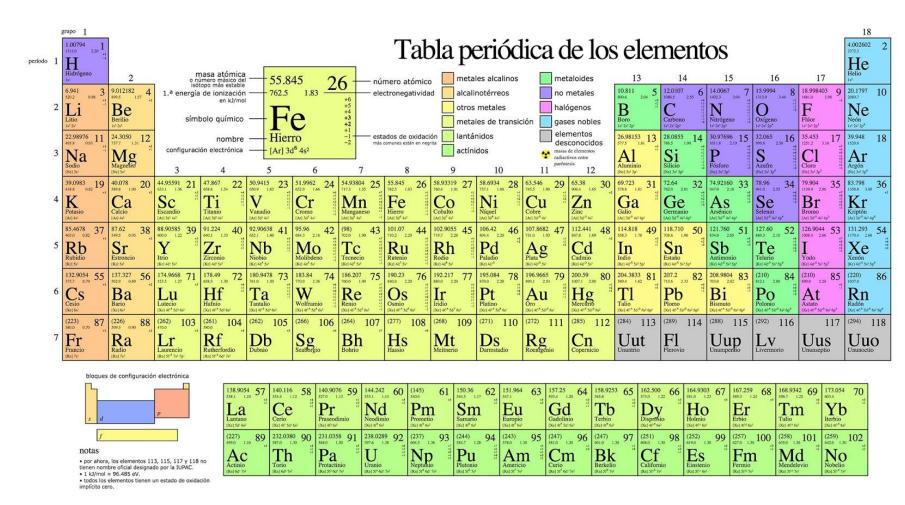
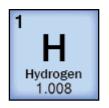

DIMITRI MENDELÉYEV Y LA TABLA PERIÓDICA DE LOS ELEMENTOS

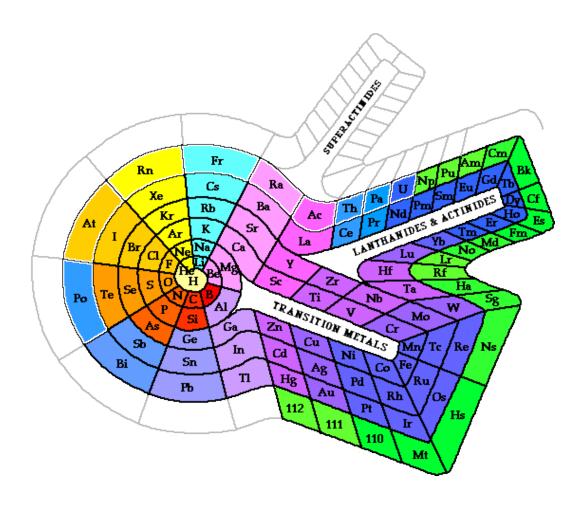
Belén Marcos Presmanes Kepa Mitxelena Pikabea Mercedes Olivera Tovar-Espada Cristina Sánchez Navarro

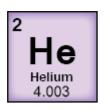



Índice

- 1. Introducción
- 2. Historia de los elementos antes de Mendeléyev:
 - La Antigüedad
 - Siglos XVII y XVIII
 - Siglo XIX.
 - Primer intento de sistematización
 - Otros intentos de sistematización
- 3. Dimitri Mendeléyev y la tabla periódica de los elementos
- 4. Desde Mendeléyev hasta nuestros días. La tabla periódica actual.
- 5. Reconocimiento al trabajo de Mendeléyev

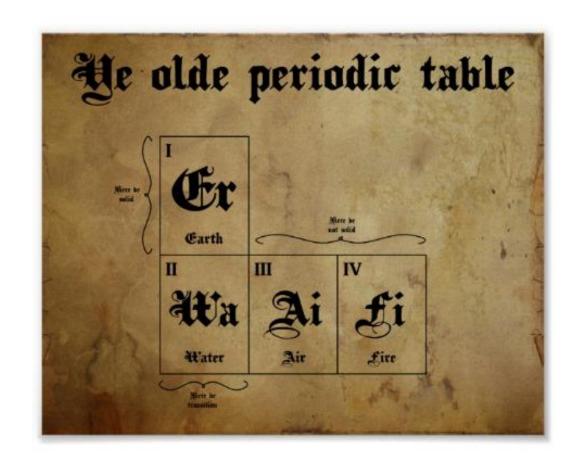
Introducción

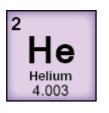



Introducción

"La tabla y la ley periódica son el CORAZÓN DE LA QUÍMICA, comparables a la teoría de la evolución en biología y a las leyes de la termodinámica en la física clásica".

(BENFEY, Theodor)

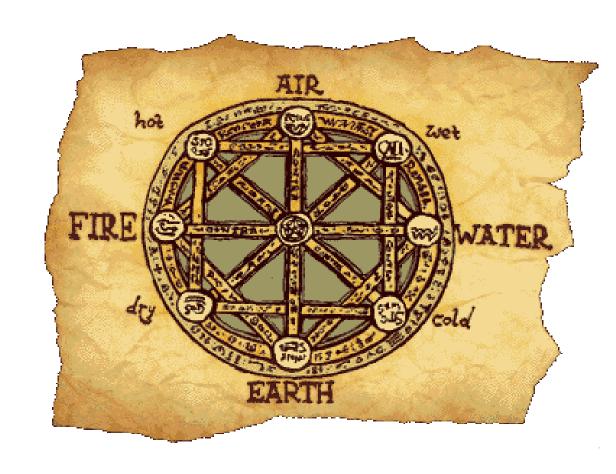


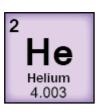


Historia de los elementos antes de Mendeléyev: LA ANTIGÜEDAD

• SIGLO V a.C:

- Los griegos comenzaron el estudio de la materia y sus propiedades.
 EMPÉDOCLES describía el mundo material como combinación de cuatro elementos: "TIERRA", "AGUA", "AIRE" Y "FUEGO".
- El ORO (Au), PLATA (Ag), COBRE (Cu), PLOMO (Pb), HIERRO (Fe), ESTAÑO (Sn)
 y MERCURIO (Hg) ya eran conocidos desde la antigüedad.

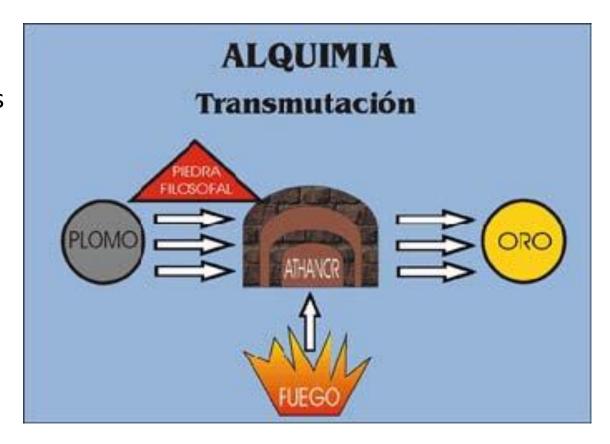


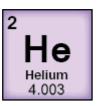


Historia de los elementos antes de Mendeléyev: LA ANTIGÜEDAD

• SIGLO V a.C:

- ARISTÓTELES, añadió a estos cuatro elementos uno más: el QUINTO ELEMENTO, el éter.
- Éste formaba las estrellas, mientras que los otros cuatro formaban las sustancias terrestres.
- Posteriormente, gracias a las conquistas de Alejandro Magno, sus ideas se propagaron desde OCCIDENTE HASTA ORIENTE.

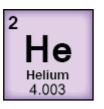




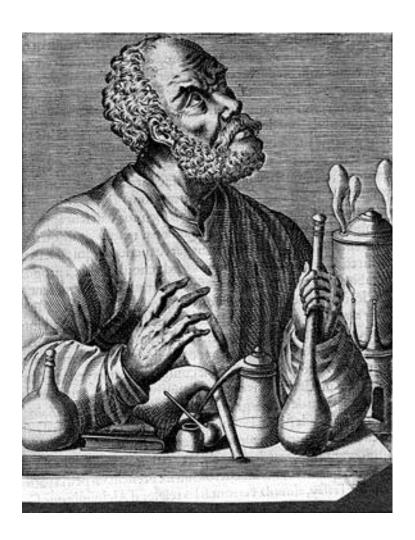
Historia de los elementos antes de Mendeléyev: LA ANTIGÜEDAD

• SIGLO V a.C:

- La mezcla de las teorías de Aristóteles (IV a.C.) con los conocimientos prácticos de los pueblos conquistados hicieron surgir una nueva idea: La ALQUIMIA.
- Los ALQUIMISTAS intentaron encontrar, evidentemente en vano, una sustancia, la PIEDRA FILOSOFAL, que transformaba las sustancias que tocaba en oro, y a la que atribuían propiedades maravillosas y mágicas.

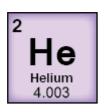


Historia de los elementos antes de Mendeléyev: LA ANTIGÜEDAD



• SIGLO VII y VIII:

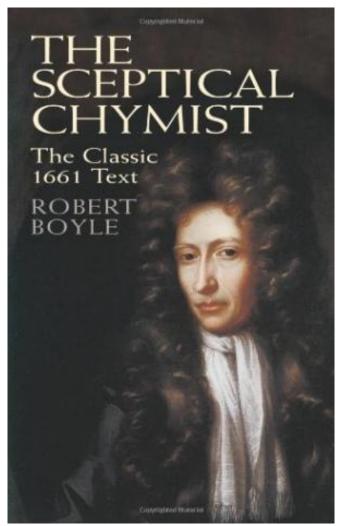
- Las CONQUISTAS ÁRABES pusieron en contacto a éste pueblo con las ideas alquimistas.
- Tras la caída del imperio romano, los árabes, gracias a sus conquistas en España e Italia, difundieron en Europa la CULTURA CLÁSICA.
- El más importante alquimista árabe fue JABIR, funcionario de Harún al-Raschid (el califa de Las mil y una noches). Jabir añadió dos nuevos elementos a la lista: el MERCURIO y el AZUFRE.

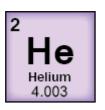


Historia de los elementos antes de Mendeléyev: LA ANTIGÜEDAD

• SIGLO VII y VIII:

- La teoría de JABIR sobre la alquimia era mucho más PRECISA y LÓGICA que la de sus predecesores, los alquimistas alejandrinos.
- La tendencia a clasificar las sustancias en términos de sus propiedades físicas muestra una CLARIDAD DE PENSAMIENTO que parece haber sido la característica de los principales alquimistas árabes
- Descubrieron el **ANTIMONIO**, el **BISMUTO**, el **ZINC**, los, ácidos fuertes, las bases o álcalis y cientos de compuestos químicos.

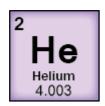



Historia de los elementos antes de Mendeléyev: SIGLOS XVII y XVIII

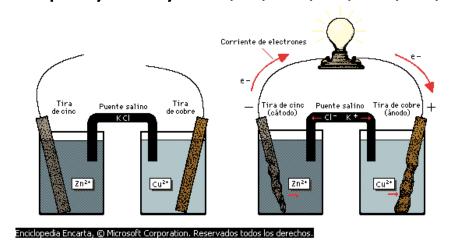
• SIGLO XVII:

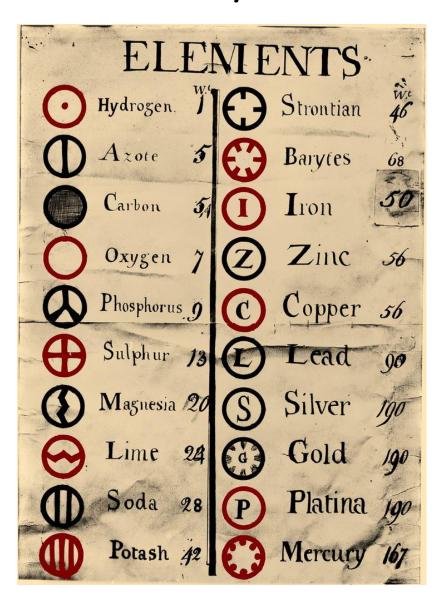
- ROBERT BOYLE desechó todas las ideas de los elementos alquímicos y propuso la primera definición moderna y válida de elemento y el nacimiento de una nueva ciencia: La Química.
- Definición de **ELEMENTO** por **R. BOYLE**:

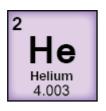
"Los elementos son ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos"

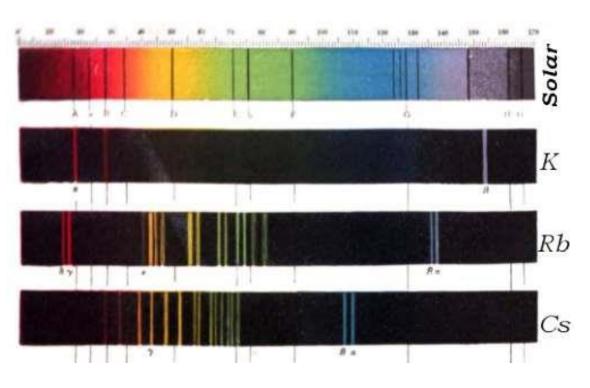


Historia de los elementos antes de Mendeléyev: SIGLOS XVII y XVIII

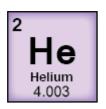


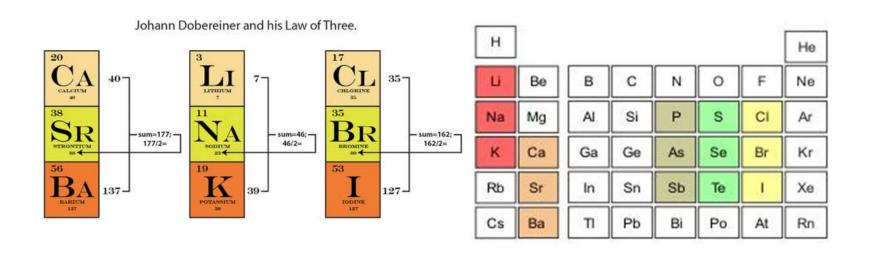

- El primer descubrimiento científico de un elemento ocurrió en el siglo XVII, cuando el alquimista Henning Brand descubrió el fósforo (P).
- En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N).
- A finales de este siglo, Antoine Lavoisier escribió su famosa lista de sustancias simples, donde aparecían 33 elementos



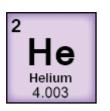

SIGLO XIX

- A principios del XIX:
- 1) Dalton elaboró la primera **tabla de masas atómicas** relativas (o pesos atómicos, como los llamaba Dalton)
- 2) La aplicación de la pila eléctrica condujo al **descubrimiento de nuevos elementos**. (Humphry Davy: Na, K, Ca, Sr, Ba, Cl, I)



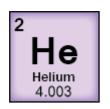


- A mediados del XIX:
- 1) Con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs), talio (Tl), rubidio (Rb), etc.
- 2) El número de elementos conocidos era tal que se planteó la **necesidad de clasificarlos** para facilitar su estudio y comprender mejor sus propiedades.



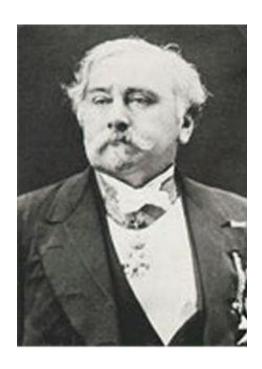
SIGLO XIX: Primer intento de sistematización

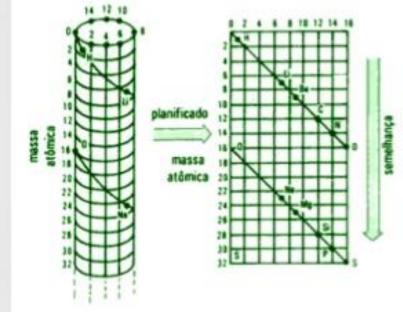
 Modelo de las triadas (Johann Dobereiner) En 1829, clasificó algunos elementos en grupos de tres, que denominó triadas. Los elementos de cada triada tenían propiedades químicas similares, así como propiedades físicas crecientes.

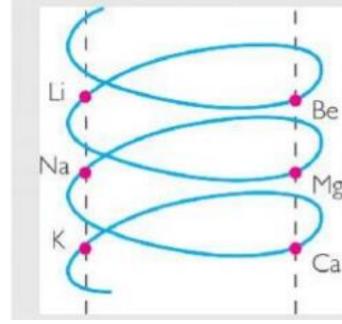

SIGLO XIX: Primer intento de sistematización

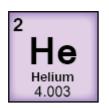
 Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al del elemento en medio.

Litio	LiCI LiOH	Calcio	CaCl ₂ CaSO ₄	Azufre	H ₂ S SO ₂
Sodio	NaCl NaOH	Estroncio	SrCl ₂ SrSO ₄	Selenio	H ₂ Se SeO ₂
Potasio	KCI KOH	Bario	BaCl ₂ BaSO ₄	Telurio	H ₂ Te TeO ₂

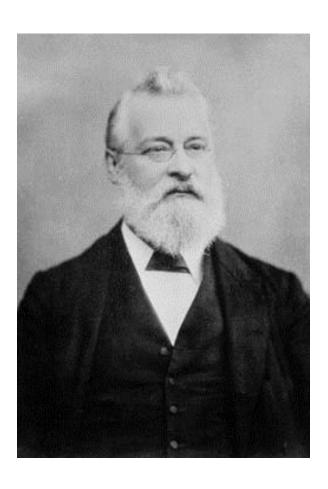

• No encontró suficientes tríadas para construir un sistema convincente.

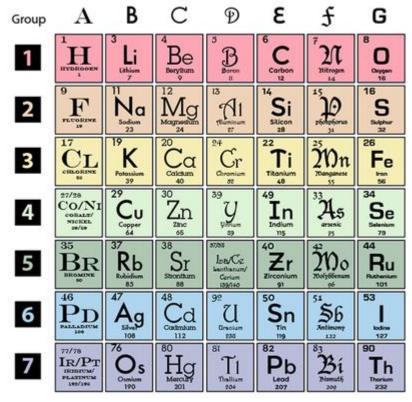


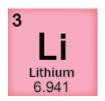



SIGLO XIX: Otros intentos de sistematización

Alexandre-Émile Béguyer de Chancourtoi fue el primero en ordenar los elementos químicos según su masa atómica, en 1862, poniendo en evidencia una cierta periodicidad entre los elementos de la tabla. Hélice telúrica.

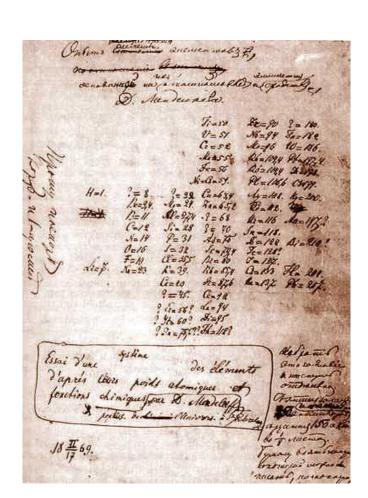


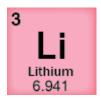

SIGLO XIX: Otros intentos de sistematización


Ley de las Octavas (John Newlands)

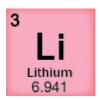
En 1864 propuso que elementos los ordenaran en "octavas", ya que observó, tras ordenar los elementos según el aumento de la masa atómica, que ciertas propiedades se repetían cada ocho elementos.

John Newlands and his Interval of Eight

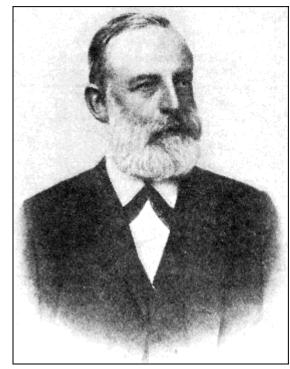


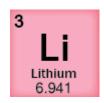


 Él se dio cuenta de que clasificando los elementos según sus masas atómicas (A) se veía aparecer una periodicidad en lo que concierne a ciertas propiedades de los elementos y que esas propiedades tenían que dar respuesta a una ley periódica que aun no se conocía y que formuló mas tarde:


"las propiedades de las sustancias simples, así como también de la composición y propiedades de los compuestos de los diferentes elementos químicos, se encuentran en dependencia periódica con la magnitud de sus masas atómicas".

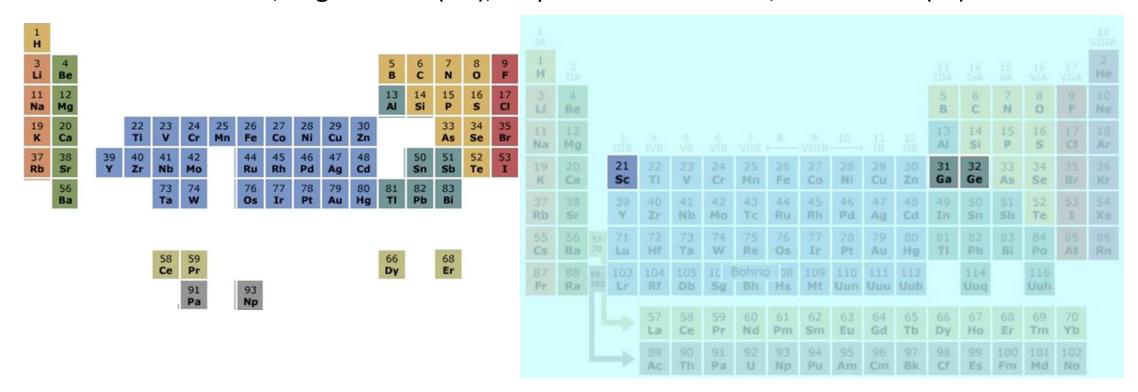
- La ley periódica surgió de forma totalmente empírica y antes de conocerse sus fundamentos sus descubridores y los que contribuyeron a su primitivo desarrollo nada sabían de electrones, protones o neutrones, ni de número atómico (Z) y estructura atómica.
- Su 2ª tabla, presentada en 1871, se basó en la variación manual de las propiedades químicas. Ordenó los elementos de acuerdo a su masa atómica (A) y situó en una misma columna a aquellos que tenían propiedades en común.

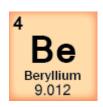

D	Group I	Group II	Group III	Group IV RH ₄	Group V RH ₃	Group VI RH ₂	Group VII RH	_																	
Row	R ₂ O	RO	R ₂ O ₃	RO ₂	R ₂ O ₅	RO ₃	R ₂ O ₇	RO ₄																	
1	H=1	Company of the last	38 (Sale 191)	0 10	estria nais		A-1-100-40-		H																
	Li = 7	Be = 9.4	B = 11	C = 12	N = 14		F = 19														-	STORE !	Trans.	0	
3	Na = 23	Mg = 24	Al = 27.3	Si = 28	P = 31	S = 32	C1 = 35.5		J Li	4 Be	le le										5 B	6 C	Ń	8	F
4	K = 39	Ca = 40	_= 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63	11 Na	12											13 Al	14 Si	15 P	16 S	17 CI
5	(Cu = 63)	Zn = 65	-= 68	-= 72	As = 75	Se = 78	Br = 80		19	20		27	23	24	25	26	27	28	29	30		BIRTH CONTROL	33	34	35
this it	Rb = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	-= 100	Ru = 104, Rh = 104,	K	Ca		22 T	V	Cr	25 Mn	26 Fe	Co	Ni	Cu	Zn			As	Se	Br
6	STATE OF THE PARTY				10 10 10 10 10		strongel.	Pd = 106, Ag = 108	37 Rb	38 Sr	39	40		42		44	45	46	47	48		50	51	52 Te	53
7	(Ag = 108)	Cd = 112	In = 113	Sn = 118	Sb = 122	Te = 125	I = 127		Rb	Sr	Y	Z	Nb	Мо		Ru	Rh	Pd	Ag	Cd		Sn	Sb	Те	1
8	Cs = 133	Ba = 137	?Di = 138	?Ce = 140	CHARLEST S. L.	E LA LUCIONA	CONTRACT.			56			73	74 W		76	77	78	79	80	81	82	83		
9	Prinstant I		of the ea							Ba			Ta	W		Os	Ir	Pt	Au	Hg	TI	Pb	Bi		
10			?Er = 178	?La = 180	Ta = 182	W = 184		Os = 195, Ir = 197, Pt = 198, Au = 199																	
11	(Au = 199)	Hg = 200	T1 = 204	Pb = 207	Bi = 208		Maria (1986)						58 Ce	59 Pr							66 Dy		68 Er		
12	Seik Stank to	Saldroid State	100000000000000000000000000000000000000	Th = 231	an shellow	U = 240										00						l.			
						11 Seminas (# 3567) (#							Ele	Pa Pa	l en	tOS	S C	on	oc	ido	os	en	SU	ı	
																	,	000							



Lothar Meyer y Mendeléyev publicaron una Tabla Periódica similar al mismo tiempo.

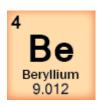
¿Por qué se considera a Mendeléyev el padre de la Tabla Periódica Moderna, y no a Meyer, o a ambos?





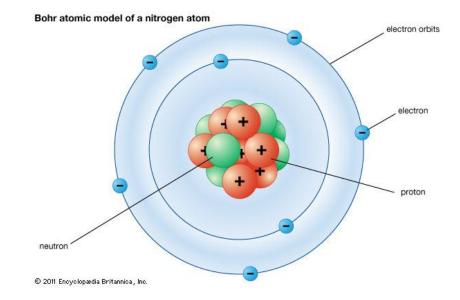
Mendeléyev ignoró el orden sugerido por los pesos atómicos y cambió los elementos adyacentes, tales como telurio y yodo.

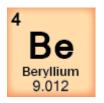
Pronosticó las propiedades de algunos elementos no descubiertos: el galio (Ga), al que llamó eka-aluminio; el germanio (Ge), al que llamó eka-silicio; el escandio (Sc)



Nuevos elementos que fueron ocupando las casillas vacías de la tabla de Mendeleyev,, sin embargo, persistían algunas anomalías en la tabla periódica.

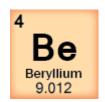
Se hizo evidente que la masa atómica (A) creciente es un criterio de ordenamiento imperfecto para la estructuración de la tabla periódica.


La **causa** de estas anomalías está en que la masa atómica (A) no es una propiedad de clase de átomo, sino del elemento o conjunto de átomos de igual carga nuclear (isótopos). La masa atómica (A) depende de la abundancia de cada isótopo en la mezcla y varía de acuerdo con esto para cada elemento.



El sistema periódico ha experimentado dos avances principales desde su formulación original por parte de **Mendeléyev y Meyer**:

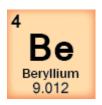
- 1) La primera revisión extendió el sistema para incluir toda una nueva familia de elementos cuya existencia era completamente insospechada en el siglo XIX.
- 2) El segundo avance fue la interpretación de la causa de la periodicidad de los elementos en términos de la **teoría de Bohr** (1913) sobre la **estructura electrónica del átomo**.



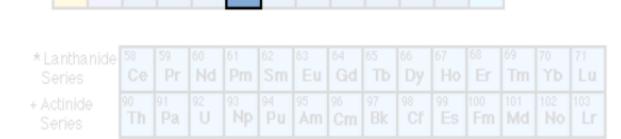
Moseley, en 1913, encontró que experimentalmente la carga nuclear es una constante física de los átomos y que está íntimamente relacionada con su estructura, siendo igual al **número atómico (Z)**.

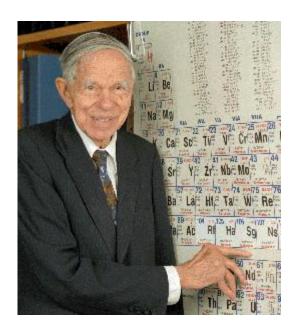
 Al ordenar los elementos con respecto a Z se eliminaban las irregularidades de la tabla de Mendeleyev y se definían con exactitud los huecos para los que era necesario encontrar nuevos elementos.

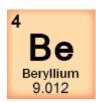
"Las propiedades de los elementos químicos es una función periódica de su **número atómico** (Z), es decir varían en forma sistemática o periódica con la carga nuclear."



Tras participar en el descubrimiento de 10 nuevos elementos, **Glenn T. Seaborg,** en 1944 sacó 14 elementos de la estructura principal de la Tabla Periódica proponiendo su actual ubicación debajo la serie de los Lántanidos, siendo desde entonces conocidos como los actínidos.



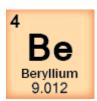

*Lanthanide Series							64 Gd				68 Er		70 Yb	71 Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr



Periodic Table of the Elements

- Glenn T. Seaborg: Es la única persona que ha tenido un elemento que lleva su nombre en vida.
- "Este es el mayor honor que he tenido, quizás mejor, para mí, que el haber ganado el Premio Nobel"

Desde Mendeléyev hasta nuestros días: La tabla periódica moderna

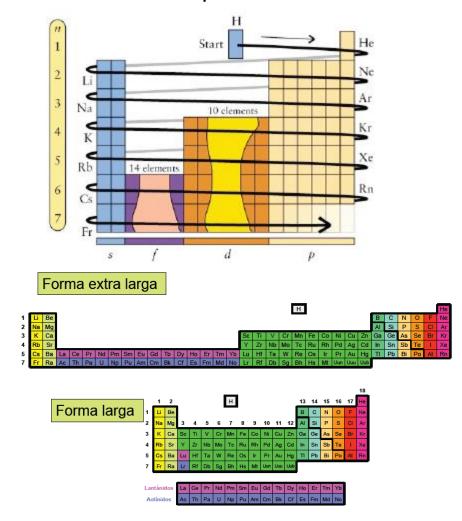

1 H hydrogen					I	UPAC	Period	dic Tak	ole of	the Ele	ement	S					18 2 He
1.008 [1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 6.94 [6.938, 6.997]	4 Be beryllium 9.0122		atomic num Symbo name conventional atomic v standard atomic w	OI weight								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 Oxygen 15.999 [15.999, 16.000]	9 F fluorine 18.998	10 Ne neon 20.180
11 Na sodium 22.990	12 Mg magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982	14 Si silicon 28.085 [28.084, 28.086]	15 P phosphorus 30.974	16 S sulfur 32.06 [32.059, 32.076]	17 CI chlorine 35.45 [35.446, 35.457]	18 Ar argon 39.948
19 K potassium	20 Ca calcium	21 Sc scandium	22 Ti titanium	23 V vanadium	Cr chromium	25 Mn manganese	Fe iron	27 Co cobalt	28 Ni nickel	Cu copper	30 Zn zinc	31 Ga gallium	32 Ge germanium	33 As arsenic	34 Se selenium	35 Br bromine 79.904	36 Kr krypton
39.098 37 Rb rubidium	38 Sr strontium	44.956 39 Y yttrium	47.867 40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 TC technetium	55.845(2) 44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	63.546(3) 47 Ag silver	65.38(2) 48 Cd cadmium	69.723 49 In indium	72.630(8) 50 Sn tin	51 Sb antimony	78.971(8) 52 Te tellurium	[79.901, 79.907] 53 I iodine	54 Xe xenon
85.468 55 Cs caesium	87.62 56 Ba barium	88.906 57-71 lanthanoids	91.224(2) 72 Hf hafnium	92.906 73 Ta tantalum	95.95 74 W tungsten	75 Re rhenium	76 Os osmium	77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury	81 TI thallium 204.38	82 Pb lead	83 Bi bismuth	127.60(3) 84 Po polonium	85 At astatine	131.29 86 Rn radon
87 Fr francium	137.33 88 Ra radium	89-103 actinoids	178.49(2) 104 Rf rutherfordium	180.95 105 Db dubnium	183.84 106 Sg seaborgium	186.21 107 Bh bohrium	190.23(3) 108 HS hassium	192.22 109 Mt meitnerium	195.08 110 DS darmstadtium	196.97 111 Rg roentgenium	200.59 112 Cn copernicium	[204.38, 204.39] 113 Nh nihonium	207.2 114 FI flerovium	208.98 115 MC moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson

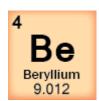
							%:	50-					
		57 La lanthanum	58 Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	E ert
		138.91	140.12	140.91	144.24		150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	16
ONIC	\r	89	90	91	92	93	94	95	96	97	98	99	_1

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57 La lanthanum	58 Ce cerium	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holmium	68 Er erbium 167.26	69 Tm thulium	70 Yb ytterbium	71 Lu lutetium
89 Ac actinium	90 Th thorium	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	No nobelium	103 Lr lawrencium

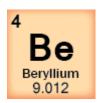
- Los elementos químicos se ordenan según su **número** atómico (Z).
- Los elementos de una fila horizontal constituyen un PERIODO.
- Los elementos de una columna constituyen un GRUPO.
- Desde el 2011 no se incluían elementos en la tabla.
- noviembre del 2016 **IUPAC** aprueba cuatro nuevos elementos de Tabla Periódica (113,115,117,118)



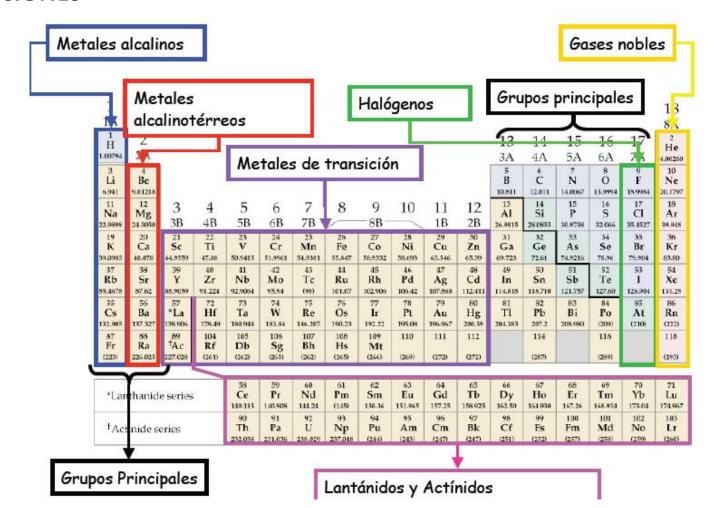

Desde Mendeléyev hasta nuestros días: La geografía de la tabla

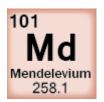
• **PERIODO**: presentan <u>igual numero de niveles</u> <u>energéticos</u> correspondiendo el número al periodo.

Secuencia de ocupación de los orbitales


Desde Mendeléyev hasta nuestros días:

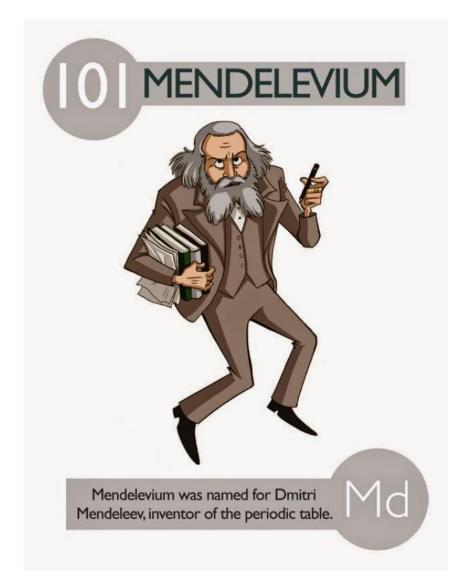
La geografía de la tabla


 GRUPO: presentan <u>propiedades físicas y</u> <u>químicas similares</u> debido a que tienen configuraciones electrónicas similares (mismos electrones de valencia)


TABLE 9.2	Electron Co	onfigurations of Some Groups
Group	Element	Configuration
1	Н	$1s^1$
	Li	[He]2s ¹
	Na	[Ne]3s1
	K	[Ar]4s ¹
	Rb	[Kr]5s ¹
	Cs	[Xe]6s1
	Fr	[Rn]7s ¹
17	F	$[He]2s^22p^5$
	CI	$[Ne]3s^23p^5$
	Br	$[Ar]3d^{10}4s^24p^5$
	I	$[Kr]4d^{10}5s^25p^5$
	At	$[Xe]4f^{14}5d^{10}6s^26p^5$
18	He	$1s^2$
	Ne	[He] $2s^22p^6$
	Ar	$[Ne]3s^23p^6$
	Kr	$[Ar]3d^{10}4s^24p^6$
	Xe	$[Kr]4d^{10}5s^25p^6$
	Rn	$[Xe]4f^{14}5d^{10}6s^{2}6p^{6}$

Desde Mendeléyev hasta nuestros días: La geografía de la tabla periódica moderna

AGRUPACIONES



Reconocimiento al trabajo de Mendeléyev

1834-1907

- En 1905 Dimitri Mendeléyev fue premiado con la Medalla Copley, es un premio que otorga anualmente la Real Sociedad de Londres a una persona física como reconocimiento al trabajo científico por sus logros sobresalientes en las ciencias físicas o biológicas.
- En 1955 se nombró **mendelevio (Md)** al elemento químico de número atómico 101 en la tabla periódica, en su honor por sus investigaciones en esa materia.

iMUCHAS GRACIAS!