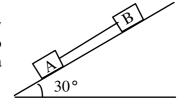

- 1) Una caja reposa sobre la parte posterior de un camión. El coeficiente de rozamiento estático entre la caja y el camión es de 0,3. a) Cuando el camión acelera, ¿Qué fuerza acelera la caja?
- b) Calcular la aceleración máxima que puede aplicarse al camión antes de que la caja resbale.

Sol.: b)
$$a_{max} = \mu g$$

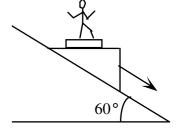
2) La fuerza que un imán ejerce sobre un pequeño bloque de acero es inversamente proporcional al cuadrado de la distancia entre ambos, y vale 1,5 N, cuando el bloque está situado a 250 mm del imán. El coeficiente de rozamiento entre el bloque y la superficie es de 0,5. Si el bloque se deja libre en la anterior posición, determinar su velocidad cuando esté a 100 mm del imán si su masa es de 60 g.?

Sol.:
$$v = 4,16 \text{ m/s}$$

3) El extremo izquierdo de la barra de peso despreciable representada en la figura está articulada a un carretón. En su extremo derecho se halla sujeta una partícula pesada. Si el carretón tiene una aceleración "a" hacia la derecha, hállese el ángulo θ . Si en la parte derecha del mismo se acopla un paquete B de masa M_B que posee un coeficiente de rozamiento con el carretón μ , ¿qué aceleración deberá adquirir éste para que el paquete no caiga?



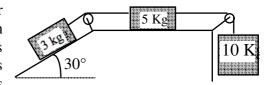
Sol.:
$$tg\theta = g/a$$
, $a \ge g/\mu$


- 4) Admitiremos que un cuerpo que se mueve en el seno de un fluido experimenta una resistencia al avance proporcional al cuadrado de la velocidad v y a la superficie frontal S según una ley $F = Kv^2S$. Las aspas de un helicóptero, de 4 m de radio, giran en un momento determinado a 10 rev/seg y tienen un perfil de 1,25 cm de grosor. Calcular la fuerza total de rozamiento y el momento de las fuerzas de rozamiento respecto al punto de giro en el eje del rotor. Tomar $K = 10^4$ dinas seg^2/m^4 . Sol: 105.3 N, 315.8 N m.
- 5) Una masa de 4 Kg es lanzada verticalmente con una velocidad inicial de 60 m/seg. La masa encuentra una resistencia del aire F = -3v/100 N. Calcular el tiempo que transcurre desde el lanzamiento hasta que alcanza la máxima altura. ¿Cuál es la máxima altura?

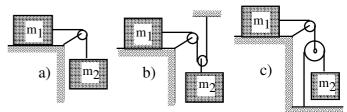
Nota:
$$\int_{2}^{2} \frac{x \, dx}{ax + b} = \frac{x}{a} - \frac{b}{a^{2}} \ln (ax + b)$$

Sol.: 5,98 s 178 m.

6) El bloque A de 1 Kg de masa está unido por una cuerda inextensible y sin masa al bloque B de 2 Kg. Si el coeficiente de rozamiento dinámico entre A y el plano es 0,2 y entre B y el plano es 0,3, calcular: a) la aceleración de los bloques y b) la tensión de la cuerda.

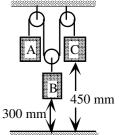


- Sol.: a) 2.64 m/s^2 b) 0.567 N
- 7) Un hombre desciende por un plano inclinado 60° sobre una báscula horizontal. Sabiendo que su peso es de 70 Kg y que el coeficiente de rozamiento entre la báscula y el plano es de 0,3, calcular a) la aceleración de bajada. 2) lo que marca la báscula.

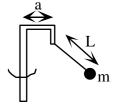

Sol.:a) 7,024 m/s² b) 26,5 Kg

8) Los tres bloques de la figura están conectados por medio de cuerdas ligeras que pasan por poleas sin rozamiento. La aceleración del sistema es de 2 m/seg² y las superficies son rugosas. Calcular a) las tensiones de las cuerdas. b) El coeficiente de rozamiento entre los bloques y la superficie (suponiendo µ igual para los dos bloques).

Sol.: a) 80 N 37,75 N b) $\mu = 0.645$ (con g = 10 m/s²)


9) Calcular las aceleraciones de m_1 y m_2 y la tensión de las cuerdas en los tres casos representados. Todas las poleas tienen un peso despreciable y fricción nula. ¿Qué dispositivo acelera m_1 más rápidamente en caída libre?

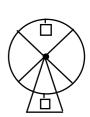
Sol.: a)
$$a = \frac{m_2 g}{m_1 + m_2} T = \frac{m_1 m_2 g}{m_1 + m_2}$$
 b) $a_1 = \frac{2 m_2 g}{4 m_1 + m_2}$ $a_2 = \frac{a_1}{2} T_1 = \frac{2 m_1 m_2 g}{4 m_1 + m_2} T_2 = 2 T_1$
c) $a_1 = \frac{2 m_2 g}{m_1 + 4 m_2}$ $a_2 = 2 a_1 T_1 = \frac{2 m_1 m_2 g}{m_1 + 4 m_2} T_2 = \frac{T_1}{2}$


10) Determinar las tensiones de las cuerdas y aceleración de cada uno de los bloques de la figura si las masas son: $m_A=5~Kg,\,m_B=15~Kg$ y $m_C=10~Kg.$ ¿Cuál de ellos llegará primero al suelo?

Sol.:
$$a_A = 4.04 \text{ m/s}^2$$
, $a_B = 0.577 \text{ m/s}^2$, $a_C = 2.89 \text{ m/s}^2$ $T_A = 69.2 \text{ N}$, $T_B = 138.5 \text{ N}$.

11) ¿Cuántas revoluciones por segundo ha de girar el aparato de la figura para que la cuerda forme un ángulo de 45° con la vertical? ¿Cuál será entonces la tensión en la cuerda? Datos: $L=20~\rm cm,~a=0.1m~y~m=200~g.$

Sol.: 1,01 rps 2,77 N



- 12) Un automóvil da vueltas sobre una curva peraltada. El radio de curvatura de la carretera es R.
- El ángulo de peralte es θ , y el coeficiente de rozamiento es μ .
- a) Determinar la gama de velocidades que puede tener el vehículo sin derrapar.
- b) Valor mínimo de $\boldsymbol{\mu}$ para que la rapidez mínima sea 0.
- c) Resolver el primer apartado si R = 100 m, θ = 15° y μ = 0.1.

Sol.: a) $[Rg(sen\theta - \mu cos\theta)/(cos\theta + \mu sen\theta)]^{1/2} \le v \le [Rg(sen\theta + \mu cos\theta) / (cos\theta - \mu sen\theta)]^{1/2}$ b) $\mu = tg \theta$ c) $12.78 \le v \le 19.44$ m/s.

- 13) El radio de una noria de feria mide 5 m y da una vuelta en 10 seg.
- a) Hállese la diferencia entre los pesos aparentes de un pasajero en los puntos más bajo y más alto, expresada como fracción de peso.
- b) ¿Cuál debería ser el tiempo correspondiente a una vuelta para que el peso aparente en el punto más alto fuese nulo?
- c) ¿Cuál sería entonces el peso aparente en el punto inferior?

Sol.: a) 0,402 P b) 4,486 s c) 2 P

