7 Grupos resolubles

A cada polinomio $f \in \mathbf{Q}[x]$ se le asocia un cierto grupo G de permutaciones de sus raíces; Galois probó que es posible encontrar las raíces de f mediante extracción de radicales si y sólo si el grupo G tiene una serie de subgrupos G_i tales que $G_0 = G$, $G_r = 1$, G_{i+1} es normal en G_i y el grupo cociente G_{i+1}/G_i es abeliano.

Este importante hecho en el álgebra da relieve y nombre a los grupos que cumplen estos requisitos

Definición 7.1 Una serie de subgrupos G_i de G se dice normal si $G_0 = G$, $G_r = 1$ y G_{i+1} es normal en G_i .

Los grupos cociente G_i/G_{i+1} se dicen factores de la serie.

Definición 7.2 Un grupo G se dice resoluble si posee una serie normal G_i de factores abelianos.

Ejemplos y contraejemplos

- 1. Todo grupo abeliano es obviamente resoluble.
- 2. El grupo alternado de grado 4 admite la serie

$$1 \lhd V \lhd A_4$$

donde V es el subgrupo de orden 4 formado por los productos de transposiciones, luego es resoluble.

- 3. Un grupo simple no abeliano, por ejemplo A_5 , no puede ser resoluble.
- 4. Veremos que todo sugrupo de un grupo resoluble lo es. Por tanto, S_n no es resoluble, si n>4, lo que da por zanjada¹ la resolubilidad de la ecuación general de grado n

Proposición 7.3 Sea G un grupo S y N subgrupos, éste normal. Entonces,

- i) Si G es resoluble S lo es.
- ii) Si G es resoluble, G/N lo es.
- iii) Si N y G/N son resolubles, G lo es.

Demostración:

i) Sea G_i la serie normal de G y consideremos la serie $S_i=G_i\cap S$. Es claro que $S_0=S$ y $S_r=1$ Ahora,

$$S_{i+1} = G_{i+1} \cap S \triangleleft G_i \cap S = S_i$$

у

$$S_i/S_{i+1} = (G_i \cap S)/(G_{i+1} \cap S) \le S/(G_{i+1} \cap S) \cong SG_{i+1}/G_{i+1} \le G_i/G_{i+1}$$
es abeliano.

¹de manera negativa y junto con otros teoremas

ii) Sea G_i la serie normal de G y consideremos la serie $S_i = G_i N/N$ de G/N. Es claro que $S_0 = G/N$ y $S_r = 1$ Ahora,

29

$$G_{i+1} \triangleleft G_i \Longrightarrow G_{i+1} N \triangleleft G_i N \Longrightarrow S_{i+1} \triangleleft S_i$$

у

$$S_i/S_{i+1} \cong (G_iN)/(G_{i+1}N) = (G_iG_{i+1}N)/(G_{i+1}N) \cong G_i/(G_i \cap G_{i+1}N)$$

que es imagen epimorfa del grupo abeliano G_i/G_{i+1} .

iii) Sea N_i la serie normal de N y M_i/N la serie normal de G/N. Entonces,

$$1 = N_r \lhd \cdots \lhd N_0 = N = M_0 \lhd M_1 \lhd \cdots M_s = G$$

es serie normal de G de factores

$$N_i/N_{i+1}$$
 $M_i/M_{i+1} \cong (M_i/N)/(M_{i+1}/N)$

abelianos.

Definición 7.4 Dado un grupo G, se dice serie de composición a una serie normal de factores simples.

Ejemplos y contraejemplos

- 1. La serie $1 \triangleleft C_2 \triangleleft V \triangleleft A_4$ es de composición en A_4 .
- 2. La serie $1 \triangleleft A_5 \triangleleft S_5$ es de composición en S_5 .
- 3. La serie $1 \triangleleft V \triangleleft A_4$ no es de composición en A_4 , pues $V/1 \cong V$ no es simple.

Proposición 7.5 Todo grupo finito admite una serie de composición.

Demostración: Razonamos por inducción sobre el orden de G. Si G es simple, tómese la serie $1 \triangleleft G$; en caso contrario, existe un subgrupo normal propio N. Por inducción, N y G/N poseen series de composición $\{N_i\}$ y $\{M_i/N\}$. Entonces,

$$1 = N_r \triangleleft \cdots \triangleleft N_0 = N = M_0 \triangleleft M_1 \triangleleft \cdots M_s = G$$

es serie de composición de G.

Lema 7.6 Un grupo simple y resoluble es cíclico de orden primo.

Demostración: Si es simple y resoluble, debe ser abeliano; no puede poseer subgrupos propios y es cíclico; finalmente su orden debe ser primo.

Proposición 7.7 Dado un grupo finito G, son equivalentes

- i) G es resoluble.
- ii) Cualquier factor de composición de G es cíclico de orden primo.
- iii) G posee una serie de composición con factores cíclicos de orden primo

Demostración: Si G es resoluble y G_i/G_{i+1} es un factor de composición, G_i es resoluble por ser subgrupo de G y G_i/G_{i+1} por ser cociente de G_i ; ahora G_i/G_{i+1} es simple y resoluble, luego es cíclico de orden primo.

7.1 La serie derivada

Asociado al concepto de grupo resoluble viene el concepto de serie derivada.

Analizando la abelianidad o no de un grupo, se trata de ver si dos elementos x e y conmutan o no; es decir, si xy = yx o lo que es equivalente $(xy)(xy)^{-1} = 1$; finalmente, $[x, y] = xyx^{-1}y^{-1} = 1$.

Definición 7.1.1 Dados $x, y \in G$ se dice

- i) Conmutador de x e y al elemento $[x, y] = xyx^{-1}y^{-1}$.
- ii) Subgrupo derivado de G a

$$G' = <[x, y] \mid x, y \in G>$$

Observación 7.1.2 El cálculo de un conmutador es un problema de cálculo de inversos y multiplicación ordenada de los elementos correspondientes. El cálculo del derivado puede crear recelos a no ser por la siguiente útil

Proposición 7.1.3 Dado un grupo G, se tiene

- i) G' es normal en G.
- ii) G/N es abeliano si y sólo si $G' \leq N$. En particular, G/G' es abeliano.
- iii) $G' = \bigcap \{ N \leq G \mid G/N \text{ es abeliano} \}$

Demostración:

i) Es consecuencia de que el inverso del conmutador [x, y] es el conmutador [y, x] y de que un conmutador [x, y] se transforma en otro conmutador por conjugación:

$$[x,y]^z = z(xyx^{-1}y^{-1})z^{-1} = (zxz^{-1})(zyz^{-1})(zx^{-1}z^{-1})(zy^{-1}z^{-1}) = [x^z,y^z]$$

- ii) G/N es abeliano si y sólo si $xNyN=yNxN\,\forall x,y\in G$ si y sólo si $xyN=yxN\,\forall x,y\in G$ si y sólo si $x^{-1}y^{-1}N=y^{-1}x^{-1}N\,\forall x,y\in G$ si y sólo si $xyx^{-1}y^{-1}N=N\,\forall x,y\in G$ si y sólo si [x,y]N=N si y sólo si $[x,y]\in N$ si y sólo si $G'\leq N$.
- iii) Es consecuencia directa de i) y ii).

Ejemplos

- 1. El subgrupo derivado de un abeliano es 1.
- 2. Si G es simple no abeliano G' = G. Grupos que coinciden con su derivado se dicen perfectos².

31

- 3. $S'_n \leq A_n$, pues S_n/A_n es de orden 2 y por tanto cíclico.
- 4. Si n > 4, el derivado de S_n es A_n , pues éste no tiene subgrupos normales.
- 5. $S_3' = A_3$, pues S_3 no es abeliano.
- 6. El derivado del grupo cuaternio Q es su (único) cíclico de orden 2, pues da cociente un grupo de orden 4, que debe ser abeliano, y Q no lo es.

Definición 7.1.4 Dado un grupo G se dice serie derivada a $G^{(i)}$ dada por

$$G^{(0)} = G \quad G^{(1)} = G' \quad G^{(i)} = \left(G^{(i-1)}\right)'$$

Ejemplos

- 1. La serie derivada de un abeliano es: $1 \triangleleft G$.
- 2. La de un simple no abeliano sólo tiene un término, que es: G.
- 3. Si n > 4, la serie derivada de S_n es: $A_n \triangleleft S_n$
- 4. La de S_3 es: $1 \triangleleft A_3 \triangleleft S_3$
- 5. La serie derivada del grupo cuaternio Q es: $1 \triangleleft C_2 \triangleleft Q$

Es claro, por definición, que $S \leq G \Longrightarrow S' \leq G'$. Parece ya clara la siguiente

Proposición 7.1.5 G es resoluble si y sólo si la serie derivada acaba en 1.

Demostración: Si G es resoluble, existe una serie normal G_i de factores abelianos. Veamos, por inducción sobre k que $G^{(k)} \leq G_k$. Al efecto, $G^{(0)} = G \leq G_0$; si $G^{(k)} \leq G_k$

$$G^{(k+1)} = (G^{(k)})' \le (G_k)' \le G_{k+1}$$

pues G_k/G_{k+1} es abeliano.

Recíprocamente, la serie derivada es normal y los factores

$$G^{(k)}/G^{(k+1)} = G^{(k)}/(G^{(k)})^\prime$$

son abelianos.

²Existen grupos perfectos que no son simples

EJERCICIOS

- 1. Calcular D'_n .
- 2. Calcular S'_4
- 3. Calcular la serie derivada de los grupos simétricos, alternados y diédricos. Deducir cuáles son resolubles y cuáles no.
- 4. Probar que todo p-grupo finito es resoluble.
- 5. Probar que todo p-grupo finito admite una serie normal

$$Z_0 = 1 \triangleleft Z_1 \triangleleft \cdots \triangleleft Z_k \triangleleft \cdots \triangleleft Z_r = G$$

tal que
$$Z_k/Z_{k-1} = Z(G/Z_{k-1})$$

Recibe el nombre de serie central ascendente³. Grupos en los que esta serie acaba en G reciben el nombre de grupos nilpotentes.

- 6. Probar que A_4 y S_3 no son nilpotentes.
- 7. Probar que todo grupo abeliano es nilpotente y que éstos son resolubles.

 $^{^3 \}mathrm{superior}$ para algunos autores