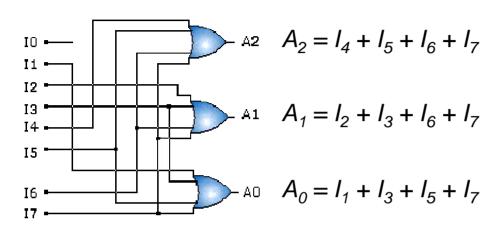
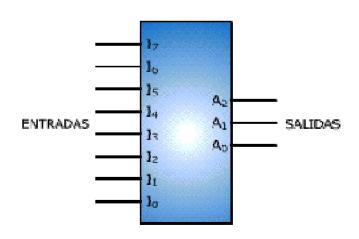
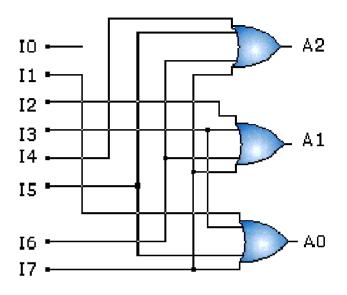
CODIFICADORES CON


PRIORIDAD

- Codificadores
- Codificadores con prioridad
- Implementación lógica de un codificador con prioridad
- Descripción VHDL
- Familia lógica 74
- Problemas


Codificadores

- -Es un circuito digital que realiza la operación inversa de la que efectúa un decodificador.
- Convierte la información de un numero de entradas M a N bits de salida, donde $M \le 2^N$. Las salidas generan el código binario correspondiente al valor de entrada.
- Lo normal es que se realicen codificadores de 2^N entradas y N salidas (a binario).
- En general este tipo de codificador puede construirse a partir de n compuertas OR de 2ⁿ⁻¹.


A continuación mostramos la tabla de verdad, las ecuaciones de salida y la implementación con puertas OR de un codificador de 8 entradas y 3 salidas:

	Entradas									Salidas		
10	11	12	13	14	15	16	17	A_2	A_1	A_0		
1	0	0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	0	0	0	0	1		
0	0	1	0	0	0	0	0	0	1	0		
0	0	0	1	0	0	0	0	0	1	1		
0	0	0	0	1	0	0	0	1	0	0		
0	0	0	0	0	1	0	0	1	0	1		
0	0	0	0	0	0	1	0	1	1	0		
0	0	0	0	0	0	0	1	1	1	1		

	Entradas									Salidas			
10	I 1	12	13	14	15	16	17	Χ	Υ	Z			
1	0	0	0	0	0	0	0	0	0	0			
0	1	0	0	0	0	0	0	0	0	1			
0	0	1	0	1	0	0	0	0	1	0			
0	0	0	1	0	0	0	0	0	1	1			
0	0	0	0	1	0	0	0	1	0	0			
0	0	0	0	0	1	0	0	1	0	1			
0	0	0	0	0	0	1	0	1	1	0			
0	0	0	0	0	0	0	1	1	1	1			

- Por ejemplo, supongamos que las entradas I2 e I4 del codificador 8 a 3 están asertadas; entonces la salida es 110, el código binario de 6. Las salidas útiles serian 2 o 4 y no 6.

Codificadores con prioridad

- Este tipo de codificadores permiten que varias entradas estén activadas simultáneamente. La siguiente tabla muestra la lógica de entrada y salida de un codificador con prioridad.

		Salidas								
10	I1	12	13	14	15	16	17	A_2	A ₁	A_0
1	0	0	0	0	0	0	0	0	0	0
Χ	1	0	0	0	0	0	0	0	0	1
Χ	Χ	1	0	0	0	0	0	0	1	0
Χ	Χ	Χ	1	0	0	0	0	0	1	1
Χ	Χ	Χ	Χ	1	0	0	0	1	0	0
Χ	Χ	Χ	Χ	Χ	1	0	0	1	0	1
Χ	Χ	Χ	Χ	Χ	Χ	1	0	1	1	0
Χ	Χ	Χ	Χ	Χ	Χ	Χ	1	1	1	1

Codificadores con prioridad de 8 a 3

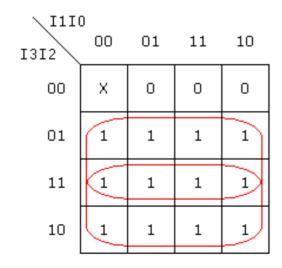
Entradas									Salidas		
10	I 1	12	13	14	15	16	17	A_2	A_1	A_0	
1	0	0	0	0	0	0	0	0	0	0	
Χ	1	0	0	0	0	0	0	0	0	1	
Χ	Χ	1	0	0	0	0	0	0	1	0	
Χ	Χ	Χ	1	0	0	0	0	0	1	1	
Χ	Χ	Χ	Χ	1	0	0	0	1	0	0	
Χ	Χ	Χ	Χ	Χ	1	0	0	1	0	1	
Χ	Χ	Χ	Χ	Χ	X	1	0	1	1	0	
Χ	Χ	Χ	Χ	Χ	Χ	Χ	1	1	1	1	

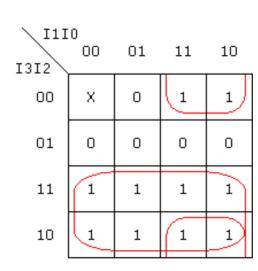
Para calcular las expresiones lógicas de las tres salidas A₂ A₁ A₀, indicamos cada fila de la tabla por una expresión lógica.

- X7=I7
- X6=I7' I6
- X5=I7' I6' I5
- X4=I7' I6' I5' I4
-
- X0=17' 16' 15' 14' 13' 12' 11' 10

 Las salidas se obtienen de la tabla como el OR de las filas en las que esta a 1 y sustituyendo expresiones y simplificando mediante el algebra de conmutación se obtienen las expresiones:

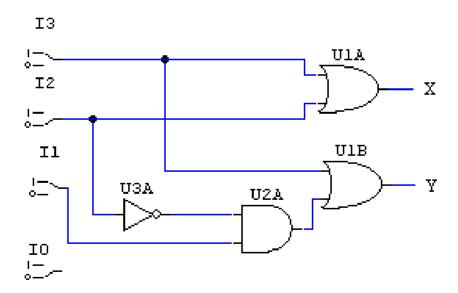
$$A_2 = X4 + X5 + X6 + X7 = I7'16'15'14 + I7'16'15 + I7'16 + I7 = I6'15'14 + I6'15 + I6 + I7 = I4 + I5 + I6 + I7$$


$$A_0 = X1 + X3 + X5 + X7 = I7'16'15'14'13'12'11 + I7'16'15'14'13 + I7'16'15 + I7 = I6'14'12'11 + I6'14'13 + I6'15 + I7$$


Codificador con prioridad de 4 entradas y 2 salidas.

1º Hacemos la tabla de verdad, suponiendo que la prioridad la da el de mayor peso.

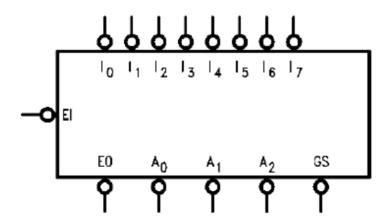
	Entr	Sali	Salidas		
13	12	I 1	10	Χ	Υ
0	0	0	1	0	0
0	0	1	Χ	0	1
0	1	Χ	Χ	1	0
1	Χ	Χ	Χ	1	1


2º Sacamos la función lógica a partir de mapas de Karnaugh:

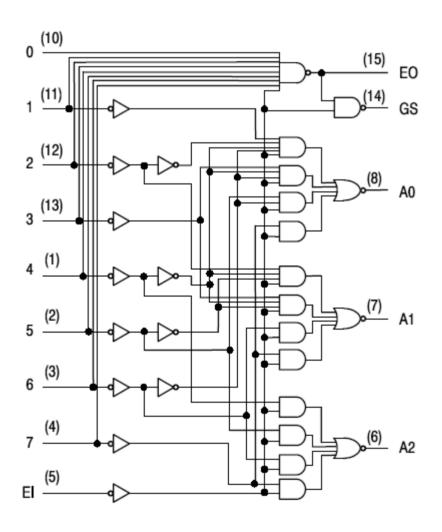
• La solución de los Karnaughs es la siguiente:

• La implementación lógica es:

Descripción VHDL de un codificador con prioridad

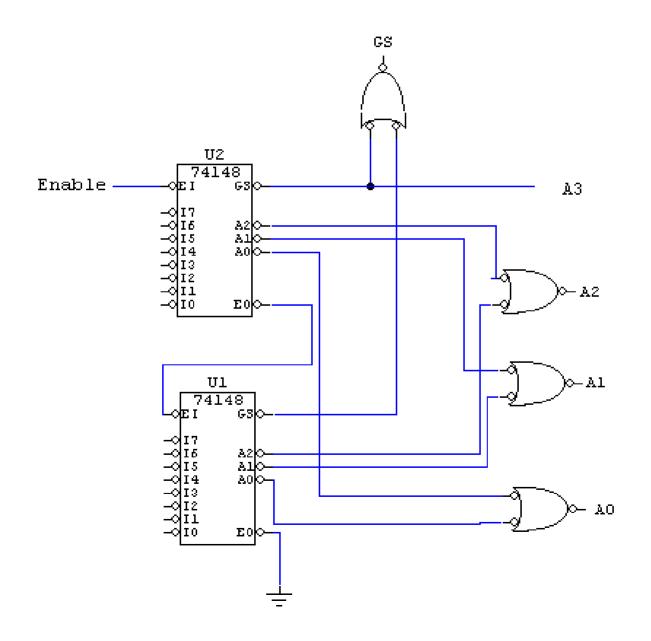

```
library ieee;
use.ieee.std_logic_1164.all
entity cod is
port(I:in std_logic_vector(4 downto 1);
    Z:out std_logic_vector(1 downto 0);
end cod;
architecture vhdl of cod is
begin
 process (I)
 begin
  if(I(3)='1') then
  Z<="11";
  elsif (I(2)='1') then
  Z<="10";
  elsif (I(1)='1') then
  Z<="01":
  else
  Z<="00";
  end if;
 end process;
end vhdl;
```

 La prioridad la da el orden de los if.


Familia lógica 74

• El codificador con prioridad 74x148

Es un codificador de prioridad de 8 entradas MSI. La principal diferencia con el codificador de prioridad "genérico", es que sus señales activas de entrada y salida están en estado bajo activas y que tiene una entrada de habilitación, El_L que debe ser asertiva para que cualquiera de sus salidas sea asertiva.


Familia lógica 74

FUNCTION TABLE

	INPUTS									0	UTPU	JTS	
EI	0	1	2	3	4	5	6	7	A2	A1	A 0	GS	EO
Н	Х	Х	Х	Х	Х	Х	Х	Х	Н	Н	Н	Н	Η.
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L	Н
L	Х	Х	Х	Х	Х	Х	L	Н	L	L	Н	L	Н
L	Х	Х	Х	Х	Х	L	Н	Н	L	Η	L	L	Н
L	Х	Х	Х	Х	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Х	Х	L	Н	Н	Н	Н	Н	L	L	L	Н
L	Х	Х	L	Н	Н	Н	Н	Н	Н	L	Н	L	Н
L	Х	L	Н	Н	Н	Н	Н	Н	Н	Η	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Η	Н	Н	L	Н

Codificador de prioridad 16 a 4 a partir de 2 codificadores de 8 a 3

Problemas Propuestos

Ejercicio 1

Realizar con puertas lógicas, un codificador de 4 a 2 líneas con salida en binario natural con prioridad a la entrada de menor peso.

Ejercicio 2

- a) Encontrar las ecuaciones lógicas que permiten definir un circuito codificador con prioridad baja de 8 bits de entrada (I7-I0) y salidas en código gray (de mas a menos significativas: A B C). Factorizar en lo posible las ecuaciones lógicas suponiendo todas las entradas y salidas asertadas bajas.
- b) Construir un circuito codificador binario de 8 a 3 con prioridad baja tomando como base el circuito codificador 74LS148, y el menor número posible de puertas lógicas que sean necesarias. Se permite definir como mejor convenga la polaridad de las entradas y de las salidas.

Ejercicio 3

Se quiere diseñar un circuito que tenga como entrada un número N de 8 bits (N7 N6....N1 N0) y como salida un número C de 8 bits (C7 C6C1 C0) de forma que C sea el complemento a 2 de N. El circuito debe realizar la transformación siguiendo este algoritmo:

- Sea Nk el bit de índice k menos significativo de N a 1, entonces para cada bit i de C, Ci=Ni para todo i menor o igual que k, y Ci igual a Ni' para todo índice i mayor que k.

El circuito debe diseñarse mediante un circuito formado por dos bloques B1 y B2:

- **B1.**lee los bits de entrada de N y genera una señal intermedia X de 8 bits (X7 X6...X1 X0). Cada bit Xi indica si Ci debe ser igual a Ni (Xi=0), o si debe ser su complemento (Xi=1).
- **B2.** En función de cada Ni y Xi generan los bits de salida Ci.
- a) Encontrar las ecuaciones que permiten definir las salidas de B1 y B2, y diseñar el circuito utilizando puertas lógicas de dos entradas.