibilidad
 - Rec. GSM 05.05: valores de referencia de E_b/N_o y sensibilidad para distintos grados de calidad (BER, FER y RBER) y condiciones de propagación

$$S(dBm) = 10log(kT_o) + 10log(v_b(bit/s)) + NF_r + \begin{pmatrix} E_b \\ N_o \end{pmatrix}$$


$$k = 1,38 \cdot 10^{-23} \text{ J/K}$$

 $T_o = 290 \text{ K}$ $10 \log(kT_o) = -174 \text{ dBm/Hz}$
 $V_b = 270,833 \text{ kbit/s} \rightarrow \frac{E_b}{N_o} = 8 \text{ dB}$
BTS y MS $\rightarrow S = -104 \text{ dBm} (NF_c = 8 \text{ dB})$



GSM (VIII)

Balance del enlace: potencia umbral

$$P_u(dBm) = S(dBm) + D(dB)$$

GSM (IX)

Balance del enlace: pérdida compensable

$$P_{iso}(dBm) = S(dBm) + D(dB) + M_{I}(dB) + M_{L}(dB)$$

$$M_1 = 3 \text{ dB}$$
 (ETR103, GSM 03.30)

$$L_b$$
 (dB) = PIRE(dBm) $-P_{iso}$ (dBm) $+G_r$ (dBi)

GSM (X)

Cuadro de balance de enlaces (GSM 03.30)

Parámetro		DL	UL	Relación
Α	Potencia del transmisor, P_t (dBm)	38	33	
В	B Pérdidas combinador, L_c (dB)			
С	C Pérdidas cables y conectores, L_f (dB)			
D	D Ganancia antena transmisión, G_t (dBi)		-3	Efecto del cuerpo del usuario (3 dB)
Ε	PIRE (dBm)	46,2	30	
F	Sensibilidad del receptor, S (dBm)	-102	-104	NF_r =10 dB (DL) y NF_r =8 dB (UL)
G	Degradación por ruido, D (dB)	2,8	2,2	
Н	Margen interferencia, M _I (dB)	3	3	
1	Margen desvanecimientos, M _L (dB)	9	9	t ≈1,28 (x =90%) y σ_{L} =7 dB
J	Ganancia antena recepción, G_r (dBi)	-3	12	usuario (3 dB) y diversidad (3 dB)
K	Potencia isótropa, P _{iso} (dBm)	-87,2	-89,8	K=F+G+H+I
L	Pérdida máxima compensable, L_b (dB)		131,8	L=E-K+J
M	Cobertura en exteriores, d (km)	1,25	1,42	Se considera Hata, h_b =30 m, h_m =1,5 m
N	Cobertura en interiores, d (km)	0,47	0,53	Hata con L_b -15 dB (penetración)

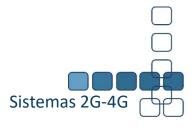
GSM (XI)

Okumura-Hata

Áreas urbanas
$$L = A + B \cdot \log d - E$$
 (dB)Unidades:Áreas suburbanas $L = A + B \cdot \log d - C$ (dB) $f \rightarrow \text{MHz}$ Áreas abiertas $L = A + B \cdot \log d - D$ (dB) $d \rightarrow \text{km}$ $h_b, h_m \rightarrow \text{m}$

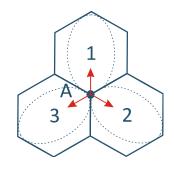
$$A = 69.55 + 26.16 \log f - 13.82 \log h_b$$

$$B = 44.9 - 6.55 \log h_b$$


$$C = 2(\log(f/28))^2 + 5.4$$

$$D = 4.78 (\log f)^2 - 18.33 \log f + 40.94$$

$$E = 3.2(\log(11.75 h_m))^2 - 4.97 \quad \text{ciudades grandes, } f \ge 300 \text{ MHz}$$


$$E = 8.29(\log(1.54 h_m))^2 - 1.1 \quad \text{ciudades grandes, } f < 300 \text{ MHz}$$

$$E = (1.1 \log f - 0.7) h_m - (1.56 \log f - 0.8) \quad \text{ciudades medias y pequeñas}$$

GSM (XII)

Agrupaciones trisectorizadas 3/9 ó 4/12

Sistemas clásicos

$$S_c = \frac{3\sqrt{3}R^2}{2}$$

$$J = \frac{1}{3} \left(\frac{D}{R} \right)^2$$

$$S_{rc} = \frac{3\sqrt{3} R^2 J}{2}$$

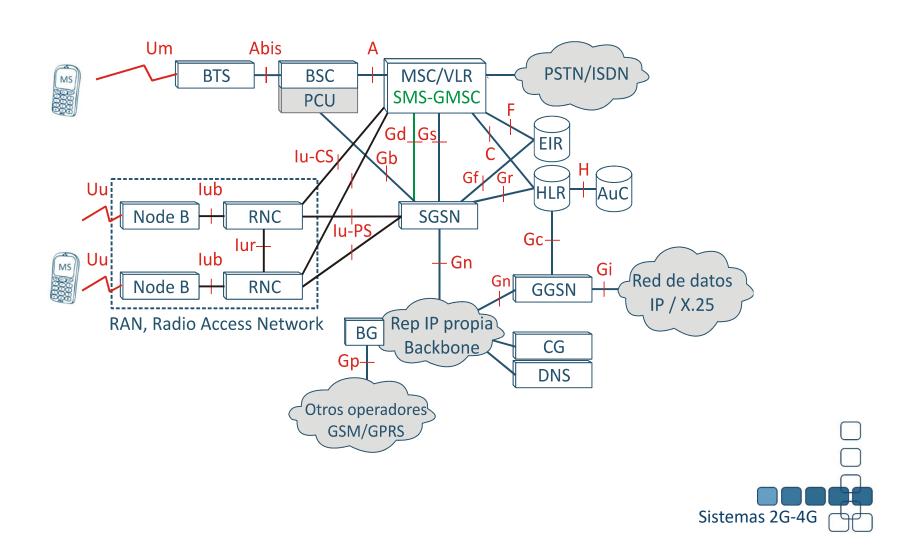
$$S_c = \frac{3\sqrt{3}R^2}{2}$$
 $J = \frac{1}{3}\left(\frac{D}{R}\right)^2$ $S_{rc} = \frac{3\sqrt{3}R^2J}{2}$ $Q = E\left[\frac{S_T}{S_{rc}}\right] + 1$

Grado de servicio y capacidad de usuarios

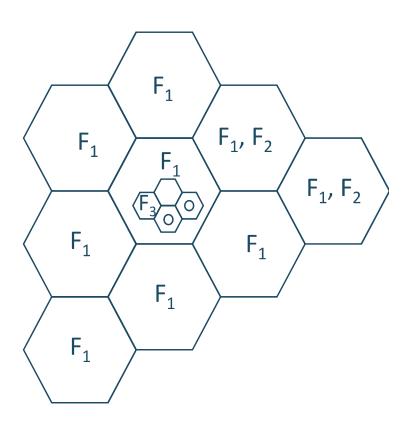
$$p = 1 - \left(1 - p_b\right) p_c$$

$$GOS(\%) = 100p$$

$$N = \frac{C}{J}$$
 $m = \frac{A}{a}$ $M = QJm$


UMTS (I)

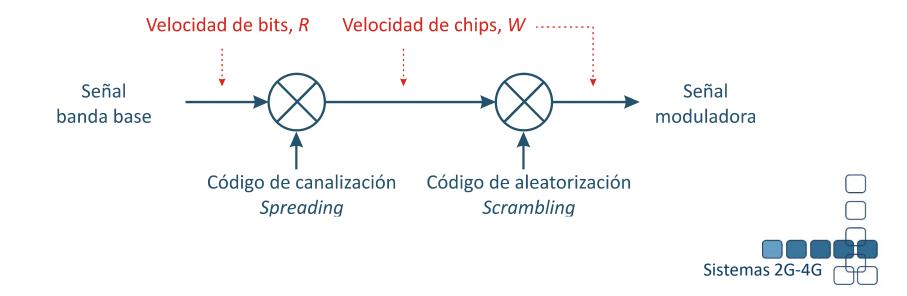
- UMTS (Universal Mobile Telecommunications System)
 - 3GPP: TS 25.-series (especificaciones de UTRAN)
 - Ensanchamiento espectral (códigos OVSF y PN), 5 MHz
 - Control rápido de potencia: 1500 veces/seg
 - Modos de operación FDD y TDD
 - UTRA FDD: WCDMA y modulación QPSK (estrictamente dual BPSK en UL)
 - UTRA TDD: TD-CDMA (WCDMA + TDMA) y modulación QPSK
 - Velocidad flexible, hasta 2 Mbit/s
 - Establecimiento simultáneo de varias conexiones, ej. voz y datos (multiRAB)


UMTS (II)

- Arquitectura
 - Release 99: CN de GSM/GPRS → Red IP (All IP) → Releases 6, 7,..., 13

UMTS (III)

- Estructura celular jerárquica
 - UTRA FDD: macro y microcélulas (144-384 kbit/s)
 - UTRA TDD: micro y picocélulas (hasta 2 Mbit/s)



UMTS (IV)

WCDMA

- Secuencias de canalización
 - Códigos cortos y ortogonales entre sí
 - Factor de ensanchamiento variable SF (Spreading Factor) \rightarrow 3,84 Mchip/s
- Secuencias de aleatorización
 - Identifican a las celdas en DL y diferencian a los usuarios en el UL
 - Permiten utilizar mismos códigos de canalización en varias celdas

UMTS (V)

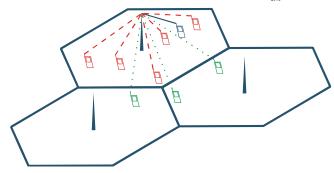
- Capacidad celular
 - WCDMA: sistema limitado por interferencia
 - La capacidad multiacceso depende de la interferencia total recibida, del tipo de servicio y difiere según el enlace:
 - UL: Si aumentan los usuarios aumenta la interferencia y la potencia en los
 UE para misma SIR, hasta llegar al límite de capacidad
 - DL: Límite cuando la potencia del Nodo B iguala a la máxima disponible

$$\frac{P_{r_{ik}}}{I_{tot} + P_n} \cdot \frac{W}{R_k} \le \left(\frac{E_b}{N_0}\right)_k$$

- Cálculos de capacidad complicados y aproximados
- Aproximación en cálculos analíticos (UL): control de potencia ideal, distribución de carga uniforme en la célula, un solo tipo de servicio

UMTS (VI)

Capacidad celular: UL


$$\frac{E_b}{N_0} = \frac{P_r/R}{\left(I_{int} + I_{ext} + P_n\right)/W}$$

$$f = 1 + \frac{I_{ext}}{I_{int}}$$


$$I_{int} = P_r(N-1)\alpha$$

$$\frac{E_b}{N_0} = \frac{P_r}{P_r (N-1)\alpha f + P_n} G_p$$

- Señal deseada, P,
- -- Interferencia intracelular, I_{int}
- \cdots Interferencia intercelular, I_{ext}

- o E_b/N_o : umbral para BER asociada
- \circ P_r : potencia recibida
- W: tasa de chips
- R: velocidad binaria del servicio
- \circ I_{int} , I_{ext} : interferencia inter e intracelular
- \circ P_n : potencia de ruido térmico
- o f: factor de reutilización
- \circ α : factor de actividad, α <1

UMTS (VII)

Capacidad celular: UL

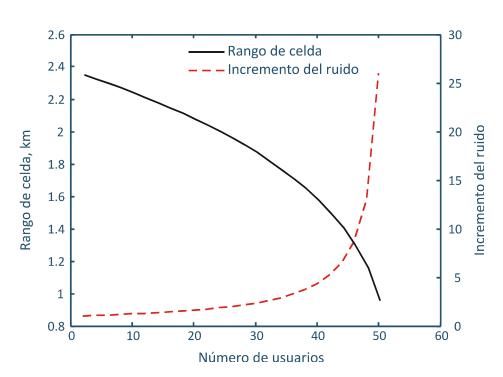
$$P_r = \frac{P_n}{\frac{G_p}{E_b/N_0} - (N-1)\alpha f}$$

$$N_{m lpha x} = 1 + \frac{G_p}{\alpha f(E_b/N_0)}$$

$$X = \frac{N-1}{N_{m\acute{a}x} - 1}$$

○ Capac. asintótica, N_{max} : $P_r \rightarrow \infty$, $P_t \rightarrow \infty$

Sistemas 2G-4G

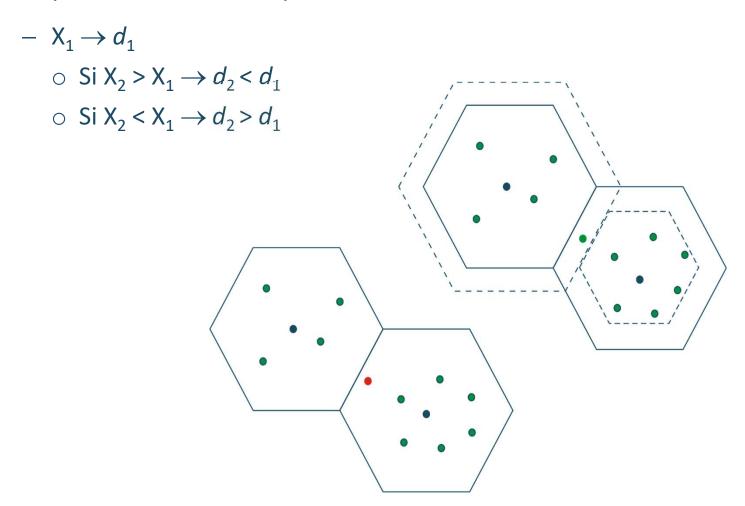

○ Factor de carga, X: N<<N_{max}

$$S = \frac{E_b}{N_0} \cdot \frac{1}{1 - X} \cdot KT_0 RF_r$$

$$S(dBm) = -174 + NF_r (dB) + 10 \log R (bit / s) + \left(\frac{E_b}{N_0}\right)_{dB} - 10 \log (1 - X)$$

UMTS (VIII)

- Capacidad celular: UL
 - Capacidad y cobertura están relacionados


$$NFR = \frac{I_{int} + I_{ext} + P_n}{P_n}$$

$$NFR = \frac{1}{1 - X}$$

UMTS (IX)

Capacidad celular: respiración celular

UMTS (X)

- Capacidad celular: tráfico
 - Aprox. de Viterbi: relaciona GOS (p_{out}) e intensidad de tráfico (A) considerando α , f y desviación del control de potencia, σ_c

$$p_{out} = Q \left(\frac{N' - \alpha A f \varphi_c}{e^{(\gamma \sigma_c)^2} \sqrt{\alpha A f}} \right) \qquad B = \frac{\left[Q^{-1} (p_{out}) \right]^2}{N'}$$

$$A = \frac{N'}{\alpha f} F(B, \sigma_c)$$

$$N' = \frac{G_{\rho} X_{UL}}{\left(E_{b} / N_{0}\right)}$$

$$B = \frac{\left[Q^{-1} \left(p_{out}\right)\right]^{2}}{N'}$$

$$F(B, \sigma_{c}) = \frac{1}{\varphi_{c}} \left[1 + \frac{\varphi_{c}^{3} B}{2} \left(1 - \sqrt{1 + \frac{4}{\varphi_{c}^{3} B}}\right)\right]$$

$$\gamma = \ln(10)/10$$

$$\varphi_c = e^{(\gamma \sigma_c)^2/2}$$

UMTS (XI)

- Capacidad celular: múltiples servicios
 - M usuarios de S servicios distintos

$$\left(\frac{E_b}{N_0}\right)_j = \frac{P_{r,j}/R_j}{\left(\sum_{\substack{i=1\\i\neq j}}^{M} \alpha_i P_{r,i} + P_n\right)/W} = \frac{P_{r,j}}{\sum_{\substack{i=1\\i\neq j}}^{M} \alpha_i P_{r,i} + P_n} \cdot G_{\rho,j}$$

Factor de carga

$$\lambda_{j} = \frac{\alpha_{j}}{\alpha_{j} + \frac{G_{p,j}}{(E_{b}/N_{0})_{j}}}$$

$$\lambda_{j} = \frac{\alpha_{j}}{\alpha_{j} + \frac{G_{p,j}}{\left(E_{b}/N_{0}\right)_{j}}}$$

$$NFR = \frac{I_{tot}}{P_{n}} = \frac{1}{1 - X_{UL}} \qquad M_{I} = -10log(1 - X_{UL})$$

$$X_{UL} = \sum_{m=1}^{M} \lambda_{m} = \lambda_{1} \cdot M_{1} + \lambda_{2} \cdot M_{2} + \ldots + \lambda_{S} \cdot M_{S}$$

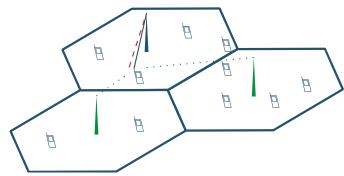
$$X_{UL} = f \sum_{m=1}^{M} \lambda_{m}$$
Sistemas 2G-4G

UMTS (XII)

Capacidad celular: DL

$$\frac{E_b}{N_0} = \frac{P_{i,1} \beta \phi_i / R_i}{\left(I_{int} + I_{ext} + P_n\right) / W}$$

$$I_{int} = P_{i,1} (1 - \beta \phi_i) (1 - o_i)$$


$$I_{ext} = \sum_{j=2}^{J} P_{i,j} = \sum_{j=1}^{J} P_{i,j} - P_{i,1} = (f_i - 1) P_{i,1}$$

$$\circ \quad \beta: \% \text{ pot. asignada a canales de tráfico}$$

$$\circ \quad P_1 \beta \phi_i: \% \text{ pot. asignada a usuario } i\text{-ésimo}$$

-- Interferencia intracelular, Iin

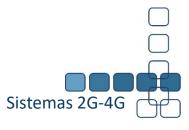
· · · Interferencia intercelular, I_{ext}

- o: factor de ortogonalidad, $o \in [0,1] \rightarrow I_{int}$

$$\frac{E_b}{N_0} = \frac{P_{i,1} \beta \phi_i G_{p,i}}{P_{i,1} (1 - \beta \phi_i) (1 - o_i) + P_{i,1} (f_i - 1) + P_n}$$

$$\frac{E_{b}}{N_{0}} = \frac{P_{i,1} \beta \phi_{i} G_{p,i}}{P_{i,1} (1 - \beta \phi_{i}) (1 - o_{i}) + P_{i,1} (f_{i} - 1) + P_{n}} \quad P_{i,1} = \frac{P_{n}}{\beta \phi_{i} \left(\frac{G_{p,i}}{E_{b}/N_{0}} + 1 - o_{i}\right) - f_{i} + o_{i}} \quad \Box$$

UMTS (XIII)


Cobertura celular

- La potencia requerida y el alcance dependen de usuarios activos en la célula
- Análisis aproximado. Con varios servicios se busca el más limitante en UL y DL
- Con tráficos mixtos, el análisis de cobertura y capacidad más fiable se hace mediante simulaciones

$$PIRE(dBm) = P_t + G - L$$

$$S(dBm) = -174 + 10\log(R(bit/s)) + NF_r + \binom{E_b}{N_o} + M_I$$

$$L_{max}(dB) = PIRE - S + G_r + G_{SHO} + G_{div} - L_{edif+otros}$$

UMTS (XIV)

Balance de enlaces: ejemplo voz

Parámetro	UL	DL	Consideraciones
Velocidad del servicio, R (bit/s)	12200	12200	
Potencia c. tráfico, P_t (dBm)	21	42,5	Potencia Nodo B: 43 dBm (β=0,9)
Potencia media/usuario, P _u (dBm)	21	28,6	Se consideran 25 usuarios
Factor actividad y reutilización, $lpha/f$	0,4/1,6	0,4/1,6	
Pérdidas cables y conectores Tx/Rx , L_f (dB)	0/3	3/0	
Ganancia antena Tx/Rx, $G_{t/r}$ (dBi)	0/18	18/0	
PIRE (dBm)	21	43,6	
Figura de ruido del RX, NF _r (dB)	2	8	
Factor de carga, X (%)	55	55	
Factor de ortogonalidad, o	0	0,4	
Margen de interferencia, M_I (dB)	3,5	1,1	MI=-10log (1-X)
Desv. típica del control de pot., σ_c (dB)	2	2	ρ_c =exp(($\gamma\sigma_c$) ² /2) ,, γ =ln(10)/10
E_b/N_0 (objetivo/efectiva) (dB)	5,3/5,8	7,9/8,4	$(E_b/N_0)_{ef} = (E_b/N_0)_{obj} + 10log(\rho_c)$
Sensibilidad del receptor, S (dBm)	-121,8	-115,6	$S=-174+NF_r+10\log(R(bit/s))+(E_b/N_0)_{ef}+M_I$
Ganancia por SHO/diversidad (dB)	2/2	2/0	Macrodiversidad y diversidad
Pérdidas: pen. edificios/cuerpo (dB)	15/2,5	15/2,5	
Margen log-normal (dB)	10,2	10,2	Desv. lentos, $t\approx$ 1,28 ($x=90\%$) y $\sigma_{\rm L}$ =8 dB
Atenuación máxima , L _{max} (dB)	134,1	133,5	HATA-COST231 con $f_{\rm UL}$ =1950 MHz, $f_{\rm DL}$ =2140 MHz, h_b =25 m y h_m =1,5 m (otros modelos)
Cobertura, d (km)	0,755	0,665	Equilibrio de enlaces

UMTS (XV)

Balance de enlaces: ejemplo datos

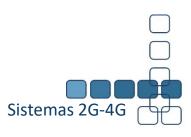
Parámetro	UL	DL	Consideraciones
Velocidad del servicio, R (bit/s)	384000	384000	
Potencia disponible (dBm)	21	39,16	
Potencia Tx por UEs en borde, P_t (dBm)	21	33,04	
Ganancia antena Tx/Rx, $G_{t/r}$ (dBi)	0/18	18/0	
Pérdidas cables y conectores Tx/Rx , L_f (dB)	0/3	3/0	
PIRE (dBm)	21	48,04	
Figura de ruido del RX, NF _r (dB)	2	8	
Factor de carga, X (%)	47,51	65	
Factor de ortogonalidad, o	0	0,4	
Margen de interferencia, M_{l} (dB)	2,80	1,31	MI=-10log (1-X)
Desv. típica del control de pot., σ_c (dB)	1,50	1,50	ρ_c =exp(($\gamma\sigma_c$) ² /2) ,, γ =ln(10)/10
E_b/N_0 (objetivo/efectiva) (dB)	1,3/1,56	1,10/1,36	$(E_b/N_0)_{ef} = (E_b/N_0)_{obj} + 10\log(\rho_c)$
Sensibilidad del receptor, S (dBm)	-111,80	-107,49	S=-174+ NF_r +10log(R (bit/s))+(E_b/N_o) _{ef} + M_I
Ganancia por SHO + diversidad (dB)	5	2	Macrodiversidad y diversidad
Pérdidas: pen. edificios/cuerpo (dB)	15/0	15/0	
Margen log-normal (dB)	8	8	
Atenuación máxima , L _{max} (dB)	129,80	134,53	HATA-COST231 con $f_{\rm UL}$ =1950 MHz, $f_{\rm DL}$ =2140 MHz, h_b =25 m y h_m =1,5 m (otros modelos)
Cobertura, d (km)	0,572	0,711	Equilibrio de enlaces

UMTS (XVI)

- Hata-COST231
 - Extensión del modelo de Okumura-Hata para (1500< f < 2000 MHz)

$$L = F + B \log d - E + G \quad (dB)$$

Unidades:


$$f \rightarrow MHz$$

 $d \rightarrow km$
 $h_b, h_m \rightarrow m$

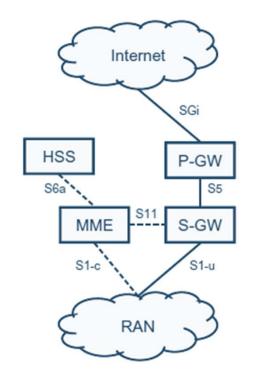
$$F = 46.3 + 33.9 \log f - 13.82 \log h_b$$

B y $E \equiv$ se definen como en el modelo original de Okumura-Hata

G = 0 dB ciudades de tamaño medio y áreas suburbanas

G = 3 dB para áreas metropolitanas

LTE (I)


- LTE (Long Term Evolution), Características (LTE release 8)
 - Flexibilidad del espectro: 900 / 1800 / 2000 / 2600 MHz (y otras)
 - Flexibilidad de ancho de banda (1,4 / 3 / 5 / 10 / 15 / 20 MHz)
 - Tasas de 100 Mbit/s en DL y 50 Mbit/s en UL
 - Retardos reducidos en establecimiento y transmisión (latencia inferior a 10 ms)
 - Modos dúplex FDD y TDD
 - Multiacceso OFDMA en DL y DFTS-OFDM (SC-FDMA) en UL
 - Modulaciones QPSK, 16QAM y 64 QAM
 - Técnicas multiantena: diversidad, conformación de haces (beamforming) y
 MIMO (Multiple Input, Multiple Output)
 - Técnicas de protección frente a las variaciones del canal: rate control, channeldependent scheduling, hybrid ARQ with soft combining
 - Coordinación de interferencia (ICIC, Inter-Cell Interference Coordination)
 - Difusión mediante SFN (MBSFN, Multicast Broadcast SFN)



LTE (II)

Arquitectura

LTE RAN (Radio Access Network) y núcleo de red EPC (Evolved Packet Core)

Core Network

S-GW

MME

MME

S1-u

S1-c

S1-c

S1-u

S1-u

S1-u

ENodeB

ENodeB

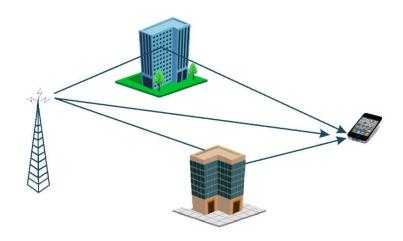
eNodeB: E-UTRAN NodeB HSS: Home Subscriber Server

MME: Mobility Management Entity

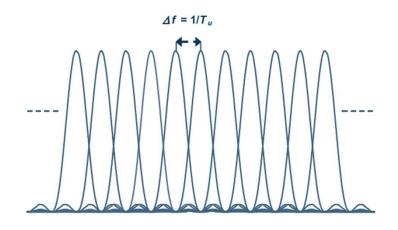
P-GW: Packet-Data Network Gateway

S-GW: Serving Gateway

LTE (III)


Arquitectura

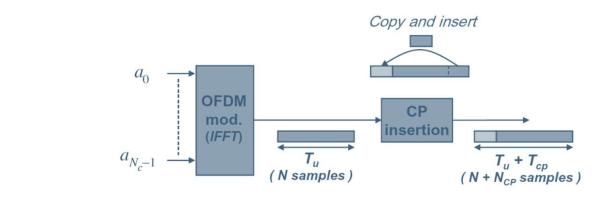
- Núcleo de red (EPC)
 - HSS: base de datos con información de suscripción del usuario
 - \circ MME: nodo que maneja claves y estados del UE (IDLE \rightarrow ACTIVE)
 - P-GW: conecta EPC a internet con asignación de direcciones IP y aplicación de QoS según PCRF (Policy and Charging Rules Function)
 - S-GW: nodo que conecta EPC y LTE RAN con apoyo a la movilidad de los usuarios entre eNodeBs o entre tecnologías
- Red de acceso radio (LTE RAN)
 - Arquitectura plana con eNodeB
 - Responsable de funciones radio en una o varias células (nodo lógico)
 - Conexión con EPC a través de interfaz S1 (c-plano control u-plano usuario)
 - La interfaz X2 soporta movilidad de usuarios y otras funciones (ICIC)
 - Nuevos nodos en releases 9 y 10 al introducir otras funciones

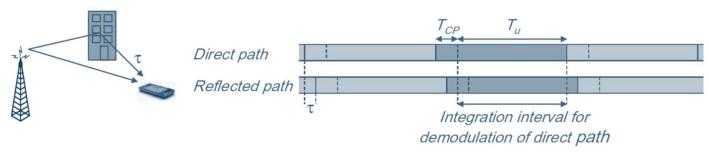


LTE (IV)

OFDM: transmisión multi-portadora

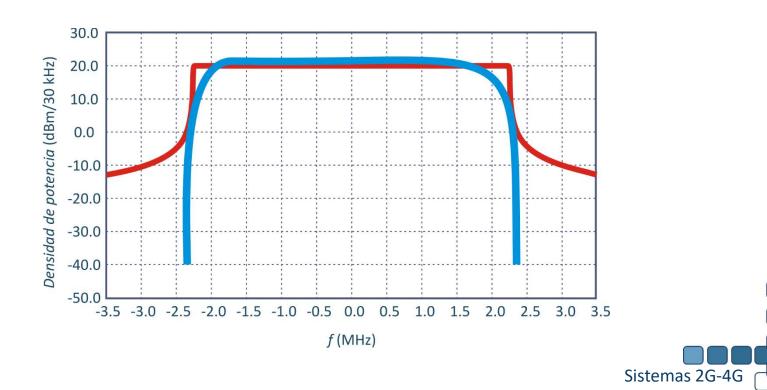
- Múltiples señales de banda estrecha multiplexadas en frecuencia (OFDM)
- Inconveniente UL: variaciones en la potencia instantánea afectan al consumo del transmisor y al coste del amplificador (DFTS-OFDM)


 $T_u \equiv$ tiempo útil del símbolo de modulación por subportadora

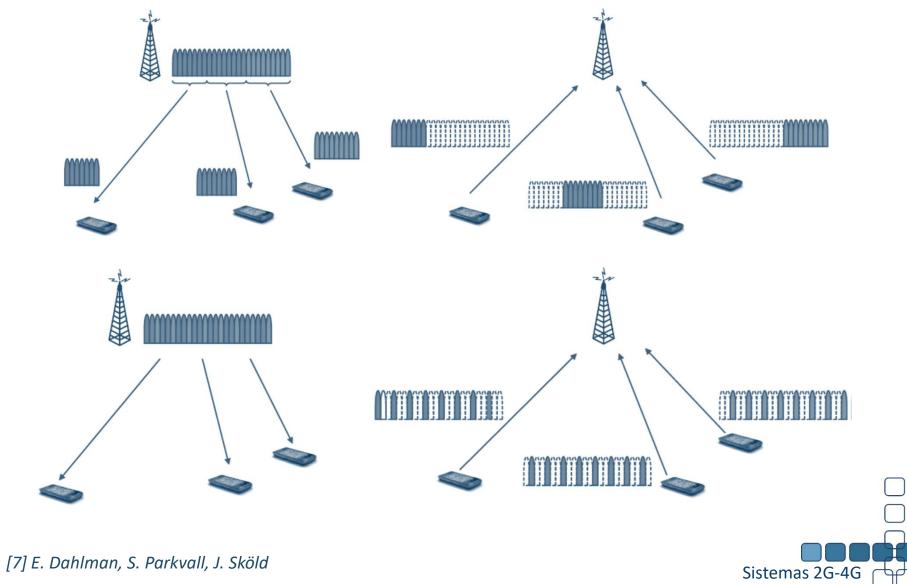

 $\Delta f \equiv$ separación entre subportadoras

LTE (V)

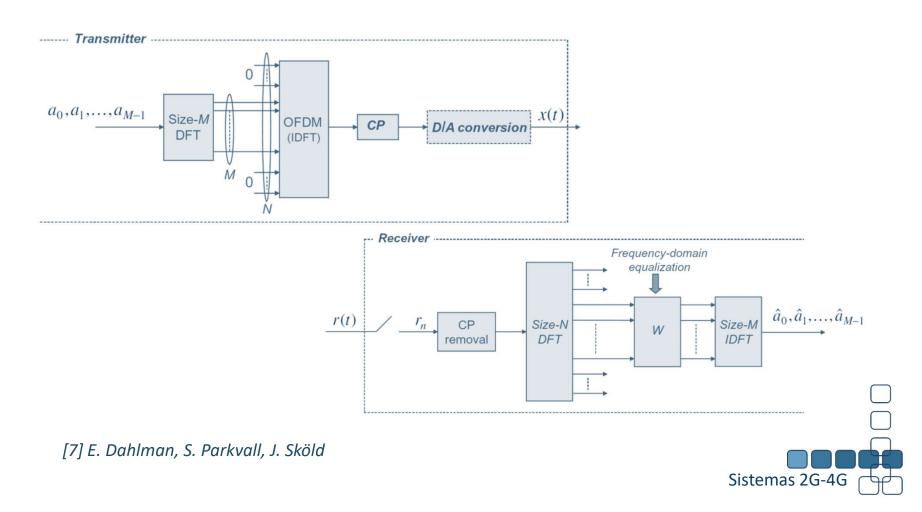
- OFDM: prefijo cíclico
 - Protección frente a la dispersión temporal del canal radio
 - $T=T_{cp}+T_u$: Reducción de la tasa de símbolos OFDM ○ Si $\Delta f \downarrow \to T_u \uparrow \to T_u / T \uparrow$: sensibilidad a dispersión Doppler o ruido de fase
 - Ortogonalidad si la dispersión temporal es inferior a $T_{cp} \rightarrow \&$ distancia?



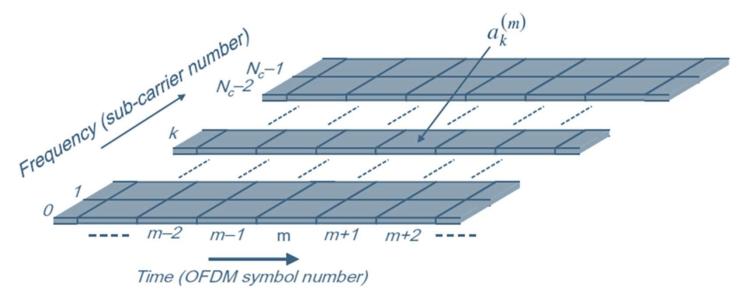
Sistemas 2G-4G


LTE (VI)

- OFDM: ancho de banda de la señal
 - En primera aproximación: $B=N_c\cdot\Delta f$
 - Emisiones fuera de banda asociadas a los lóbulos laterales de subportadoras:
 aplicar filtrado o enventanado en el dominio del tiempo
 - En la práctica se requiere del orden de un 10% de banda de guarda:
 - \circ *Ejemplo*: para canalización de 5 MHz, Δ_f =15 kHz, N_c =300 y B=4,5 MHz

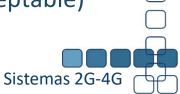

LTE (VII)

OFDMA

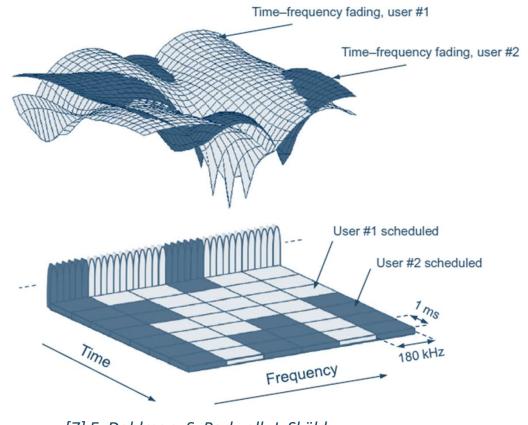

LTE (VIII)

- UL: DFTS-OFDM (*DFT Spread OFDM*) o SC-FDMA
 - Inconveniente OFDM: variaciones importantes en la potencia instantánea de la señal transmitida con baja eficiencia del amplificador de potencia → consumo de potencia y coste de UE en UL

LTE (IX)


Recurso físico en la transmisión OFDM

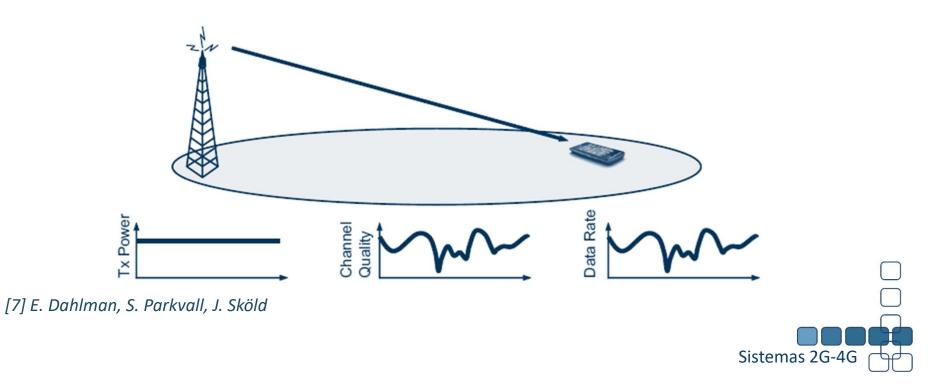
[7] E. Dahlman, S. Parkvall, J. Sköld

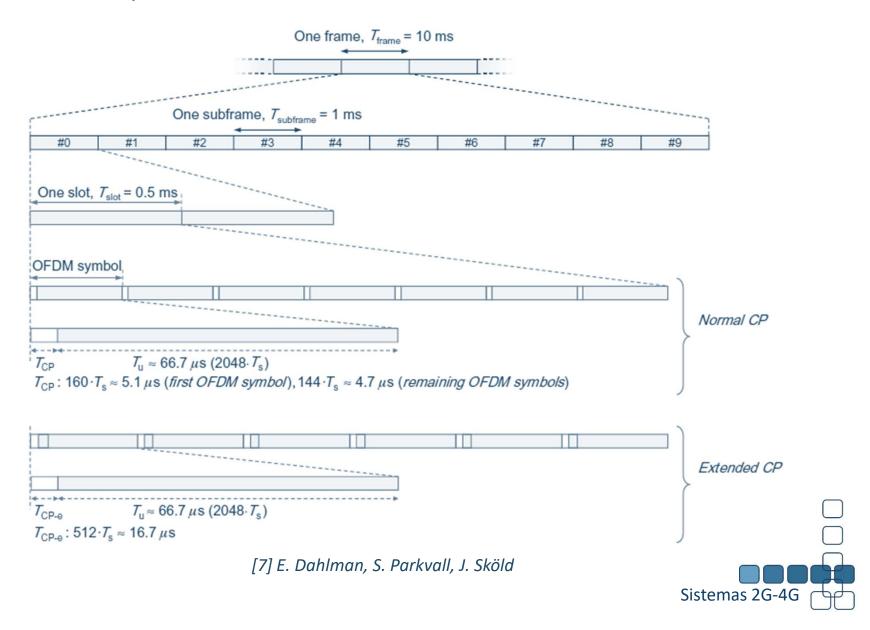

- Recursos tiempo-frecuencia compartidos dinámicamente entre usuarios
- Separación entre subportadoras, Δ_f = 15 kHz o reducida (Δ_f = 7.5 kHz)
- Implementación Tx/Rx basado en FFT (no es obligatorio pero es común)


$$\circ f_s = 1/T_s = \Delta_f N_{FFT} = 15000 N_{FFT} \quad (N_{FFT} = 2048 \rightarrow f_s = 30,72 \text{ MHz, aceptable})$$

LTE (X)

- Asignación dinámica de recursos
 - Recursos tiempo-frecuencia asignados por planificador (scheduler)
 - Decisiones: 1ms 180 kHz. A UE se le pueden asignar varios bloques de 180 kHz
 en cada intervalo de 1 ms



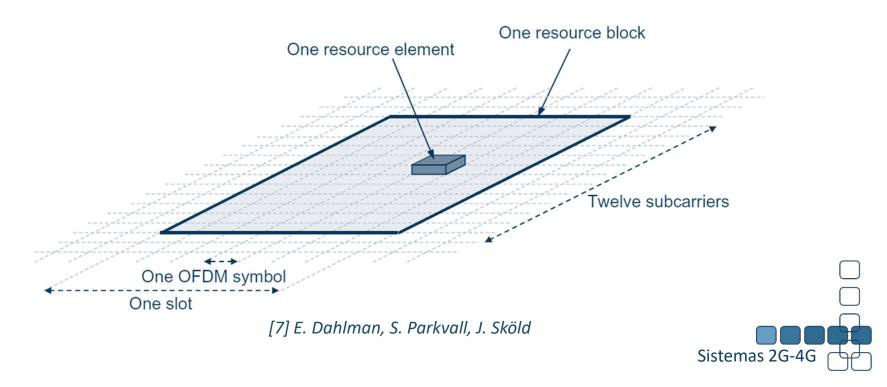

LTE (XI)

- Asignación dinámica de recursos
 - El planificador también determina la velocidad a utilizar en cada transmisión
 - Ejemplo: enlace radio desfavorable: QPSK y tasa de código baja; enlace radio favorable: 16 QAM ó 64 QAM y tasa de código alta → AMC, Adaptive Modulation and Coding
 - Para realizar la planificación en DL se requiere conocer el estado del canal:
 envío de señales de referencia (CSI, Channel State Information → decisiones)

LTE (XII)

Estructura temporal

LTE (XIII)


- Estructura temporal
 - Referencia temporal T_s : N_{FFT}=2048, T_s = 1/(15000·2048)
 - \circ T_{frame} =307200 T_s , $T_{subframe}$ =30720 T_s y T_{slot} =15360 T_s
 - Prefijo cíclico (CP, Cyclic Prefix) normal o extendido
 - Normal: 7 símbolos por intervalo (CP primer símbolo mayor para completar)
 - Extendido: 6 símbolos
 - Menos eficiente (mayor exceso frente a T_{ij})
 - Útil en escenarios con elevada dispersión del retardo (células extensas)
 - Necesario en transmisiones desde múltiples células (MBSFN) para cubrir dispersión temporal del canal y diferencias en los retardos de las diferentes células (comportamiento SFN)

LTE (XIV)

Recursos físicos

- Combinación de asignaciones de tiempo y frecuencia
- Elemento de recursos (RE, Resource Element): subportadora modulada con M
 niveles (M=4, 16, 64 según sea QPSK, 16QAM o 64 QAM) en un símbolo OFDM
- Bloque de recursos (RB, Resource Block): 12 subportadoras consecutivas sobre un intervalo de 0,5 ms (T_{slot}) con un ancho de banda de 180 kHz
- 1 RB=7·12=84 RE (CP normal) ,, 1 RB=6·12=72 RE (CP extendido)

LTE (XIV)

Recursos físicos

- Par bloque de recursos (resource block pair): unidad básica de planificación (scheduling) formada por dos RB consecutivos en el tiempo en una subtrama
- Asignaciones de bloques de frecuencia con RB variable entre 1 y 110
- En frecuencia, las especificaciones permiten portadoras con cualquier número de RB entre 6 y 110

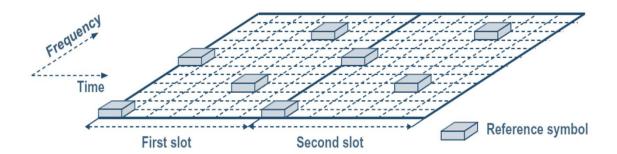
Ancho de banda nominal (MHz)	1,4	3	5	10	15	20
Ancho de banda ocupado en transmisión (MHz)	1,08	2,7	4,5	9	13,5	18
Número de RB (UL o DL)	6	15	25	50	75	100
Número de subportadoras	72	180	300	600	900	1200

LTE (XVI)

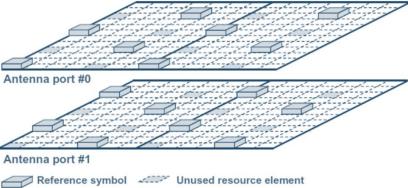
- Agregación de portadoras, CA (Carrier Aggregation release 10)
 - Combinar hasta 5 portadoras (component carriers) de diferentes anchos de banda (hasta 100 MHz)
 - UE pueden transmitir/recibir simultáneamente en múltiples portadoras
 - Compatibilidad hacia atrás con UE compatibles release 8/9
 - Aplicable sobre espectro fragmentado: capacidad de ofrecer servicios de alta velocidad a operadores en función de la disposición global de espectro
 - Es específica del terminal. Diferentes UE pueden tener diferentes conjuntos de portadoras: distribución de la carga y diferenciar capacidades en los UE

LTE (XVII)

Señales de referencia en el enlace descendente (DL)

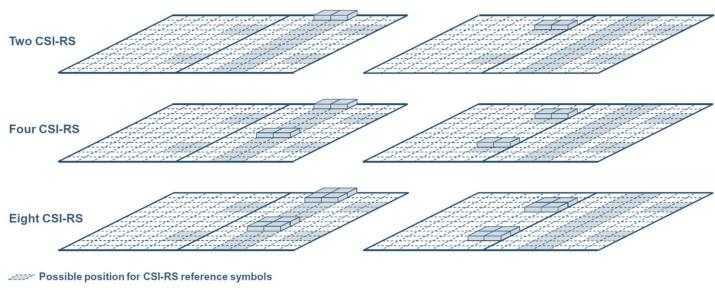

Las subtramas se dividen en una región de control y otra de datos

- Específicas de la célula, CRS (Cell-specific Reference Signals)
 - Transmitidas en cada subtrama y RB
 - Estimación de canal por UE salvo en algunos tipos de transmisión y CSI
 - Utilizadas como base para la selección de célula y decisiones de traspaso
- Específicas UE o de demodulación, DM-RS (DeModulation Reference Signals)
 - Transmitidas en RB asignados a UE
 - Estimación de canal para la demodulación del canal físico principal de datos
- De información de estado de canal, CSI (Channel State Information)
- Para MBSFN (Multicast Broadcast Single Frequency Network)
 - Transmisión en subtramas específicas
 - Estimación de canal por UE en transmisiones desde múltiples células
- De posicionamiento (release 9)
 - Estimación de la posición geográfica de UE



LTE (XVIII)

Ejemplo: señales de referencia específicas de la célula, CRS


Estructura de las CRS con uno y dos puertos de antena. [7] E. Dahlman, S. Parkvall, J. Sköld

- Los valores de los símbolos de referencia forman una secuencia con un período de 10 ms (trama)
- Hay 504 secuencias y son diferentes para cada célula (identidad de célula)
- Multiplexación espacial: se dejan libres símbolos utilizados por otras antenas

LTE (XIX)

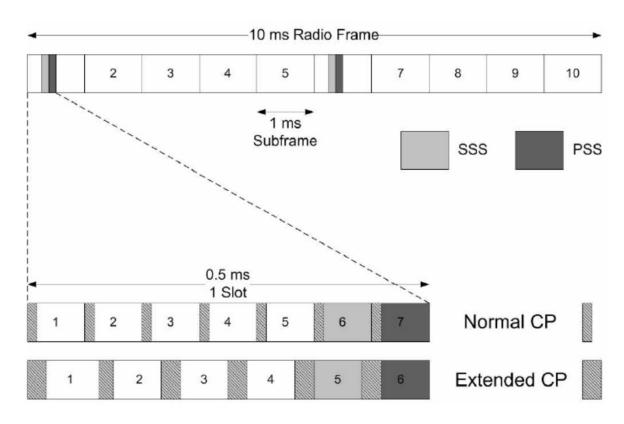
Ejemplo: señales de referencia de estado de canal, CSI-RS

Ejemplos de diferentes posiciones para CSI-RS. [7] E. Dahlman, S. Parkvall, J. Sköld

- Adquisición de CSI por UE: planificación dependiente del canal, adaptación del enlace (velocidad) y ajustes para transmisión multi-antena
- Periodicidad de envío variable (5, 10, 20, 40 u 80 ms)
- Introducido para soportar multiplexación espacial de hasta 8 capas (Rel. 10)

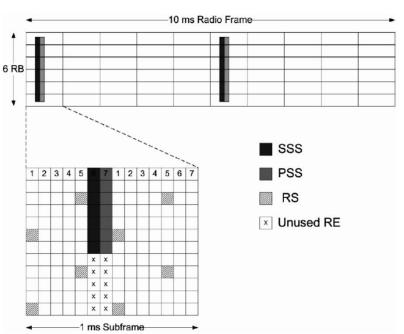
LTE (XX)

Sincronización y búsqueda de celda

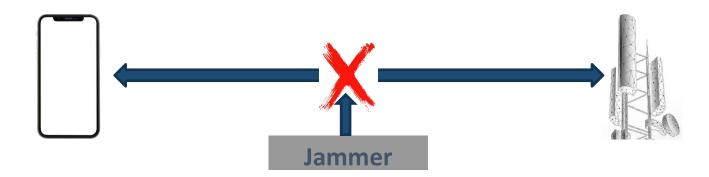

Antes de que un UE pueda acceder a la red, tiene llevar a cabo un procedimiento de búsqueda de celda que implica diversas tareas de sincronización

- Se usan dos señales físicas que se difunden en cada célula
 - PSS (Primary Synchronization Signal)
 - SSS (Secondary Synchronization Signal)
- Detección de PSS y SSS proporciona al UE
 - Sincronización en tiempo y frecuencia
 - o Identidad de capa física de la celda y longitud del prefijo cíclico
 - Información sobre el tipo de modo: FDD o TDD

LTE (XXI)


- Sincronización y búsqueda de celda: PSS y SSS en el tiempo
 - Se transmiten dos veces por trama
 - o PSS en el último símbolo OFDM de 1º y 11º slots de cada trama
 - SSS en el símbolo que precede al PSS

LTE (XXII)


- Sincronización y búsqueda de celda: PSS y SSS en frecuencia
 - Se transmiten en los 6 RBs centrales de la banda (comp. Carrier)
 - o Permite al UE sincronizarse con independencia del BW disponible
 - Secuencia de 62 símbolos (sin usar 10)
 - Se transmite tb en estos RBs:
 - Canal PBCH
 - MIB (Master Information Block)
 - Parámetros esenciales acceso inicial

LTE (XXIII)

- Bloqueo intencionado de comunicaciones móviles
 - Uso intencionado y permitido para proteger recintos concretos (organismos gubernamentales)
 - Se basa en el uso deliberado de señales para interrumpir la comunicación
 - Diferente de las interferencias propias de los sistemas a considerar en planificación

- Fundamentos: atacar "principalmente" la capa física
 - o Emular carga en célula para evitar acceso en escucha del medio por parte del móvil
 - Reducir la relación señal a ruido en el receptor

LTE (XXIV)

- Bloqueo intencionado de comunicaciones 4G
 - Bloqueo de señales de sincronización y del canal PBCH
 - Es el método más sencillo: fuerza bruta
 - Las señales se transmiten ocupando 1.08 MHz (6 RBs) con independencia del BW del operador
 - Transmisión intencionada, continua y de banda estrecha en la frecuencia deseada
 - Esta estrategia requiere transmitir potencia elevada, es fácil de detectar la interferencia y neutralizarla
 - Bloqueo selectivo de PSS en el DL
 - Técnica más sofisticada y compleja
 - Para acceder a la celda, un UE lo primero que debe hacer es detectar la PSS
 - Bloqueo de símbolos OFDM en estructura de trama
 - Mayor dificultad al requerir sincronización temporal con la estructura de trama
 - Además la PSS pensada para ser detectada con niveles altos de interferencia
 - UEs pueden detectar de hecho celdas vecinas
 - Más efectivo: Tx PSS falsa
 - UEs no encuentran SSS ni la información MIB

LTE (XXV)

- Cobertura y balance de enlaces
 - Valor máximo según T_g del PRACH

Formato	T_a (μ s)	<i>d</i> (km)
0	96,88	14,5
1	515,63	77,3
2	196,88	29,5
3	715,63	100,2

$$d = \frac{c \cdot T_g}{2}$$

Sensibilidad de recepción

$$P_n = kT_o BF_r$$

 $P_n(dBm) = -121, 4 + NF_r(dB) + 10log(N_{RB})$
 $S(dBm) = -121, 4 + NF_r(dB) + 10log(N_{RB}) + SINR(dB) + M_I(dB)$

UL				
<i>B</i> (MHz)	<i>S(</i> dBm <i>)</i>			
1,4	-106,8			
3	-103			
5, 10, 15, 20	-101,5			

DL			
<i>B</i> (MHz)	<i>S</i> (dBm)		
1,4	-102,2		
3	-99,2		
5	-97		
10, 15, 20	-94		

3GPP: TS 36.104

LTE (XXVI)

- Cobertura y balance de enlaces
 - SINR (Signal to Interference and Noise Ratio) necesaria en LTE
 - o 3GPP: TR 36.942. Ajuste experimental de la fórmula de Shannon
 - Tablas para diferentes tipos de modulación y tasas de código

Modulación	Tasa de código	SINR (dB)	η (bit/s/Hz)
	1/8	-5,1	0,25
	1/5	-2,9	0,4
	1/4	-1,7	0,5
QPSK	1/3	-1,0	1,5
QP3K	1/2	2,0	1,0
	2/3	4,3	1,3
	3/4	5,5	1,5
	4/5	6,2	1,6
	1/2	7,9	2,0
16QAM	2/3	11,3	2,6
IOQAW	3/4	12,2	3,0
	4/5	12,8	3,2
	2/3	15,3	4,0
64QAM	3/4	17,5	4,5
	4/5	18,6	4,8

LTE (XXVII)

Cobertura y balance de enlaces: LTE - 1800 MHz

	Parámetro		UL	Consideraciones
Α	Potencia eNodeB/UE, P_t (dBm)	30	23	eNodeB, PDSCH (TS 36.104), UE (TS 36.101)
В	Pérdidas Tx (cables, conectores), L_{ct} (dB)	2	0	DL (1-6 dB RRH-0dB)
С	Ganancia antena Tx, G_t (dBi)	18	0	Efecto del cuerpo del usuario (3 dB)
D	PIRE (dBm)	46	23	D=A-B+C
Е	Nº de bloques radio, N _{RB}	25	6	5 MHz (DL) y 1,4 MHz (UL)
F	Figura de ruido Rx UE/eNodeB, NFr (dB)	4	3	
G	Potencia de ruido térmico, P_n (dBm)	-103,5	-110,6	G=-121,4+10logE+F
Н	SINR (dB)	5,5	2,0	DL (QPSK y $r=3/4$) UL (QPSK y $r=1/2$)
1	Margen de interferencia, M_I (dB)	3	0,5	
J	Sensibilidad de recepción, S (dBm)	-95	-108,1	J=G+H+I
K	Margen desvanecimientos, M _L (dB)	10,2	10,2	t ≈1,28 (x =90%) y σ_L =8 dB
L	Ganancia antena Rx, G_r (dBi)	0	18	
M	Ganancia por diversidad Rx, G _{div} (dB)	0	2	
N	Pérdidas Rx (cables), L_{cr} (dB)	0	1	
0	Pérdida por penetración, L_p (dB)	12	12	
Р	Atenuación compensable, L (dB)	118,8	127,9	P=D-J-K+L+M-N-O
Q	Cobertura interior, d (km)	0,3	0,5	Hata-COST231, h_b =25m, h_m =1,5m,gran ciudad

Bibliografía

- [1] M. Mouly, M-B. Pautet, *The GSM System for Mobile Communications*, Cell & Sys, 1992
- [2] J.M. Hernando Rábanos, *Comunicaciones Móviles*, Ed. Centro de Estudios Ramón Areces, 3ª Ed., 2015
- [3] S. R. Saunders, A. A. Zavala, *Antennas and Propagation for Wireless Communication Systems*, John Wiley & Sons, 2nd Ed., 2007
- [4] J.M. Hernando Rábanos, C. Lluch Mesquida (coords.), *Comunicaciones Móviles de Tercera Generación, UMTS*, Telefónica Móviles, 2ª Ed., 2001
- [5] J. Laiho et. al, *Radio Network Planning and Optimisation for UMTS*, John Wiley & Sons, 2002
- [6] B. Walke et. al, UMTS The Fundamentals, John Wiley & Sons, 2003
- [7] E. Dahlman, S. Parkvall, J. Sköld, *LTE/LTE-Advanced for Mobile Broadband*, Academic Press, 2nd Ed., 2014
- [8] The 3rd Generation Partnership Project: http://www.3gpp.org