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Definición de dinámica y cinemática 

Cinemática:  
Estudio del movimiento, usando los 
conceptos de espacio y tiempo, sin tener 
en cuenta las causas que lo producen. 

Dinámica:  
Estudio del movimiento de un objeto, y de las 
relaciones de este movimiento con conceptos 
físicos tales como la fuerza y la masa.            
En otras palabras, estudio del movimiento 
atendiendo a las causas que lo producen. 



Dinámica: preguntas a resolver y 
conceptos básicos que vamos a introducir 

 ¿Qué hace que un objeto se mueva o que permanezca en reposo? 

¿Qué mecanismos hacen que un objeto cambie su estado de movimiento? 

¿Por qué unos objetos se aceleran más que otros? 

Dos conceptos básicos que vamos a introducir en este tema:  
 - Fuerza 
 - Masa 



Concepto de fuerza 

 Puede definirse una fuerza como toda acción o influencia capaz de 
modificar el estado de movimiento o de reposo de un cuerpo 

(imprimiéndole una aceleración que modifica el módulo, la dirección, 
o el sentido de su velocidad), o bien de deformarlo.  

La fuerza es todo agente capaz de modificar el momentum de un objeto.  

La fuerza es una magnitud vectorial. Por lo tanto, tiene: 

 - módulo (en el SI, la unidad es el  Newton, N) 

 - dirección 

 - sentido 

(se les aplica todas las leyes del álgebra vectorial). 



Tipos de fuerza:                                           
de contacto y de acción a distancia 

Fuerzas de contacto: implican un 
contacto físico entre dos objetos 

Fuerzas de campo: no implican un 
contacto físico entre dos objetos. 
Actúan a través del espacio vacío 

Si se examina el origen 
de las fueras  a una 
escala atómica, la 

separación entre fuerzas 
de contacto y fuerzas de 

campo no es tan clara 
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Another class of forces, known as field forces, do not involve physical contact be-
tween two objects but instead act through empty space. The gravitational force of at-
traction between two objects, illustrated in Figure 5.1d, is an example of this class of
force. This gravitational force keeps objects bound to the Earth and the planets in or-
bit around the Sun. Another common example of a field force is the electric force that
one electric charge exerts on another (Fig. 5.1e). These charges might be those of the
electron and proton that form a hydrogen atom. A third example of a field force is the
force a bar magnet exerts on a piece of iron (Fig. 5.1f). 

The distinction between contact forces and field forces is not as sharp as you may
have been led to believe by the previous discussion. When examined at the atomic
level, all the forces we classify as contact forces turn out to be caused by electric (field)
forces of the type illustrated in Figure 5.1e. Nevertheless, in developing models for
macroscopic phenomena, it is convenient to use both classifications of forces. The only
known fundamental forces in nature are all field forces: (1) gravitational forces between
objects, (2) electromagnetic forces between electric charges, (3) nuclear forces between sub-
atomic particles, and (4) weak forces that arise in certain radioactive decay processes. In
classical physics, we are concerned only with gravitational and electromagnetic forces.

Measuring the Strength of a Force

It is convenient to use the deformation of a spring to measure force. Suppose we apply
a vertical force to a spring scale that has a fixed upper end, as shown in Figure 5.2a.
The spring elongates when the force is applied, and a pointer on the scale reads the
value of the applied force. We can calibrate the spring by defining a reference force F1
as the force that produces a pointer reading of 1.00 cm. (Because force is a vector

Field forcesContact forces
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Figure 5.1 Some examples of applied forces. In each case a force is exerted on the ob-
ject within the boxed area. Some agent in the environment external to the boxed area
exerts a force on the object.



Tipos de interacción desde un 
punto de vista fundamental                                   

Nuclear fuerte 

Electromagnética 

Gravitatoria 

Nuclear débil 



Tipos de interacción desde un 
punto de vista fundamental                                   

Nuclear fuerte 

Electromagnética 

Gravitatoria 

Nuclear débil 

Únicas relevantes en Física Clásica 



Medir la intensidad de una fuerza 
mediante la deformación de un muelle                                   

Aplicamos una fuerza vertical sobre el muelle. 
Como consecuencia, el muelle se deforma. 

Se puede medir el valor de una fuerza aplicada 
mirando el puntero sobre la escala.   

Calibramos el muelle definiendo una fuerza de 
referencia        como la fuerza que produce una 

elongación del muelle de una unidad 

Si ahora aplicamos una fuerza de magnitud 
doble que la fuerza de referencia, el muelle se 

deformará el doble  
El efecto combinado de dos fuerzas colineares 

es la suma de los efectos de las fuerzas 
individuales 

Como se ha verificado experimentalmente que 
las fuerzas se comportan como vectores, se 

deben utilizar las leyes de la adición de vectores 
para conocer la fuerza neta sobre un objeto 

If an object does not interact with other objects, it is possible to identify a reference
frame in which the object has zero acceleration.
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quantity, we use the bold-faced symbol F.) If we now apply a different downward force
F2 whose magnitude is twice that of the reference force F1, as seen in Figure 5.2b, the
pointer moves to 2.00 cm. Figure 5.2c shows that the combined effect of the two
collinear forces is the sum of the effects of the individual forces.

Now suppose the two forces are applied simultaneously with F1 downward and F2
horizontal, as illustrated in Figure 5.2d. In this case, the pointer reads

The single force F that would produce this same reading is the
sum of the two vectors F1 and F2, as described in Figure 5.2d. That is,

units, and its direction is ! " tan# 1(# 0.500) " # 26.6°.
Because forces have been experimentally verified to behave as vectors, you must
use the rules of vector addition to obtain the net force on an object.

5.2 Newton’s First Law and Inertial Frames

We begin our study of forces by imagining some situations. Imagine placing a puck on
a perfectly level air hockey table (Fig. 5.3). You expect that it will remain where it is
placed. Now imagine your air hockey table is located on a train moving with constant
velocity. If the puck is placed on the table, the puck again remains where it is placed. If
the train were to accelerate, however, the puck would start moving along the table, just
as a set of papers on your dashboard falls onto the front seat of your car when you step
on the gas.

As we saw in Section 4.6, a moving object can be observed from any number of
reference frames. Newton’s first law of motion, sometimes called the law of inertia,
defines a special set of reference frames called inertial frames. This law can be stated as
follows:
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Figure 5.2 The vector nature of a force is tested with a spring scale. (a) A downward
force F1 elongates the spring 1.00 cm. (b) A downward force F2 elongates the spring
2.00 cm. (c) When F1 and F2 are applied simultaneously, the spring elongates by
3.00 cm. (d) When F1 is downward and F2 is horizontal, the combination of the two

forces elongates the spring √(1.00 cm)2 $ (2.00 cm)2 " 2.24 cm.

Isaac Newton, 
English physicist and 
mathematician
(1642–1727)

Isaac Newton was one of the
most brilliant scientists in history.
Before the age of 30, he
formulated the basic concepts
and laws of mechanics,
discovered the law of universal
gravitation, and invented the
mathematical methods of
calculus. As a consequence of
his theories, Newton was able to
explain the motions of the
planets, the ebb and flow of the
tides, and many special features
of the motions of the Moon and
the Earth. He also interpreted
many fundamental observations
concerning the nature of light.
His contributions to physical
theories dominated scientific
thought for two centuries and
remain important today.
(Giraudon/Art Resource)

Air flow

Electric blower

Figure 5.3 On an air hockey table,
air blown through holes in the sur-
face allow the puck to move almost
without friction. If the table is not
accelerating, a puck placed on the
table will remain at rest.

Newton’s first law



Primera ley del movimiento de Newton: 
ley o principio de inercia 

En un sistema inercial, y en ausencia de fuerzas externas, un objeto en reposo 
permanece en reposo y un objeto en movimiento continúa en movimiento con una 
velocidad constante (es decir, con una celeridad constante según una línea recta). 

Si sobre un cuerpo no actúa ninguna fuerza, su aceleración es cero.  

Un objeto tiende a mantener su estado original de movimiento en ausencia de fuerzas. 

Parece contraintuitivo: en la vida ordinaria, parece que el estado natural de los cuerpos es el reposo 
(sin embargo, tenemos que tener en cuenta las fuerzas de rozamiento). 

Requirió una cierta imaginación darse cuenta de este principio, y el esfuerzo inicial se lo debemos a 
Galileo Galilei. 

La resistencia de un objeto a cambiar su velocidad se conoce con el nombre de inercia 



Definición de sistema de referencia inercial 

Un sistema inercial de referencia es aquel cuyo comportamiento está regulado por 
la primera ley de Newton. 

Cualquier sistema de referencia que se mueva con una velocidad constante respecto de 
un sistema inercial será, el mismo, un sistema inercial. 



Definición de masa inerte 

La masa inerte (o masa inercial) es la medida de la resistencia de un objeto a que se 
produzca una variación en su movimiento como respuesta a una fuerza externa. 

La masa es una magnitud escalar (unidades en el SI: el kg) 
 



Definición de masa inerte:                               
la masa depende de la velocidad 

La masa inerte (o masa inercial) es la medida de la resistencia de un objeto a que se 
produzca una variación en su movimiento como respuesta a una fuerza externa. 

A velocidades pequeñas comparadas con la velocidad de la luz, la masa se puede 
considerar como una propiedad inherente al objeto, independiente del entorno que rodee 

al objeto y del método utilizado para medirla. 

En Mecánica Relativista, la masa depende de la velocidad del objeto 

¿Qué ocurre cuando la velocidad de un objeto se acerca a la de la luz? 



Definición de masa inerte:                           
masa y peso son magnitudes diferentes 

La masa inerte (o masa inercial) es la medida de la resistencia de un objeto a que se 
produzca una variación en su movimiento como respuesta a una fuerza externa. 

La masa y el peso son magnitudes diferentes. 

El peso es el módulo de la fuerza gravitatoria.                                                                                       
Un objeto con la misma masa no pesa lo mismo en la Tierra que en la Luna (cambia el valor de g). 



Segunda ley del movimiento de Newton: 
(caso general) 

La fuerza es la razón de cambio (derivada) del momento con respecto al tiempo, 
entendiendo por momento el producto de la masa por la velocidad. 

En sistemas en los que la masa no cambia con el tiempo ni con la velocidad 



Segunda ley del movimiento de Newton: 
(caso no relativista) 

En un sistema de referencia inercial, la aceleración de un objeto es directamente 
proporcional a la fuerza neta que actua sobre él, e inversamente proporcional a su masa. 

Si sobre un cuerpo actúa más de una fuerza externa, debemos calcular primero la 
resultante (suma vectorial) de todas las fuerzas externas. 

Desglosando en componentes: 



Unidades y magnitudes de la fuerza 

En el sistema internacional, la unidad de fuerza es el Newton.                                       
Se define como la fuerza necesaria que hay que aplicar a un 

cuerpo de masa 1 kg para que adquiera una aceleración de 1 m/s2 

Dimensiones de la fuerza: [F] = MLT-2 

En el sistema cgs, la unidad es la dina 



Fuerza gravitacional y peso 
La fuerza atractiva que la Tierra ejerce sobre un objeto se denomina fuerza gravitacional  

- Dirección: vertical 
- Sentido: hacia el centro de la Tierra 
- Módulo: peso 

Un objeto en caída libre (aquel que se mueve únicamente bajo la acción de la gravedad) 
experimenta un movimiento rectilíneo uniformemente acelerado con aceleración  

Como sólo actúa la gravedad, la suma 
de todas las fuerzas externas se 

reduce a un solo término 

Si el objeto tiene una masa m 

Peso: módulo de la fuerza gravitacional  



Fuerza gravitacional y peso: 
algunas sutilezas 

Peso: módulo de la fuerza gravitacional  

El peso depende de la posición geográfica y altura 

La masa es una propiedad inherente del sistema.  
El peso no. El peso es una propiedad de un sistema de elementos (ej: el cuerpo y la Tierra) 

El kg es una unidad de masa, no de peso 
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5.6 Newton’s Third Law

If you press against a corner of this textbook with your fingertip, the book pushes back
and makes a small dent in your skin. If you push harder, the book does the same and
the dent in your skin is a little larger. This simple experiment illustrates a general prin-
ciple of critical importance known as Newton’s third law:

If two objects interact, the force F12 exerted by object 1 on object 2 is equal in mag-
nitude and opposite in direction to the force F21 exerted by object 2 on object 1:

(5.7)

When it is important to designate forces as interactions between two objects, we will
use this subscript notation, where Fab means “the force exerted by a on b.” The third
law, which is illustrated in Figure 5.5a, is equivalent to stating that forces always occur
in pairs, or that a single isolated force cannot exist. The force that object 1 exerts
on object 2 may be called the action force and the force of object 2 on object 1 the reac-
tion force. In reality, either force can be labeled the action or reaction force. The action
force is equal in magnitude to the reaction force and opposite in direction. In
all cases, the action and reaction forces act on different objects and must be of
the same type. For example, the force acting on a freely falling projectile is the gravi-
tational force exerted by the Earth on the projectile Fg ! FEp (E ! Earth, p ! projec-
tile), and the magnitude of this force is mg. The reaction to this force is the gravita-
tional force exerted by the projectile on the Earth FpE ! " FEp. The reaction force FpE
must accelerate the Earth toward the projectile just as the action force FEp accelerates
the projectile toward the Earth. However, because the Earth has such a large mass, its
acceleration due to this reaction force is negligibly small.

F12 ! "  F21

Conceptual Example 5.2 How Much Do You Weigh in an Elevator?

Solution No, your weight is unchanged. To provide the ac-
celeration upward, the floor or scale must exert on your feet
an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force,
not your weight, and so its reading increases.

You have most likely had the experience of standing in an
elevator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are stand-
ing on a bathroom scale at the time, the scale measures a
force having a magnitude that is greater than your weight.
Thus, you have tactile and measured evidence that leads you
to believe you are heavier in this situation. Are you heavier?

Newton’s third law

2

1

F12 F21

F12  =  –F21

(a)

FnhFhn

(b)

Figure 5.5 Newton’s third law. (a) The force F12 exerted by object 1 on object 2 is
equal in magnitude and opposite in direction to the force F21 exerted by object 2 on
object 1. (b) The force Fhn exerted by the hammer on the nail is equal in magnitude
and opposite to the force Fnh exerted by the nail on the hammer. 
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Tercera ley de Newton:                    
(principio de acción y reacción) 

Si dos objetos interactúan, la fuerza F12 ejercida por el objeto 1 sobre el 2 es igual en módulo y 
dirección, pero opuesta en sentido, a la fuerza F21 ejercida por el objeto 2 sobre el objeto 1. 

Las fuerzas siempre se producen por parejas. No puede existir una única fuerza aislada. 

En todos los casos, las fuerzas de acción y reacción actúan sobre objetos diferentes, 
y deben ser del mismo tipo. 

Fuerza ejercida por a sobre b 

Notación 



Ejemplo del principio de 
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Another example of Newton’s third law is shown in Figure 5.5b. The force Fhn ex-
erted by the hammer on the nail (the action) is equal in magnitude and opposite the
force Fnh exerted by the nail on the hammer (the reaction). This latter force stops the
forward motion of the hammer when it strikes the nail.

You experience the third law directly if you slam your fist against a wall or kick a
football with your bare foot. You can feel the force back on your fist or your foot. You
should be able to identify the action and reaction forces in these cases.

The Earth exerts a gravitational force Fg on any object. If the object is a computer
monitor at rest on a table, as in Figure 5.6a, the reaction force to Fg ! FEm is the force
exerted by the monitor on the Earth FmE ! " FEm. The monitor does not accelerate
because it is held up by the table. The table exerts on the monitor an upward force
n ! Ftm, called the normal force.4 This is the force that prevents the monitor from
falling through the table; it can have any value needed, up to the point of breaking the
table. From Newton’s second law, we see that, because the monitor has zero accelera-
tion, it follows that !F ! n " mg ! 0, or n ! mg. The normal force balances the gravi-
tational force on the monitor, so that the net force on the monitor is zero. The reaction
to n is the force exerted by the monitor downward on the table, Fmt ! " Ftm ! " n.

Note that the forces acting on the monitor are Fg and n, as shown in Figure 5.6b. The
two reaction forces FmE and Fmt are exerted on objects other than the monitor. Remem-
ber, the two forces in an action–reaction pair always act on two different objects.

Figure 5.6 illustrates an extremely important step in solving problems involving
forces. Figure 5.6a shows many of the forces in the situation—those acting on the mon-
itor, one acting on the table, and one acting on the Earth. Figure 5.6b, by contrast,
shows only the forces acting on one object, the monitor. This is a critical drawing called a
free-body diagram. When analyzing an object subject to forces, we are interested in
the net force acting on one object, which we will model as a particle. Thus, a free-body
diagram helps us to isolate only those forces on the object and eliminate the other
forces from our analysis. The free-body diagram can be simplified further by represent-
ing the object (such as the monitor) as a particle, by simply drawing a dot.

Fg  = FEm

n = Ftm

Fg  = FEm

Fmt

(a) (b)

FmE

n = Ftm

Figure 5.6 (a) When a computer monitor is at rest on a table, the forces acting on the
monitor are the normal force n and the gravitational force Fg . The reaction to n is the
force Fmt exerted by the monitor on the table. The reaction to Fg is the force FmE
exerted by the monitor on the Earth. (b) The free-body diagram for the monitor.

Definition of normal force

! PITFALL PREVENTION
5.7 Newton’s Third Law
This is such an important and of-
ten misunderstood concept that
it will be repeated here in a Pit-
fall Prevention. Newton’s third
law action and reaction forces act
on different objects. Two forces
acting on the same object, even if
they are equal in magnitude and
opposite in direction, cannot be
an action–reaction pair.

! PITFALL PREVENTION
5.6 n Does Not Always

Equal mg
In the situation shown in Figure
5.6 and in many others, we find
that n ! mg (the normal force
has the same magnitude as the
gravitational force). However,
this is not generally true. If an ob-
ject is on an incline, if there are
applied forces with vertical com-
ponents, or if there is a vertical
acceleration of the system, then
n ! mg. Always apply Newton’s
second law to find the relation-
ship between n and mg.

4 Normal in this context means perpendicular.

Hay dos pares de fuerzas: 
 - De la Tierra sobre el monitor            (el peso del monitor) , y del monitor sobre la Tierra 
 - De la mesa sobre el monitor           (la normal), y del monitor sobre la mesa  

De estas cuatro, sólo dos actúan sobre el monitor, y son las únicas que habría que tener en 
cuenta a la hora de estudiar posibles cambios en su movimiento 



Tipos de fuerzas 

Fuerzas de restricción 

Fuerzas elásticas 

Fuerzas de fricción 

Fuerzas de fricción en fluídos 

Fuerzas en movimientos curvilíneos 

Fuerzas ficticias 



Tipos de fuerzas:    
fuerzas de restricción 

Limitan el movimiento 

Surgen como oposición a otra fuerza 

Son ilimitadas 

Fuerzas normales: se definen como la fuerza de igual magnitud y dirección, pero 
diferente sentido, que ejerce una superficie sobre un cuerpo apoyado sobre la misma.  

Esta fuerza impide que el objeto caiga a través de la superficie. 

Puede tomar cualquier valor necesario hasta el límite de ruptura de la superficie. 



Tipos de fuerzas:    
tensiones en cuerdas 

Cuerda: cualquier dispositivo capaz de trasmitir una fuerza 

Normalmente vamos a considerar despreciable las  masas de las cuerdas, y 
que estas son inextensibles (longitud constante)  

Cuando un objeto está siendo arrastrado por una cuerda, ésta ejerce una fuerza sobre el objeto.  

Al módulo de esta fuerza se le denomina tensión 

Esta fuerza tiene la dirección de la propia cuerda y se ejerce en sentido saliente con 
respecto al objeto. 



Tipos de fuerzas:    
tensiones en cuerdas 

Supongamos una superficie horizontal sin rozamiento 

¿Cuánto vale la aceleración de la caja? 

Paso 1: Aislamos el objeto cuyo movimiento vamos a analizar  

Paso 2: Dibujamos el diagrama de fuerzas que actúan sobre el objeto 
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Objects in Equilibrium

If the acceleration of an object that can be modeled as a particle is zero, the particle is
in equilibrium. Consider a lamp suspended from a light chain fastened to the ceiling,
as in Figure 5.7a. The free-body diagram for the lamp (Figure 5.7b) shows that the
forces acting on the lamp are the downward gravitational force Fg and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that a ! 0,
we see that because there are no forces in the x direction, !Fx ! 0 provides no helpful
information. The condition !Fy ! may ! 0 gives

Again, note that T and Fg are not an action–reaction pair because they act on the
same object—the lamp. The reaction force to T is T", the downward force exerted by
the lamp on the chain, as shown in Figure 5.7c. The ceiling exerts on the chain a
force T # that is equal in magnitude to the magnitude of T" and points in the opposite
direction.

Objects Experiencing a Net Force

If an object that can be modeled as a particle experiences an acceleration, then there
must be a nonzero net force acting on the object. Consider a crate being pulled to the
right on a frictionless, horizontal surface, as in Figure 5.8a. Suppose you are asked to
find the acceleration of the crate and the force the floor exerts on it. First, note that
the horizontal force T being applied to the crate acts through the rope. The magni-
tude of T is equal to the tension in the rope. The forces acting on the crate are illus-
trated in the free-body diagram in Figure 5.8b. In addition to the force T, the free-
body diagram for the crate includes the gravitational force Fg and the normal force n
exerted by the floor on the crate.

We can now apply Newton’s second law in component form to the crate. The only
force acting in the x direction is T. Applying !Fx ! max to the horizontal motion
gives

No acceleration occurs in the y direction. Applying !Fy ! may with ay ! 0 yields

That is, the normal force has the same magnitude as the gravitational force but acts in
the opposite direction.

If T is a constant force, then the acceleration ax ! T/m also is constant. Hence, the
constant-acceleration equations of kinematics from Chapter 2 can be used to obtain
the crate’s position x and velocity vx as functions of time. Because ax ! T/m ! con-
stant, Equations 2.9 and 2.12 can be written as

In the situation just described, the magnitude of the normal force n is equal to the
magnitude of Fg , but this is not always the case. For example, suppose a book is lying
on a table and you push down on the book with a force F, as in Figure 5.9. Because the
book is at rest and therefore not accelerating, !Fy ! 0, which gives n $ Fg $ F ! 0, or
n ! Fg % F. In this situation, the normal force is greater than the force of gravity. Other
examples in which n ! Fg are presented later.

xf ! xi % vxit % 1
2" T

m # t2

vxf ! vxi % " T
m #t

n % ($  Fg) ! 0  or  n ! Fg

!Fx ! T ! max  or  ax !
T
m

!Fy ! T $ Fg ! 0  or  T ! Fg

(b) (c)

T

T′

T′′ = T

(a)
Fg

Figure 5.7 (a) A lamp suspended
from a ceiling by a chain of negligi-
ble mass. (b) The forces acting on
the lamp are the gravitational force
Fg and the force T exerted by the
chain. (c) The forces acting on the
chain are the force T! exerted by
the lamp and the force T " exerted
by the ceiling.

(a)

T

n

Fg

y

x

(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.

(si tuviéramos más de un objeto, 
dibujaríamos un diagrama de 
fuerzas para cada uno de los 

objetos por separado) 
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Again, note that T and Fg are not an action–reaction pair because they act on the
same object—the lamp. The reaction force to T is T", the downward force exerted by
the lamp on the chain, as shown in Figure 5.7c. The ceiling exerts on the chain a
force T # that is equal in magnitude to the magnitude of T" and points in the opposite
direction.

Objects Experiencing a Net Force

If an object that can be modeled as a particle experiences an acceleration, then there
must be a nonzero net force acting on the object. Consider a crate being pulled to the
right on a frictionless, horizontal surface, as in Figure 5.8a. Suppose you are asked to
find the acceleration of the crate and the force the floor exerts on it. First, note that
the horizontal force T being applied to the crate acts through the rope. The magni-
tude of T is equal to the tension in the rope. The forces acting on the crate are illus-
trated in the free-body diagram in Figure 5.8b. In addition to the force T, the free-
body diagram for the crate includes the gravitational force Fg and the normal force n
exerted by the floor on the crate.

We can now apply Newton’s second law in component form to the crate. The only
force acting in the x direction is T. Applying !Fx ! max to the horizontal motion
gives

No acceleration occurs in the y direction. Applying !Fy ! may with ay ! 0 yields

That is, the normal force has the same magnitude as the gravitational force but acts in
the opposite direction.

If T is a constant force, then the acceleration ax ! T/m also is constant. Hence, the
constant-acceleration equations of kinematics from Chapter 2 can be used to obtain
the crate’s position x and velocity vx as functions of time. Because ax ! T/m ! con-
stant, Equations 2.9 and 2.12 can be written as

In the situation just described, the magnitude of the normal force n is equal to the
magnitude of Fg , but this is not always the case. For example, suppose a book is lying
on a table and you push down on the book with a force F, as in Figure 5.9. Because the
book is at rest and therefore not accelerating, !Fy ! 0, which gives n $ Fg $ F ! 0, or
n ! Fg % F. In this situation, the normal force is greater than the force of gravity. Other
examples in which n ! Fg are presented later.

xf ! xi % vxit % 1
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vxf ! vxi % " T
m #t

n % ($  Fg) ! 0  or  n ! Fg
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Figure 5.7 (a) A lamp suspended
from a ceiling by a chain of negligi-
ble mass. (b) The forces acting on
the lamp are the gravitational force
Fg and the force T exerted by the
chain. (c) The forces acting on the
chain are the force T! exerted by
the lamp and the force T " exerted
by the ceiling.
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Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.

Paso 3: Elegimos unos ejes de  
coordenadas convenientes para 
analizar el movimiento de cada 
uno de los objetos 



Tipos de fuerzas:    
tensiones en cuerdas 

Paso 4: Aplicamos la segunda ley de Newton descompuesta en componentes 
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Objects in Equilibrium

If the acceleration of an object that can be modeled as a particle is zero, the particle is
in equilibrium. Consider a lamp suspended from a light chain fastened to the ceiling,
as in Figure 5.7a. The free-body diagram for the lamp (Figure 5.7b) shows that the
forces acting on the lamp are the downward gravitational force Fg and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that a ! 0,
we see that because there are no forces in the x direction, !Fx ! 0 provides no helpful
information. The condition !Fy ! may ! 0 gives

Again, note that T and Fg are not an action–reaction pair because they act on the
same object—the lamp. The reaction force to T is T", the downward force exerted by
the lamp on the chain, as shown in Figure 5.7c. The ceiling exerts on the chain a
force T # that is equal in magnitude to the magnitude of T" and points in the opposite
direction.

Objects Experiencing a Net Force

If an object that can be modeled as a particle experiences an acceleration, then there
must be a nonzero net force acting on the object. Consider a crate being pulled to the
right on a frictionless, horizontal surface, as in Figure 5.8a. Suppose you are asked to
find the acceleration of the crate and the force the floor exerts on it. First, note that
the horizontal force T being applied to the crate acts through the rope. The magni-
tude of T is equal to the tension in the rope. The forces acting on the crate are illus-
trated in the free-body diagram in Figure 5.8b. In addition to the force T, the free-
body diagram for the crate includes the gravitational force Fg and the normal force n
exerted by the floor on the crate.

We can now apply Newton’s second law in component form to the crate. The only
force acting in the x direction is T. Applying !Fx ! max to the horizontal motion
gives

No acceleration occurs in the y direction. Applying !Fy ! may with ay ! 0 yields

That is, the normal force has the same magnitude as the gravitational force but acts in
the opposite direction.

If T is a constant force, then the acceleration ax ! T/m also is constant. Hence, the
constant-acceleration equations of kinematics from Chapter 2 can be used to obtain
the crate’s position x and velocity vx as functions of time. Because ax ! T/m ! con-
stant, Equations 2.9 and 2.12 can be written as

In the situation just described, the magnitude of the normal force n is equal to the
magnitude of Fg , but this is not always the case. For example, suppose a book is lying
on a table and you push down on the book with a force F, as in Figure 5.9. Because the
book is at rest and therefore not accelerating, !Fy ! 0, which gives n $ Fg $ F ! 0, or
n ! Fg % F. In this situation, the normal force is greater than the force of gravity. Other
examples in which n ! Fg are presented later.
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Figure 5.7 (a) A lamp suspended
from a ceiling by a chain of negligi-
ble mass. (b) The forces acting on
the lamp are the gravitational force
Fg and the force T exerted by the
chain. (c) The forces acting on the
chain are the force T! exerted by
the lamp and the force T " exerted
by the ceiling.
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Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.

Dirección y: la partícula está en equilibrio, por lo 
tanto su aceleración es cero y la fuerza externa 

neta actuando sobre la partícula en esta 
dirección tiene que anularse 

Dirección x: sólo actúa una fuerza sobre la 
partícula 

Si la tensión es constante, entonces la caja seguirá 
un movimiento rectilíneo uniformemente acelerado 



Precaución: la normal no siempre es igual al peso 

Dirección y: la partícula está en equilibrio, por lo 
tanto su aceleración es cero y la fuerza externa 

neta actuando sobre la partícula en esta 
dirección tiene que anularse 
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F

Fg n

Figure 5.9 When one object
pushes downward on another
object with a force F, the normal
force n is greater than the
gravitational force: n ! Fg " F.

P R O B L E M - S O LV I N G  H I N T S

Applying Newton’s Laws
The following procedure is recommended when dealing with problems involving
Newton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle is
in equilibrium in this direction and !F ! 0. If not, the particle is undergoing
an acceleration, the problem is one of nonequilibrium in this direction, and
!F ! ma.

• Analyze the problem by isolating the object whose motion is being
analyzed. Draw a free-body diagram for this object. For systems containing
more than one object, draw separate free-body diagrams for each object.
Do not include in the free-body diagram forces exerted by the object on its
surroundings.

• Establish convenient coordinate axes for each object and find the
components of the forces along these axes. Apply Newton’s second law, 
!F ! ma, in component form. Check your dimensions to make sure that all
terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Finalize by making sure your results are consistent with the free-body diagram.
Also check the predictions of your solutions for extreme values of the
variables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to two
other cables fastened to a support, as in Figure 5.10a. The
upper cables make angles of 37.0° and 53.0° with the hori-
zontal. These upper cables are not as strong as the vertical
cable, and will break if the tension in them exceeds 100 N.
Will the traffic light remain hanging in this situation, or will
one of the cables break?

Solution We conceptualize the problem by inspecting the
drawing in Figure 5.10a. Let us assume that the cables do
not break so that there is no acceleration of any sort in this
problem in any direction. This allows us to categorize the
problem as one of equilibrium. Because the acceleration of
the system is zero, we know that the net force on the light
and the net force on the knot are both zero. To analyze the

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagram
for the traffic light. (c) Free-body diagram for the knot where the three cables are joined.

El módulo de la normal es mayor 
que la fuerza de la gravedad 



Si el número de objetos en el sistema es mayor que uno, hay 
que analizar los diagramas de fuerzas por separado 
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Figure 5.9 When one object
pushes downward on another
object with a force F, the normal
force n is greater than the
gravitational force: n ! Fg " F.

P R O B L E M - S O LV I N G  H I N T S

Applying Newton’s Laws
The following procedure is recommended when dealing with problems involving
Newton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle is
in equilibrium in this direction and !F ! 0. If not, the particle is undergoing
an acceleration, the problem is one of nonequilibrium in this direction, and
!F ! ma.

• Analyze the problem by isolating the object whose motion is being
analyzed. Draw a free-body diagram for this object. For systems containing
more than one object, draw separate free-body diagrams for each object.
Do not include in the free-body diagram forces exerted by the object on its
surroundings.

• Establish convenient coordinate axes for each object and find the
components of the forces along these axes. Apply Newton’s second law, 
!F ! ma, in component form. Check your dimensions to make sure that all
terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Finalize by making sure your results are consistent with the free-body diagram.
Also check the predictions of your solutions for extreme values of the
variables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to two
other cables fastened to a support, as in Figure 5.10a. The
upper cables make angles of 37.0° and 53.0° with the hori-
zontal. These upper cables are not as strong as the vertical
cable, and will break if the tension in them exceeds 100 N.
Will the traffic light remain hanging in this situation, or will
one of the cables break?

Solution We conceptualize the problem by inspecting the
drawing in Figure 5.10a. Let us assume that the cables do
not break so that there is no acceleration of any sort in this
problem in any direction. This allows us to categorize the
problem as one of equilibrium. Because the acceleration of
the system is zero, we know that the net force on the light
and the net force on the knot are both zero. To analyze the
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Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagram
for the traffic light. (c) Free-body diagram for the knot where the three cables are joined.

Ejemplo: semáforo en equilibrio 

Diagrama de fuerzas sobre el semáforo 
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Figure 5.9 When one object
pushes downward on another
object with a force F, the normal
force n is greater than the
gravitational force: n ! Fg " F.

P R O B L E M - S O LV I N G  H I N T S

Applying Newton’s Laws
The following procedure is recommended when dealing with problems involving
Newton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle is
in equilibrium in this direction and !F ! 0. If not, the particle is undergoing
an acceleration, the problem is one of nonequilibrium in this direction, and
!F ! ma.

• Analyze the problem by isolating the object whose motion is being
analyzed. Draw a free-body diagram for this object. For systems containing
more than one object, draw separate free-body diagrams for each object.
Do not include in the free-body diagram forces exerted by the object on its
surroundings.

• Establish convenient coordinate axes for each object and find the
components of the forces along these axes. Apply Newton’s second law, 
!F ! ma, in component form. Check your dimensions to make sure that all
terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Finalize by making sure your results are consistent with the free-body diagram.
Also check the predictions of your solutions for extreme values of the
variables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to two
other cables fastened to a support, as in Figure 5.10a. The
upper cables make angles of 37.0° and 53.0° with the hori-
zontal. These upper cables are not as strong as the vertical
cable, and will break if the tension in them exceeds 100 N.
Will the traffic light remain hanging in this situation, or will
one of the cables break?

Solution We conceptualize the problem by inspecting the
drawing in Figure 5.10a. Let us assume that the cables do
not break so that there is no acceleration of any sort in this
problem in any direction. This allows us to categorize the
problem as one of equilibrium. Because the acceleration of
the system is zero, we know that the net force on the light
and the net force on the knot are both zero. To analyze the

T2T1

T3

53.0°37.0°

(a)

T3

53.0°37.0° x

T2

T1

yT3

Fg

(b) (c)

Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagram
for the traffic light. (c) Free-body diagram for the knot where the three cables are joined.

Diagrama de fuerzas sobre el nudo 
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Figure 5.9 When one object
pushes downward on another
object with a force F, the normal
force n is greater than the
gravitational force: n ! Fg " F.

P R O B L E M - S O LV I N G  H I N T S

Applying Newton’s Laws
The following procedure is recommended when dealing with problems involving
Newton’s laws:

• Draw a simple, neat diagram of the system to help conceptualize the problem.

• Categorize the problem: if any acceleration component is zero, the particle is
in equilibrium in this direction and !F ! 0. If not, the particle is undergoing
an acceleration, the problem is one of nonequilibrium in this direction, and
!F ! ma.

• Analyze the problem by isolating the object whose motion is being
analyzed. Draw a free-body diagram for this object. For systems containing
more than one object, draw separate free-body diagrams for each object.
Do not include in the free-body diagram forces exerted by the object on its
surroundings.

• Establish convenient coordinate axes for each object and find the
components of the forces along these axes. Apply Newton’s second law, 
!F ! ma, in component form. Check your dimensions to make sure that all
terms have units of force.

• Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

• Finalize by making sure your results are consistent with the free-body diagram.
Also check the predictions of your solutions for extreme values of the
variables. By doing so, you can often detect errors in your results.

Example 5.4 A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable tied to two
other cables fastened to a support, as in Figure 5.10a. The
upper cables make angles of 37.0° and 53.0° with the hori-
zontal. These upper cables are not as strong as the vertical
cable, and will break if the tension in them exceeds 100 N.
Will the traffic light remain hanging in this situation, or will
one of the cables break?

Solution We conceptualize the problem by inspecting the
drawing in Figure 5.10a. Let us assume that the cables do
not break so that there is no acceleration of any sort in this
problem in any direction. This allows us to categorize the
problem as one of equilibrium. Because the acceleration of
the system is zero, we know that the net force on the light
and the net force on the knot are both zero. To analyze the
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Figure 5.10 (Example 5.4) (a) A traffic light suspended by cables. (b) Free-body diagram
for the traffic light. (c) Free-body diagram for the knot where the three cables are joined.



Elegir siempre el sistema de coordenadas 
más adecuado para nuestro problema 

Ejemplo: coche en un plano inclinado 
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Solving (1) for ax , we see that the acceleration along the in-
cline is caused by the component of Fg directed down the
incline:

To finalize this part, note that this acceleration component is
independent of the mass of the car! It depends only on the
angle of inclination and on g.

From (2) we conclude that the component of Fg per-
pendicular to the incline is balanced by the normal force;
that is, n ! mg cos ". This is another example of a situation
in which the normal force is not equal in magnitude to the
weight of the object.

(B) Suppose the car is released from rest at the top of the
incline, and the distance from the car’s front bumper to the
bottom of the incline is d. How long does it take the front
bumper to reach the bottom, and what is the car’s speed as
it arrives there?

Solution Conceptualize by imagining that the car is sliding
down the hill and you are operating a stop watch to measure
the entire time interval until it reaches the bottom. This
part of the problem belongs to kinematics rather than to dy-
namics, and Equation (3) shows that the acceleration ax is
constant. Therefore you should categorize this problem as
that of a particle undergoing constant acceleration. Apply
Equation 2.12, xf ! xi # vxit # axt 2, to analyze the car’s
motion. Defining the initial position of the front bumper
as xi ! 0 and its final position as xf ! d, and recognizing
that vxi ! 0, we obtain

d ! 1
2axt 2

1
2

g  sin "(3)   ax ! Using Equation 2.13, with vxi ! 0, we find that

To finalize this part of the problem, we see from Equations
(4) and (5) that the time t at which the car reaches the bot-
tom and its final speed vxf are independent of the car’s
mass, as was its acceleration. Note that we have combined
techniques from Chapter 2 with new techniques from the
present chapter in this example. As we learn more and
more techniques in later chapters, this process of com-
bining information from several parts of the book will
occur more often. In these cases, use the General Problem-
Solving Strategy to help you identify what techniques you
will need.

What If? (A) What previously solved problem does this
become if ! " 90°? (B) What problem does this become if
! " 0?

Answer (A) Imagine " going to 90° in Figure 5.11. The in-
clined plane becomes vertical, and the car is an object in
free-fall! Equation (3) becomes

which is indeed the free-fall acceleration. (We find ax ! g
rather than ax ! $g because we have chosen positive x to be
downward in Figure 5.11.) Notice also that the condition

ax ! g  sin " ! g  sin  90% ! g

√2 gd sin "(5)   vxf ! √2axd !

vxf
2 ! 2axd

√ 2d
g sin  "

(4)   t !  √ 2d
ax

!
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Figure 5.11 (Example 5.6) (a) A car of mass m sliding down a frictionless incline.
(b) The free-body diagram for the car. Note that its acceleration along the incline is
g sin".Cuando se trabaja con planos inclinados es conveniente escoger un eje de 

coordenadas con el eje x paralelo al plano inclinado y el eje y perpendicular al mismo 



Elegir siempre el sistema de coordenadas 
más adecuado para nuestro problema 

Ejemplo: coche en un plano inclinado 

El peso va a tener ahora una componente a lo largo del eje x y una componente a lo largo del eje y 
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Solving (1) for ax , we see that the acceleration along the in-
cline is caused by the component of Fg directed down the
incline:

To finalize this part, note that this acceleration component is
independent of the mass of the car! It depends only on the
angle of inclination and on g.

From (2) we conclude that the component of Fg per-
pendicular to the incline is balanced by the normal force;
that is, n ! mg cos ". This is another example of a situation
in which the normal force is not equal in magnitude to the
weight of the object.

(B) Suppose the car is released from rest at the top of the
incline, and the distance from the car’s front bumper to the
bottom of the incline is d. How long does it take the front
bumper to reach the bottom, and what is the car’s speed as
it arrives there?

Solution Conceptualize by imagining that the car is sliding
down the hill and you are operating a stop watch to measure
the entire time interval until it reaches the bottom. This
part of the problem belongs to kinematics rather than to dy-
namics, and Equation (3) shows that the acceleration ax is
constant. Therefore you should categorize this problem as
that of a particle undergoing constant acceleration. Apply
Equation 2.12, xf ! xi # vxit # axt 2, to analyze the car’s
motion. Defining the initial position of the front bumper
as xi ! 0 and its final position as xf ! d, and recognizing
that vxi ! 0, we obtain

d ! 1
2axt 2

1
2

g  sin "(3)   ax ! Using Equation 2.13, with vxi ! 0, we find that

To finalize this part of the problem, we see from Equations
(4) and (5) that the time t at which the car reaches the bot-
tom and its final speed vxf are independent of the car’s
mass, as was its acceleration. Note that we have combined
techniques from Chapter 2 with new techniques from the
present chapter in this example. As we learn more and
more techniques in later chapters, this process of com-
bining information from several parts of the book will
occur more often. In these cases, use the General Problem-
Solving Strategy to help you identify what techniques you
will need.

What If? (A) What previously solved problem does this
become if ! " 90°? (B) What problem does this become if
! " 0?

Answer (A) Imagine " going to 90° in Figure 5.11. The in-
clined plane becomes vertical, and the car is an object in
free-fall! Equation (3) becomes

which is indeed the free-fall acceleration. (We find ax ! g
rather than ax ! $g because we have chosen positive x to be
downward in Figure 5.11.) Notice also that the condition

ax ! g  sin " ! g  sin  90% ! g

√2 gd sin "(5)   vxf ! √2axd !

vxf
2 ! 2axd
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g sin  "

(4)   t !  √ 2d
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Figure 5.11 (Example 5.6) (a) A car of mass m sliding down a frictionless incline.
(b) The free-body diagram for the car. Note that its acceleration along the incline is
g sin".

Aceleración independiente de la masa La normal no es igual al peso 



También es importante definir el sistema 
objeto de nuestro problema 

Ejemplo: un bloque que empuja a otro sobre superficie sin fricción 
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n ! mg cos " gives us n ! mg cos 90° ! 0. This is consistent
with the fact that the car is falling downward next to the
vertical plane but there is no interaction force between
the car and the plane. Equations (4) and (5) give us

and 

both of which are consistent with a falling object.

(B) Imagine " going to 0 in Figure 5.11. In this case, the in-
clined plane becomes horizontal, and the car is on a hori-
zontal surface. Equation (3) becomes

! √2gd,vxf ! √2gd  sin  90#t ! √ 2d
g  sin 90#

! √ 2d
g

which is consistent with the fact that the car is at rest in
equilibrium. Notice also that the condition n ! mg cos "
gives us n ! mg cos 0 ! mg, which is consistent with our
expectation.

Equations (4) and (5) give us and 

. These results agree with the fact that
the car does not accelerate, so it will never achieve a non-
zero final velocity, and it will take an infinite amount of time
to reach the bottom of the “hill”!

vxf ! √2gd  sin   0 ! 0

 t ! √ 2d
g   sin 0

 : $

ax ! g   sin " ! g  sin  0 ! 0

Example 5.7 One Block Pushes Another

Two blocks of masses m1 and m2, with m1 % m2, are placed in
contact with each other on a frictionless, horizontal surface,
as in Figure 5.12a. A constant horizontal force F is applied to
m1 as shown. (A) Find the magnitude of the acceleration of
the system.

Solution Conceptualize the situation using Figure 5.12a and
realizing that both blocks must experience the same acceler-
ation because they are in contact with each other and re-
main in contact throughout the motion. We categorize this as
a Newton’s second law problem because we have a force ap-
plied to a system and we are looking for an acceleration. To
analyze the problem, we first address the combination of two
blocks as a system. Because F is the only external horizontal
force acting on the system, we have

To finalize this part, note that this would be the same acceler-
ation as that of a single object of mass equal to the com-
bined masses of the two blocks in Figure 5.12a and subject
to the same force.

F
m1 & m2

(1)   ax !

!Fx(system) ! F ! (m1 & m2)ax

(B) Determine the magnitude of the contact force between
the two blocks.

Solution Conceptualize by noting that the contact force is in-
ternal to the system of two blocks. Thus, we cannot find this
force by modeling the whole system (the two blocks) as a
single particle. We must now treat each of the two blocks in-
dividually by categorizing each as a particle subject to a net
force. To analyze the situation, we first construct a free-body
diagram for each block, as shown in Figures 5.12b and
5.12c, where the contact force is denoted by P. From Figure
5.12c we see that the only horizontal force acting on m2 
is the contact force P12 (the force exerted by m1 on m2),
which is directed to the right. Applying Newton’s second law
to m2 gives

Substituting the value of the acceleration ax given by (1)
into (2) gives

To finalize the problem, we see from this result that
the contact force P12 is less than the applied force F. This
is consistent with the fact that the force required to
accelerate block 2 alone must be less than the force re-
quired to produce the same acceleration for the two-block
system.

To finalize further, it is instructive to check this expres-
sion for P12 by considering the forces acting on m1, shown
in Figure 5.12b. The horizontal forces acting on m1 are the
applied force F to the right and the contact force P21 to the
left (the force exerted by m2 on m1). From Newton’s third
law, P21 is the reaction to P12, so P21 ! P12 . Applying New-
ton’s second law to m1 gives

Substituting into (4) the value of ax from (1), we obtain

This agrees with (3), as it must.

P12 ! F ' m1ax ! F ' m1 " 
F
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# ! " m2
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F

(4)   !Fx ! F ' P21 ! F ' P12 ! m1ax
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(2)   !Fx ! P12 ! m2ax
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Active Figure 5.12 (Example 5.7) A force is applied to a block
of mass m1, which pushes on a second block of mass m2. (b) The
free-body diagram for m1. (c) The free-body diagram for m2.

At the Active Figures link at http://www.pse6.com,
you can study the forces involved in this two-block
system.

¿Cuánto vale la aceleración del sistema? 

Los dos bloques deben experimentar la misma aceleración: 
 - están en contacto 
 - permanecen en contacto a lo largo de todo el movimiento 

Asumimos que la fuerza 
es constante 

Es la misma aceleración que experimentaría un objeto de masa igual a la suma de las masas y 
que estuviera sometido a la misma fuerza 



También es importante definir el sistema 
objeto de nuestro problema 

Ejemplo: un bloque que empuja a otro sobre superficie sin fricción 
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n ! mg cos " gives us n ! mg cos 90° ! 0. This is consistent
with the fact that the car is falling downward next to the
vertical plane but there is no interaction force between
the car and the plane. Equations (4) and (5) give us

and 

both of which are consistent with a falling object.

(B) Imagine " going to 0 in Figure 5.11. In this case, the in-
clined plane becomes horizontal, and the car is on a hori-
zontal surface. Equation (3) becomes

! √2gd,vxf ! √2gd  sin  90#t ! √ 2d
g  sin 90#

! √ 2d
g

which is consistent with the fact that the car is at rest in
equilibrium. Notice also that the condition n ! mg cos "
gives us n ! mg cos 0 ! mg, which is consistent with our
expectation.

Equations (4) and (5) give us and 

. These results agree with the fact that
the car does not accelerate, so it will never achieve a non-
zero final velocity, and it will take an infinite amount of time
to reach the bottom of the “hill”!

vxf ! √2gd  sin   0 ! 0

 t ! √ 2d
g   sin 0

 : $

ax ! g   sin " ! g  sin  0 ! 0

Example 5.7 One Block Pushes Another

Two blocks of masses m1 and m2, with m1 % m2, are placed in
contact with each other on a frictionless, horizontal surface,
as in Figure 5.12a. A constant horizontal force F is applied to
m1 as shown. (A) Find the magnitude of the acceleration of
the system.

Solution Conceptualize the situation using Figure 5.12a and
realizing that both blocks must experience the same acceler-
ation because they are in contact with each other and re-
main in contact throughout the motion. We categorize this as
a Newton’s second law problem because we have a force ap-
plied to a system and we are looking for an acceleration. To
analyze the problem, we first address the combination of two
blocks as a system. Because F is the only external horizontal
force acting on the system, we have

To finalize this part, note that this would be the same acceler-
ation as that of a single object of mass equal to the com-
bined masses of the two blocks in Figure 5.12a and subject
to the same force.

F
m1 & m2

(1)   ax !

!Fx(system) ! F ! (m1 & m2)ax

(B) Determine the magnitude of the contact force between
the two blocks.

Solution Conceptualize by noting that the contact force is in-
ternal to the system of two blocks. Thus, we cannot find this
force by modeling the whole system (the two blocks) as a
single particle. We must now treat each of the two blocks in-
dividually by categorizing each as a particle subject to a net
force. To analyze the situation, we first construct a free-body
diagram for each block, as shown in Figures 5.12b and
5.12c, where the contact force is denoted by P. From Figure
5.12c we see that the only horizontal force acting on m2 
is the contact force P12 (the force exerted by m1 on m2),
which is directed to the right. Applying Newton’s second law
to m2 gives

Substituting the value of the acceleration ax given by (1)
into (2) gives

To finalize the problem, we see from this result that
the contact force P12 is less than the applied force F. This
is consistent with the fact that the force required to
accelerate block 2 alone must be less than the force re-
quired to produce the same acceleration for the two-block
system.

To finalize further, it is instructive to check this expres-
sion for P12 by considering the forces acting on m1, shown
in Figure 5.12b. The horizontal forces acting on m1 are the
applied force F to the right and the contact force P21 to the
left (the force exerted by m2 on m1). From Newton’s third
law, P21 is the reaction to P12, so P21 ! P12 . Applying New-
ton’s second law to m1 gives

Substituting into (4) the value of ax from (1), we obtain

This agrees with (3), as it must.

P12 ! F ' m1ax ! F ' m1 " 
F
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Active Figure 5.12 (Example 5.7) A force is applied to a block
of mass m1, which pushes on a second block of mass m2. (b) The
free-body diagram for m1. (c) The free-body diagram for m2.

At the Active Figures link at http://www.pse6.com,
you can study the forces involved in this two-block
system.

¿Cuál es la fuerza que el objeto de 1 ejerce sobre el objeto 2? 

Es una fuerza interna al sistema.  
No podemos calcular esta fuerza considerando el sistema completo como una sola partícula 

Asumimos que la fuerza 
es constante 
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n ! mg cos " gives us n ! mg cos 90° ! 0. This is consistent
with the fact that the car is falling downward next to the
vertical plane but there is no interaction force between
the car and the plane. Equations (4) and (5) give us

and 

both of which are consistent with a falling object.

(B) Imagine " going to 0 in Figure 5.11. In this case, the in-
clined plane becomes horizontal, and the car is on a hori-
zontal surface. Equation (3) becomes

! √2gd,vxf ! √2gd  sin  90#t ! √ 2d
g  sin 90#

! √ 2d
g

which is consistent with the fact that the car is at rest in
equilibrium. Notice also that the condition n ! mg cos "
gives us n ! mg cos 0 ! mg, which is consistent with our
expectation.

Equations (4) and (5) give us and 

. These results agree with the fact that
the car does not accelerate, so it will never achieve a non-
zero final velocity, and it will take an infinite amount of time
to reach the bottom of the “hill”!

vxf ! √2gd  sin   0 ! 0

 t ! √ 2d
g   sin 0

 : $

ax ! g   sin " ! g  sin  0 ! 0

Example 5.7 One Block Pushes Another

Two blocks of masses m1 and m2, with m1 % m2, are placed in
contact with each other on a frictionless, horizontal surface,
as in Figure 5.12a. A constant horizontal force F is applied to
m1 as shown. (A) Find the magnitude of the acceleration of
the system.

Solution Conceptualize the situation using Figure 5.12a and
realizing that both blocks must experience the same acceler-
ation because they are in contact with each other and re-
main in contact throughout the motion. We categorize this as
a Newton’s second law problem because we have a force ap-
plied to a system and we are looking for an acceleration. To
analyze the problem, we first address the combination of two
blocks as a system. Because F is the only external horizontal
force acting on the system, we have

To finalize this part, note that this would be the same acceler-
ation as that of a single object of mass equal to the com-
bined masses of the two blocks in Figure 5.12a and subject
to the same force.

F
m1 & m2

(1)   ax !

!Fx(system) ! F ! (m1 & m2)ax

(B) Determine the magnitude of the contact force between
the two blocks.

Solution Conceptualize by noting that the contact force is in-
ternal to the system of two blocks. Thus, we cannot find this
force by modeling the whole system (the two blocks) as a
single particle. We must now treat each of the two blocks in-
dividually by categorizing each as a particle subject to a net
force. To analyze the situation, we first construct a free-body
diagram for each block, as shown in Figures 5.12b and
5.12c, where the contact force is denoted by P. From Figure
5.12c we see that the only horizontal force acting on m2 
is the contact force P12 (the force exerted by m1 on m2),
which is directed to the right. Applying Newton’s second law
to m2 gives

Substituting the value of the acceleration ax given by (1)
into (2) gives

To finalize the problem, we see from this result that
the contact force P12 is less than the applied force F. This
is consistent with the fact that the force required to
accelerate block 2 alone must be less than the force re-
quired to produce the same acceleration for the two-block
system.

To finalize further, it is instructive to check this expres-
sion for P12 by considering the forces acting on m1, shown
in Figure 5.12b. The horizontal forces acting on m1 are the
applied force F to the right and the contact force P21 to the
left (the force exerted by m2 on m1). From Newton’s third
law, P21 is the reaction to P12, so P21 ! P12 . Applying New-
ton’s second law to m1 gives

Substituting into (4) the value of ax from (1), we obtain

This agrees with (3), as it must.

P12 ! F ' m1ax ! F ' m1 " 
F

m1 & m2
# ! " m2
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(4)   !Fx ! F ' P21 ! F ' P12 ! m1ax
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Active Figure 5.12 (Example 5.7) A force is applied to a block
of mass m1, which pushes on a second block of mass m2. (b) The
free-body diagram for m1. (c) The free-body diagram for m2.

At the Active Figures link at http://www.pse6.com,
you can study the forces involved in this two-block
system.

Dibujamos el diagrama de fuerzas de 
cuerpo aislado para cada bloque 

La única fuerza horizontal que actúa sobre 
el bloque 2 es la fuerza de contacto 



También es importante definir el sistema 
objeto de nuestro problema 

Ejemplo: se pesa un objeto con la ayuda de una báscula suspendida 
del techo de un ascensor 

Demostrar que si el ascensor acelera la 
báscula indica un peso diferente del peso 

real del pescado 

Un observador dentro del ascensor no se 
encuentra en un sistema inercial.  

Analizaremos la situación en un sistema inercial, 
desde un punto fijo en el suelo 

128 C H A P T E R  5 •  The Laws of Motion

What If? Imagine that the force F in Figure 5.12 is applied
toward the left on the right-hand block of mass m2. Is the
magnitude of the force P12 the same as it was when the force
was applied toward the right on m1?

Answer With the force applied toward the left on m2, the
contact force must accelerate m1. In the original situation,
the contact force accelerates m2. Because m1 ! m2, this will
require more force, so the magnitude of P12 is greater than
in the original situation.

Example 5.8 Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached
to the ceiling of an elevator, as illustrated in Figure 5.13.
Show that if the elevator accelerates either upward or down-
ward, the spring scale gives a reading that is different from
the weight of the fish.

Solution Conceptualize by noting that the reading on the
scale is related to the extension of the spring in the scale,
which is related to the force on the end of the spring as in
Figure 5.2. Imagine that a string is hanging from the end
of the spring, so that the magnitude of the force exerted
on the spring is equal to the tension T in the string. Thus,
we are looking for T. The force T pulls down on the string
and pulls up on the fish. Thus, we can categorize this prob-
lem as one of analyzing the forces and acceleration associ-
ated with the fish by means of Newton’s second law. To an-
alyze the problem, we inspect the free-body diagrams for
the fish in Figure 5.13 and note that the external forces
acting on the fish are the downward gravitational force

Fg " mg and the force T exerted by the scale. If the eleva-
tor is either at rest or moving at constant velocity, the fish
does not accelerate, and so #Fy " T $ Fg " 0 or
T " Fg " mg. (Remember that the scalar mg is the weight
of the fish.)

If the elevator moves with an acceleration a relative to
an observer standing outside the elevator in an inertial
frame (see Fig. 5.13), Newton’s second law applied to the
fish gives the net force on the fish:

where we have chosen upward as the positive y direction.
Thus, we conclude from (1) that the scale reading T is
greater than the fish’s weight mg if a is upward, so that ay is
positive, and that the reading is less than mg if a is down-
ward, so that ay is negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay " % 2.00 m/s2, the scale reading from (1) is

(1)   !Fy " T $ mg " may

m g

a

T

a

m g

T

(b)(a)

Observer in
inertial frame

Figure 5.13 (Example 5.8) Apparent weight versus true weight. (a) When the elevator
accelerates upward, the spring scale reads a value greater than the weight of the fish.
(b) When the elevator accelerates downward, the spring scale reads a value less than
the weight of the fish.



También es importante definir el sistema 
objeto de nuestro problema 

Ejemplo: se pesa un objeto con la ayuda de una báscula suspendida 
del techo de un ascensor 

Demostrar que si el ascensor acelera la 
báscula indica un peso diferente del peso 

real del pescado 

El peso medido está relacionado con la extensión 
del muelle que, a su vez, está relacionado con la 
fuerza que se ejerce sobre el extremo del muelle 

128 C H A P T E R  5 •  The Laws of Motion

What If? Imagine that the force F in Figure 5.12 is applied
toward the left on the right-hand block of mass m2. Is the
magnitude of the force P12 the same as it was when the force
was applied toward the right on m1?

Answer With the force applied toward the left on m2, the
contact force must accelerate m1. In the original situation,
the contact force accelerates m2. Because m1 ! m2, this will
require more force, so the magnitude of P12 is greater than
in the original situation.

Example 5.8 Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached
to the ceiling of an elevator, as illustrated in Figure 5.13.
Show that if the elevator accelerates either upward or down-
ward, the spring scale gives a reading that is different from
the weight of the fish.

Solution Conceptualize by noting that the reading on the
scale is related to the extension of the spring in the scale,
which is related to the force on the end of the spring as in
Figure 5.2. Imagine that a string is hanging from the end
of the spring, so that the magnitude of the force exerted
on the spring is equal to the tension T in the string. Thus,
we are looking for T. The force T pulls down on the string
and pulls up on the fish. Thus, we can categorize this prob-
lem as one of analyzing the forces and acceleration associ-
ated with the fish by means of Newton’s second law. To an-
alyze the problem, we inspect the free-body diagrams for
the fish in Figure 5.13 and note that the external forces
acting on the fish are the downward gravitational force

Fg " mg and the force T exerted by the scale. If the eleva-
tor is either at rest or moving at constant velocity, the fish
does not accelerate, and so #Fy " T $ Fg " 0 or
T " Fg " mg. (Remember that the scalar mg is the weight
of the fish.)

If the elevator moves with an acceleration a relative to
an observer standing outside the elevator in an inertial
frame (see Fig. 5.13), Newton’s second law applied to the
fish gives the net force on the fish:

where we have chosen upward as the positive y direction.
Thus, we conclude from (1) that the scale reading T is
greater than the fish’s weight mg if a is upward, so that ay is
positive, and that the reading is less than mg if a is down-
ward, so that ay is negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay " % 2.00 m/s2, the scale reading from (1) is

(1)   !Fy " T $ mg " may
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m g

T

(b)(a)

Observer in
inertial frame

Figure 5.13 (Example 5.8) Apparent weight versus true weight. (a) When the elevator
accelerates upward, the spring scale reads a value greater than the weight of the fish.
(b) When the elevator accelerates downward, the spring scale reads a value less than
the weight of the fish.

Esta fuerza es igual a la tensión T en el muelle. 
La fuerza      empuja hacia abajo el muelle y 

empuja hacia arriba al pescado. 



También es importante definir el sistema 
objeto de nuestro problema 

Ejemplo: se pesa un objeto con la ayuda de una báscula suspendida 
del techo de un ascensor 

Demostrar que si el ascensor acelera la 
báscula indica un peso diferente del peso 

real del pescado 

128 C H A P T E R  5 •  The Laws of Motion

What If? Imagine that the force F in Figure 5.12 is applied
toward the left on the right-hand block of mass m2. Is the
magnitude of the force P12 the same as it was when the force
was applied toward the right on m1?

Answer With the force applied toward the left on m2, the
contact force must accelerate m1. In the original situation,
the contact force accelerates m2. Because m1 ! m2, this will
require more force, so the magnitude of P12 is greater than
in the original situation.

Example 5.8 Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached
to the ceiling of an elevator, as illustrated in Figure 5.13.
Show that if the elevator accelerates either upward or down-
ward, the spring scale gives a reading that is different from
the weight of the fish.

Solution Conceptualize by noting that the reading on the
scale is related to the extension of the spring in the scale,
which is related to the force on the end of the spring as in
Figure 5.2. Imagine that a string is hanging from the end
of the spring, so that the magnitude of the force exerted
on the spring is equal to the tension T in the string. Thus,
we are looking for T. The force T pulls down on the string
and pulls up on the fish. Thus, we can categorize this prob-
lem as one of analyzing the forces and acceleration associ-
ated with the fish by means of Newton’s second law. To an-
alyze the problem, we inspect the free-body diagrams for
the fish in Figure 5.13 and note that the external forces
acting on the fish are the downward gravitational force

Fg " mg and the force T exerted by the scale. If the eleva-
tor is either at rest or moving at constant velocity, the fish
does not accelerate, and so #Fy " T $ Fg " 0 or
T " Fg " mg. (Remember that the scalar mg is the weight
of the fish.)

If the elevator moves with an acceleration a relative to
an observer standing outside the elevator in an inertial
frame (see Fig. 5.13), Newton’s second law applied to the
fish gives the net force on the fish:

where we have chosen upward as the positive y direction.
Thus, we conclude from (1) that the scale reading T is
greater than the fish’s weight mg if a is upward, so that ay is
positive, and that the reading is less than mg if a is down-
ward, so that ay is negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay " % 2.00 m/s2, the scale reading from (1) is

(1)   !Fy " T $ mg " may
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Observer in
inertial frame

Figure 5.13 (Example 5.8) Apparent weight versus true weight. (a) When the elevator
accelerates upward, the spring scale reads a value greater than the weight of the fish.
(b) When the elevator accelerates downward, the spring scale reads a value less than
the weight of the fish.

Sobre el pescado actúan dos fuerzas:  
 - su peso 
 - la fuerza     ejercida por el muelle 

Si el acelerador está en reposo o se mueve con 
velocidad constante, el pescado no se acelera 
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Ejemplo: se pesa un objeto con la ayuda de una báscula suspendida 
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Demostrar que si el ascensor acelera la 
báscula indica un peso diferente del peso 

real del pescado 

128 C H A P T E R  5 •  The Laws of Motion

What If? Imagine that the force F in Figure 5.12 is applied
toward the left on the right-hand block of mass m2. Is the
magnitude of the force P12 the same as it was when the force
was applied toward the right on m1?

Answer With the force applied toward the left on m2, the
contact force must accelerate m1. In the original situation,
the contact force accelerates m2. Because m1 ! m2, this will
require more force, so the magnitude of P12 is greater than
in the original situation.

Example 5.8 Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached
to the ceiling of an elevator, as illustrated in Figure 5.13.
Show that if the elevator accelerates either upward or down-
ward, the spring scale gives a reading that is different from
the weight of the fish.

Solution Conceptualize by noting that the reading on the
scale is related to the extension of the spring in the scale,
which is related to the force on the end of the spring as in
Figure 5.2. Imagine that a string is hanging from the end
of the spring, so that the magnitude of the force exerted
on the spring is equal to the tension T in the string. Thus,
we are looking for T. The force T pulls down on the string
and pulls up on the fish. Thus, we can categorize this prob-
lem as one of analyzing the forces and acceleration associ-
ated with the fish by means of Newton’s second law. To an-
alyze the problem, we inspect the free-body diagrams for
the fish in Figure 5.13 and note that the external forces
acting on the fish are the downward gravitational force

Fg " mg and the force T exerted by the scale. If the eleva-
tor is either at rest or moving at constant velocity, the fish
does not accelerate, and so #Fy " T $ Fg " 0 or
T " Fg " mg. (Remember that the scalar mg is the weight
of the fish.)

If the elevator moves with an acceleration a relative to
an observer standing outside the elevator in an inertial
frame (see Fig. 5.13), Newton’s second law applied to the
fish gives the net force on the fish:

where we have chosen upward as the positive y direction.
Thus, we conclude from (1) that the scale reading T is
greater than the fish’s weight mg if a is upward, so that ay is
positive, and that the reading is less than mg if a is down-
ward, so that ay is negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay " % 2.00 m/s2, the scale reading from (1) is

(1)   !Fy " T $ mg " may
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Observer in
inertial frame

Figure 5.13 (Example 5.8) Apparent weight versus true weight. (a) When the elevator
accelerates upward, the spring scale reads a value greater than the weight of the fish.
(b) When the elevator accelerates downward, the spring scale reads a value less than
the weight of the fish.

Sobre el pescado actúan dos fuerzas:  
 - su peso 
 - la fuerza     ejercida por el muelle 

Si el acelerador acelera con respecto a un 
observador inercial 
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báscula indica un peso diferente del peso 
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What If? Imagine that the force F in Figure 5.12 is applied
toward the left on the right-hand block of mass m2. Is the
magnitude of the force P12 the same as it was when the force
was applied toward the right on m1?

Answer With the force applied toward the left on m2, the
contact force must accelerate m1. In the original situation,
the contact force accelerates m2. Because m1 ! m2, this will
require more force, so the magnitude of P12 is greater than
in the original situation.

Example 5.8 Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached
to the ceiling of an elevator, as illustrated in Figure 5.13.
Show that if the elevator accelerates either upward or down-
ward, the spring scale gives a reading that is different from
the weight of the fish.

Solution Conceptualize by noting that the reading on the
scale is related to the extension of the spring in the scale,
which is related to the force on the end of the spring as in
Figure 5.2. Imagine that a string is hanging from the end
of the spring, so that the magnitude of the force exerted
on the spring is equal to the tension T in the string. Thus,
we are looking for T. The force T pulls down on the string
and pulls up on the fish. Thus, we can categorize this prob-
lem as one of analyzing the forces and acceleration associ-
ated with the fish by means of Newton’s second law. To an-
alyze the problem, we inspect the free-body diagrams for
the fish in Figure 5.13 and note that the external forces
acting on the fish are the downward gravitational force

Fg " mg and the force T exerted by the scale. If the eleva-
tor is either at rest or moving at constant velocity, the fish
does not accelerate, and so #Fy " T $ Fg " 0 or
T " Fg " mg. (Remember that the scalar mg is the weight
of the fish.)

If the elevator moves with an acceleration a relative to
an observer standing outside the elevator in an inertial
frame (see Fig. 5.13), Newton’s second law applied to the
fish gives the net force on the fish:

where we have chosen upward as the positive y direction.
Thus, we conclude from (1) that the scale reading T is
greater than the fish’s weight mg if a is upward, so that ay is
positive, and that the reading is less than mg if a is down-
ward, so that ay is negative.

For example, if the weight of the fish is 40.0 N and a is up-
ward, so that ay " % 2.00 m/s2, the scale reading from (1) is

(1)   !Fy " T $ mg " may

m g
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T
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T

(b)(a)

Observer in
inertial frame

Figure 5.13 (Example 5.8) Apparent weight versus true weight. (a) When the elevator
accelerates upward, the spring scale reads a value greater than the weight of the fish.
(b) When the elevator accelerates downward, the spring scale reads a value less than
the weight of the fish.

Si acelera hacia arriba, la tensión es mayor 
y la báscula marcará un peso mayor 

Si acelera hacia abajo, la tensión es menor 
y la báscula marcará un peso menor 

¿Qué pasa si se rompe la sujeción del 
ascensor y este cae en caída libre? 



La máquina de Atwood 

Dos objetos con masas diferentes se cuelgan verticalmente de una 
polea sin rozamiento de masa despreciable 

Cuando uno se mueve hacia arriba el otro 
se mueve hacia abajo 
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If a is downward so that ay ! " 2.00 m/s2, then (2) gives us

31.8  N!

T ! Fg! ay

g
# 1" ! (40.0  N) ! "2.00  m/s2

9.80  m/s2 # 1"

48.2  N!

 ! Fg ! ay

g
# 1" ! (40.0  N) ! 2.00 m/s2

9.80 m/s2 # 1"
(2) T ! may # mg ! mg ! ay

g
# 1" To finalize this problem, take this advice—if you buy

a fish in an elevator, make sure the fish is weighed while
the elevator is either at rest or accelerating downward!
Furthermore, note that from the information given here,
one cannot determine the direction of motion of the
elevator.

What If? Suppose the elevator cable breaks, so that the
elevator and its contents are in free-fall. What happens to the
reading on the scale?

Answer If the elevator falls freely, its acceleration is
ay ! "g. We see from (2) that the scale reading T is zero in
this case; that is, the fish appears to be weightless.

Example 5.9 The Atwood Machine

downward. Because the objects are connected by an inex-
tensible string, their accelerations must be of equal magni-
tude. The objects in the Atwood machine are subject to the
gravitational force as well as to the forces exerted by the
strings connected to them—thus, we can categorize this as a
Newton’s second law problem. To analyze the situation, the
free-body diagrams for the two objects are shown in Figure
5.14b. Two forces act on each object: the upward force T ex-
erted by the string and the downward gravitational force. In
problems such as this in which the pulley is modeled as
massless and frictionless, the tension in the string on both
sides of the pulley is the same. If the pulley has mass and/or
is subject to friction, the tensions on either side are not the
same and the situation requires techniques we will learn in
Chapter 10.

We must be very careful with signs in problems such as
this. In Figure 5.14a, notice that if object 1 accelerates up-
ward, then object 2 accelerates downward. Thus, for consis-
tency with signs, if we define the upward direction as posi-
tive for object 1, we must define the downward direction as
positive for object 2. With this sign convention, both ob-
jects accelerate in the same direction as defined by the
choice of sign. Furthermore, according to this sign conven-
tion, the y component of the net force exerted on object 1
is T " m1g, and the y component of the net force exerted
on object 2 is m2g " T. Notice that we have chosen the
signs of the forces to be consistent with the choices of
signs for up and down for each object. If we assume that
m2 $ m1, then m1 must accelerate upward, while m2 must
accelerate downward.

When Newton’s second law is applied to object 1, we
obtain

Similarly, for object 2 we find

When (2) is added to (1), T cancels and we have

! m2 " m1

m1 # m2
"g(3)   ay !

"m1g # m2g ! m1ay # m2ay

(2)   #Fy ! m2g " T ! m2ay

(1)   #Fy ! T " m1g ! m1ay

(b)

m1

T

m1g

T

m2g

(a)

m1

m2

a

a

m2

When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as in Figure 5.14a, the
arrangement is called an Atwood machine. The device is
sometimes used in the laboratory to measure the free-fall ac-
celeration. Determine the magnitude of the acceleration of
the two objects and the tension in the lightweight cord.

Solution Conceptualize the situation pictured in Figure
5.14a—as one object moves upward, the other object moves

Active Figure 5.14 (Example 5.9) The Atwood machine. (a) Two
objects (m2 $ m1) connected by a massless inextensible cord over
a frictionless pulley. (b) Free-body diagrams for the two objects.

Interactive

At the Active Figures link at http://www.pse6.com,
you can adjust the masses of the objects on the Atwood
machine and observe the motion.

Como la cuerda es inextensible, las dos 
aceleraciones tienen que tener el mismo módulo 
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frictionless pulley of negligible mass, as in Figure 5.14a, the
arrangement is called an Atwood machine. The device is
sometimes used in the laboratory to measure the free-fall ac-
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Active Figure 5.14 (Example 5.9) The Atwood machine. (a) Two
objects (m2 $ m1) connected by a massless inextensible cord over
a frictionless pulley. (b) Free-body diagrams for the two objects.

Interactive

At the Active Figures link at http://www.pse6.com,
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Dibujamos los diagramas de cuerpo aislado 

Con nuestras aproximaciones, la tensión de la 
cuerda a ambos lados de la polea es la misma 
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When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as in Figure 5.14a, the
arrangement is called an Atwood machine. The device is
sometimes used in the laboratory to measure the free-fall ac-
celeration. Determine the magnitude of the acceleration of
the two objects and the tension in the lightweight cord.

Solution Conceptualize the situation pictured in Figure
5.14a—as one object moves upward, the other object moves

Active Figure 5.14 (Example 5.9) The Atwood machine. (a) Two
objects (m2 $ m1) connected by a massless inextensible cord over
a frictionless pulley. (b) Free-body diagrams for the two objects.
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At the Active Figures link at http://www.pse6.com,
you can adjust the masses of the objects on the Atwood
machine and observe the motion.
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When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as in Figure 5.14a, the
arrangement is called an Atwood machine. The device is
sometimes used in the laboratory to measure the free-fall ac-
celeration. Determine the magnitude of the acceleration of
the two objects and the tension in the lightweight cord.

Solution Conceptualize the situation pictured in Figure
5.14a—as one object moves upward, the other object moves

Active Figure 5.14 (Example 5.9) The Atwood machine. (a) Two
objects (m2 $ m1) connected by a massless inextensible cord over
a frictionless pulley. (b) Free-body diagrams for the two objects.

Interactive

At the Active Figures link at http://www.pse6.com,
you can adjust the masses of the objects on the Atwood
machine and observe the motion.

Y reemplazando en las ecuaciones de movimiento 
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The acceleration given by (3) can be interpreted as the ratio
of the magnitude of the unbalanced force on the system
(m2 ! m1)g, to the total mass of the system (m1 " m2), as ex-
pected from Newton’s second law.

When (3) is substituted into (1), we obtain

Finalize this problem with the following What If?

What If? (A) Describe the motion of the system if 
the objects have equal masses, that is, m1 ! m2. 

! 2m1m2

m1 " m2
"g(4)   T #

(B) Describe the motion of the system if one of the masses
is much larger than the other, m1 !! m2.

Answer (A) If we have the same mass on both sides, the
system is balanced and it should not accelerate. Mathemati-
cally, we see that if m1 # m2, Equation (3) gives us ay # 0.
(B) In the case in which one mass is infinitely larger than
the other, we can ignore the effect of the smaller mass.
Thus, the larger mass should simply fall as if the smaller
mass were not there. We see that if m1 $$ m2, Equation (3)
gives us ay # ! g.

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.

Example 5.10 Acceleration of Two Objects Connected by a Cord

A ball of mass m1 and a block of mass m2 are attached by a
lightweight cord that passes over a frictionless pulley of neg-
ligible mass, as in Figure 5.15a. The block lies on a friction-
less incline of angle %. Find the magnitude of the accelera-
tion of the two objects and the tension in the cord.

Solution Conceptualize the motion in Figure 5.15. If m2
moves down the incline, m1 moves upward. Because the ob-
jects are connected by a cord (which we assume does not
stretch), their accelerations have the same magnitude. We
can identify forces on each of the two objects and we are
looking for an acceleration, so we categorize this as a New-
ton’s second-law problem. To analyze the problem, con-
sider the free-body diagrams shown in Figures 5.15b and
5.15c. Applying Newton’s second law in component form
to the ball, choosing the upward direction as positive,
yields

Note that in order for the ball to accelerate upward, it is
necessary that T $ m1g. In (2), we replaced ay with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x&
axis along the incline, as in Figure 5.15c. For consistency

(2)   #Fy # T ! m1g # m1ay # m1a

(1)   #Fx # 0

with our choice for the ball, we choose the positive direction
to be down the incline. Applying Newton’s second law in
component form to the block gives

In (3) we replaced ax& with a because the two objects have
accelerations of equal magnitude a. Equations (1) and (4)
provide no information regarding the acceleration. How-
ever, if we solve (2) for T and then substitute this value for T
into (3) and solve for a, we obtain

When this expression for a is substituted into (2), we find

To finalize the problem, note that the block accelerates
down the incline only if m2 sin % $ m1. If m1 $ m2 sin %,

m1m2 g (sin % " 1)
m1 " m2

(6)   T #

m2 g  sin % ! m1 g 

m1 " m2
(5)   a #

(4)   #Fy& # n ! m2 g  cos  % # 0

(3)   #Fx& # m2g  sin % ! T # m2ax& # m 2a

m2g cosθ

a

(a)
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m1 x

y
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m1g

(b)

x′

y′
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m2g
(c)

n

a

m2g sinθ
m2

m1

Figure 5.15 (Example 5.10) (a) Two objects connected by a lightweight cord strung
over a frictionless pulley. (b) Free-body diagram for the ball. (c) Free-body diagram for
the block. (The incline is frictionless.)

Interactive

Dos objetos con masas diferentes están unidos por una cuerda, y 
uno de ellos reposa sobre un plano inclinado 

Cuando uno se mueve hacia abajo por el 
plano inclinado, el otro se mueve hacia arriba 

Como la cuerda es inextensible, las dos 
aceleraciones tienen que tener el mismo módulo 

Dibujamos los diagramas de cuerpo aislado 
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Figure 5.15 (Example 5.10) (a) Two objects connected by a lightweight cord strung
over a frictionless pulley. (b) Free-body diagram for the ball. (c) Free-body diagram for
the block. (The incline is frictionless.)
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sider the free-body diagrams shown in Figures 5.15b and
5.15c. Applying Newton’s second law in component form
to the ball, choosing the upward direction as positive,
yields

Note that in order for the ball to accelerate upward, it is
necessary that T $ m1g. In (2), we replaced ay with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x&
axis along the incline, as in Figure 5.15c. For consistency

(2)   #Fy # T ! m1g # m1ay # m1a

(1)   #Fx # 0

with our choice for the ball, we choose the positive direction
to be down the incline. Applying Newton’s second law in
component form to the block gives

In (3) we replaced ax& with a because the two objects have
accelerations of equal magnitude a. Equations (1) and (4)
provide no information regarding the acceleration. How-
ever, if we solve (2) for T and then substitute this value for T
into (3) and solve for a, we obtain

When this expression for a is substituted into (2), we find

To finalize the problem, note that the block accelerates
down the incline only if m2 sin % $ m1. If m1 $ m2 sin %,

m1m2 g (sin % " 1)
m1 " m2

(6)   T #

m2 g  sin % ! m1 g 

m1 " m2
(5)   a #

(4)   #Fy& # n ! m2 g  cos  % # 0

(3)   #Fx& # m2g  sin % ! T # m2ax& # m 2a

m2g cosθ

a

(a)

θ

m1 x

y

T

m1g

(b)

x′

y′

T

θ

m2g
(c)

n

a

m2g sinθ
m2

m1

Figure 5.15 (Example 5.10) (a) Two objects connected by a lightweight cord strung
over a frictionless pulley. (b) Free-body diagram for the ball. (c) Free-body diagram for
the block. (The incline is frictionless.)

Interactive

Dos objetos con masas diferentes están unidos por una cuerda, y 
uno de ellos reposa sobre un plano inclinado 

Cuando uno se mueve hacia abajo por el 
plano inclinado, el otro se mueve hacia arriba 

Como la cuerda es inextensible, las dos 
aceleraciones tienen que tener el mismo módulo 

Dibujamos los diagramas de cuerpo aislado 

130 C H A P T E R  5 •  The Laws of Motion

The acceleration given by (3) can be interpreted as the ratio
of the magnitude of the unbalanced force on the system
(m2 ! m1)g, to the total mass of the system (m1 " m2), as ex-
pected from Newton’s second law.

When (3) is substituted into (1), we obtain

Finalize this problem with the following What If?

What If? (A) Describe the motion of the system if 
the objects have equal masses, that is, m1 ! m2. 

! 2m1m2

m1 " m2
"g(4)   T #

(B) Describe the motion of the system if one of the masses
is much larger than the other, m1 !! m2.

Answer (A) If we have the same mass on both sides, the
system is balanced and it should not accelerate. Mathemati-
cally, we see that if m1 # m2, Equation (3) gives us ay # 0.
(B) In the case in which one mass is infinitely larger than
the other, we can ignore the effect of the smaller mass.
Thus, the larger mass should simply fall as if the smaller
mass were not there. We see that if m1 $$ m2, Equation (3)
gives us ay # ! g.

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.

Example 5.10 Acceleration of Two Objects Connected by a Cord

A ball of mass m1 and a block of mass m2 are attached by a
lightweight cord that passes over a frictionless pulley of neg-
ligible mass, as in Figure 5.15a. The block lies on a friction-
less incline of angle %. Find the magnitude of the accelera-
tion of the two objects and the tension in the cord.

Solution Conceptualize the motion in Figure 5.15. If m2
moves down the incline, m1 moves upward. Because the ob-
jects are connected by a cord (which we assume does not
stretch), their accelerations have the same magnitude. We
can identify forces on each of the two objects and we are
looking for an acceleration, so we categorize this as a New-
ton’s second-law problem. To analyze the problem, con-
sider the free-body diagrams shown in Figures 5.15b and
5.15c. Applying Newton’s second law in component form
to the ball, choosing the upward direction as positive,
yields

Note that in order for the ball to accelerate upward, it is
necessary that T $ m1g. In (2), we replaced ay with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x&
axis along the incline, as in Figure 5.15c. For consistency

(2)   #Fy # T ! m1g # m1ay # m1a

(1)   #Fx # 0

with our choice for the ball, we choose the positive direction
to be down the incline. Applying Newton’s second law in
component form to the block gives

In (3) we replaced ax& with a because the two objects have
accelerations of equal magnitude a. Equations (1) and (4)
provide no information regarding the acceleration. How-
ever, if we solve (2) for T and then substitute this value for T
into (3) and solve for a, we obtain

When this expression for a is substituted into (2), we find

To finalize the problem, note that the block accelerates
down the incline only if m2 sin % $ m1. If m1 $ m2 sin %,

m1m2 g (sin % " 1)
m1 " m2

(6)   T #

m2 g  sin % ! m1 g 

m1 " m2
(5)   a #

(4)   #Fy& # n ! m2 g  cos  % # 0

(3)   #Fx& # m2g  sin % ! T # m2ax& # m 2a

m2g cosθ

a

(a)

θ

m1 x

y

T

m1g

(b)

x′

y′

T

θ

m2g
(c)

n

a

m2g sinθ
m2

m1

Figure 5.15 (Example 5.10) (a) Two objects connected by a lightweight cord strung
over a frictionless pulley. (b) Free-body diagram for the ball. (c) Free-body diagram for
the block. (The incline is frictionless.)

Interactive

Despejando la aceleración y la tensión de las anteriores ecuaciones 

El bloque 2 se acelerará hacia abajo de la rampa si y sólo si 

El bloque 1 se acelerará verticalmente hacia abajo si 



Tipos de fuerzas:    
fuerzas elásticas 

La fuerza elástica es la ejercida por objetos tales como resortes, que tienen una 
posición normal, fuera de la cual almacenan energía potencial y ejercen fuerzas.  



Tipos de fuerzas:    
fuerzas de fricción 

Cuando un objeto se mueve sobre una superficie, o a través de un medio viscoso, 
existe una resistencia al movimiento debida a que el objeto interactúa con su entorno. 

Éstas son las fuerzas de rozamiento. 

Se debe a la naturaleza de las dos superficies (rugosidad, composición) y de la 
superficie de contacto 



Tipos de fuerzas:    
fuerzas de fricción 

Cuando un objeto se mueve sobre una superficie, o a través de un medio viscoso, 
existe una resistencia al movimiento debida a que el objeto interactúa con su entorno. 

Éstas son las fuerzas de rozamiento. 

5.8 Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the object interacts with its surround-
ings. We call such resistance a force of friction. Forces of friction are very important
in our everyday lives. They allow us to walk or run and are necessary for the motion of
wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with yard clip-
pings. You then try to drag the trash can across the surface of your concrete patio, as in
Figure 5.16a. This is a real surface, not an idealized, frictionless surface. If we apply an ex-
ternal horizontal force F to the trash can, acting to the right, the trash can remains sta-
tionary if F is small. The force that counteracts F and keeps the trash can from moving
acts to the left and is called the force of static friction fs . As long as the trash can is not
moving, fs ! F. Thus, if F is increased, fs also increases. Likewise, if F decreases, fs also

S E C T I O N  5 . 8 •  Forces of Friction 131

then the acceleration is up the incline for the block and
downward for the ball. Also note that the result for the ac-
celeration (5) can be interpreted as the magnitude of the
net force acting on the system divided by the total mass of
the system; this is consistent with Newton’s second law.

What If? (A) What happens in this situation if the angle
! " 90°? 

(B) What happens if the mass m1 " 0?

Answer (A) If " ! 90°, the inclined plane becomes vertical
and there is no interaction between its surface and m2.
Thus, this problem becomes the Atwood machine of Exam-
ple 5.9. Letting " : 90° in Equations (5) and (6) causes
them to reduce to Equations (3) and (4) of Example 5.9!
(B) If m1 ! 0, then m2 is simply sliding down an inclined
plane without interacting with m1 through the string. Thus,
this problem becomes the sliding car problem in Example
5.6. Letting m1 : 0 in Equation (5) causes it to reduce to
Equation (3) of Example 5.6!

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.

F

fk =    kn
f s =

 F

0

|f|

fs,max

Static region

(c)

(a) (b)

Kinetic region

µ

mg

n

F

n
Motion

mg

fkfs
F

Active Figure 5.16 The direction of the force of friction f be-
tween a trash can and a rough surface is opposite the direction
of the applied force F. Because both surfaces are rough, contact
is made only at a few points, as illustrated in the “magnified”
view. (a) For small applied forces, the magnitude of the force of
static friction equals the magnitude of the applied force.
(b) When the magnitude of the applied force exceeds the
magnitude of the maximum force of static friction, the trash
can breaks free. The applied force is now larger than the force
of kinetic friction and the trash can accelerates to the right.
(c) A graph of friction force versus applied force. Note that
fs,max # fk .

Force of static friction

At the Active Figures link at http://www.pse6.com
you can vary the applied force on the trash can and
practice sliding it on surfaces of varying roughness.
Note the effect on the trash can’s motion and the corre-
sponding behavior of the graph in (c).

Si aplicamos una fuerza externa horizontal    al cubo que actúe 
hacia la derecha, el cubo permanecerá inmóvil si      es pequeña 

La fuerza que contrarresta a      e impide que el cubo se mueva es la fuerza de rozamiento estático 

Mientras el cubo esté quieto, si aumenta      también aumentará  



Tipos de fuerzas:    
fuerzas de fricción 

Cuando un objeto se mueve sobre una superficie, o a través de un medio viscoso, 
existe una resistencia al movimiento debida a que el objeto interactúa con su entorno. 

Éstas son las fuerzas de rozamiento. 

5.8 Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the object interacts with its surround-
ings. We call such resistance a force of friction. Forces of friction are very important
in our everyday lives. They allow us to walk or run and are necessary for the motion of
wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with yard clip-
pings. You then try to drag the trash can across the surface of your concrete patio, as in
Figure 5.16a. This is a real surface, not an idealized, frictionless surface. If we apply an ex-
ternal horizontal force F to the trash can, acting to the right, the trash can remains sta-
tionary if F is small. The force that counteracts F and keeps the trash can from moving
acts to the left and is called the force of static friction fs . As long as the trash can is not
moving, fs ! F. Thus, if F is increased, fs also increases. Likewise, if F decreases, fs also
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then the acceleration is up the incline for the block and
downward for the ball. Also note that the result for the ac-
celeration (5) can be interpreted as the magnitude of the
net force acting on the system divided by the total mass of
the system; this is consistent with Newton’s second law.

What If? (A) What happens in this situation if the angle
! " 90°? 

(B) What happens if the mass m1 " 0?

Answer (A) If " ! 90°, the inclined plane becomes vertical
and there is no interaction between its surface and m2.
Thus, this problem becomes the Atwood machine of Exam-
ple 5.9. Letting " : 90° in Equations (5) and (6) causes
them to reduce to Equations (3) and (4) of Example 5.9!
(B) If m1 ! 0, then m2 is simply sliding down an inclined
plane without interacting with m1 through the string. Thus,
this problem becomes the sliding car problem in Example
5.6. Letting m1 : 0 in Equation (5) causes it to reduce to
Equation (3) of Example 5.6!

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.

F

fk =    kn
f s =
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fs,max

Static region

(c)
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Active Figure 5.16 The direction of the force of friction f be-
tween a trash can and a rough surface is opposite the direction
of the applied force F. Because both surfaces are rough, contact
is made only at a few points, as illustrated in the “magnified”
view. (a) For small applied forces, the magnitude of the force of
static friction equals the magnitude of the applied force.
(b) When the magnitude of the applied force exceeds the
magnitude of the maximum force of static friction, the trash
can breaks free. The applied force is now larger than the force
of kinetic friction and the trash can accelerates to the right.
(c) A graph of friction force versus applied force. Note that
fs,max # fk .

Force of static friction

At the Active Figures link at http://www.pse6.com
you can vary the applied force on the trash can and
practice sliding it on surfaces of varying roughness.
Note the effect on the trash can’s motion and the corre-
sponding behavior of the graph in (c).

Si aumentamos el módulo de       el cubo de basura puede llegar a moverse 

Cuando el cubo de basura está a punto de comenzar a deslizarse, el módulo de        
toma su valor máximo 

Cuando el módulo de        es mayor que            el cubo de basura se empieza a 
mover y adquiere una aceleración hacia la derecha.  



Tipos de fuerzas:    
fuerzas de fricción 

Cuando un objeto se mueve sobre una superficie, o a través de un medio viscoso, 
existe una resistencia al movimiento debida a que el objeto interactúa con su entorno. 

Éstas son las fuerzas de rozamiento. 

5.8 Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the object interacts with its surround-
ings. We call such resistance a force of friction. Forces of friction are very important
in our everyday lives. They allow us to walk or run and are necessary for the motion of
wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with yard clip-
pings. You then try to drag the trash can across the surface of your concrete patio, as in
Figure 5.16a. This is a real surface, not an idealized, frictionless surface. If we apply an ex-
ternal horizontal force F to the trash can, acting to the right, the trash can remains sta-
tionary if F is small. The force that counteracts F and keeps the trash can from moving
acts to the left and is called the force of static friction fs . As long as the trash can is not
moving, fs ! F. Thus, if F is increased, fs also increases. Likewise, if F decreases, fs also
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then the acceleration is up the incline for the block and
downward for the ball. Also note that the result for the ac-
celeration (5) can be interpreted as the magnitude of the
net force acting on the system divided by the total mass of
the system; this is consistent with Newton’s second law.

What If? (A) What happens in this situation if the angle
! " 90°? 

(B) What happens if the mass m1 " 0?

Answer (A) If " ! 90°, the inclined plane becomes vertical
and there is no interaction between its surface and m2.
Thus, this problem becomes the Atwood machine of Exam-
ple 5.9. Letting " : 90° in Equations (5) and (6) causes
them to reduce to Equations (3) and (4) of Example 5.9!
(B) If m1 ! 0, then m2 is simply sliding down an inclined
plane without interacting with m1 through the string. Thus,
this problem becomes the sliding car problem in Example
5.6. Letting m1 : 0 in Equation (5) causes it to reduce to
Equation (3) of Example 5.6!

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.
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Active Figure 5.16 The direction of the force of friction f be-
tween a trash can and a rough surface is opposite the direction
of the applied force F. Because both surfaces are rough, contact
is made only at a few points, as illustrated in the “magnified”
view. (a) For small applied forces, the magnitude of the force of
static friction equals the magnitude of the applied force.
(b) When the magnitude of the applied force exceeds the
magnitude of the maximum force of static friction, the trash
can breaks free. The applied force is now larger than the force
of kinetic friction and the trash can accelerates to the right.
(c) A graph of friction force versus applied force. Note that
fs,max # fk .

Force of static friction

At the Active Figures link at http://www.pse6.com
you can vary the applied force on the trash can and
practice sliding it on surfaces of varying roughness.
Note the effect on the trash can’s motion and the corre-
sponding behavior of the graph in (c).

Mientras el cubo de basura está en movimiento, la fuerza de rozamiento es menor que  

La fuerza de rozamiento de un objeto en movimiento se denomina fuerza de rozamiento dinámico   

La fuerza neta en la dirección x,             , produce una aceleración hacia la derecha 



Tipos de fuerzas:    
fuerzas de fricción 

Cuando un objeto se mueve sobre una superficie, o a través de un medio viscoso, 
existe una resistencia al movimiento debida a que el objeto interactúa con su entorno. 

Éstas son las fuerzas de rozamiento. 

5.8 Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the object interacts with its surround-
ings. We call such resistance a force of friction. Forces of friction are very important
in our everyday lives. They allow us to walk or run and are necessary for the motion of
wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with yard clip-
pings. You then try to drag the trash can across the surface of your concrete patio, as in
Figure 5.16a. This is a real surface, not an idealized, frictionless surface. If we apply an ex-
ternal horizontal force F to the trash can, acting to the right, the trash can remains sta-
tionary if F is small. The force that counteracts F and keeps the trash can from moving
acts to the left and is called the force of static friction fs . As long as the trash can is not
moving, fs ! F. Thus, if F is increased, fs also increases. Likewise, if F decreases, fs also
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then the acceleration is up the incline for the block and
downward for the ball. Also note that the result for the ac-
celeration (5) can be interpreted as the magnitude of the
net force acting on the system divided by the total mass of
the system; this is consistent with Newton’s second law.

What If? (A) What happens in this situation if the angle
! " 90°? 

(B) What happens if the mass m1 " 0?

Answer (A) If " ! 90°, the inclined plane becomes vertical
and there is no interaction between its surface and m2.
Thus, this problem becomes the Atwood machine of Exam-
ple 5.9. Letting " : 90° in Equations (5) and (6) causes
them to reduce to Equations (3) and (4) of Example 5.9!
(B) If m1 ! 0, then m2 is simply sliding down an inclined
plane without interacting with m1 through the string. Thus,
this problem becomes the sliding car problem in Example
5.6. Letting m1 : 0 in Equation (5) causes it to reduce to
Equation (3) of Example 5.6!

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.
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Active Figure 5.16 The direction of the force of friction f be-
tween a trash can and a rough surface is opposite the direction
of the applied force F. Because both surfaces are rough, contact
is made only at a few points, as illustrated in the “magnified”
view. (a) For small applied forces, the magnitude of the force of
static friction equals the magnitude of the applied force.
(b) When the magnitude of the applied force exceeds the
magnitude of the maximum force of static friction, the trash
can breaks free. The applied force is now larger than the force
of kinetic friction and the trash can accelerates to the right.
(c) A graph of friction force versus applied force. Note that
fs,max # fk .

Force of static friction

At the Active Figures link at http://www.pse6.com
you can vary the applied force on the trash can and
practice sliding it on surfaces of varying roughness.
Note the effect on the trash can’s motion and the corre-
sponding behavior of the graph in (c).

La fuerza neta en la dirección x,             , produce una aceleración hacia la derecha 

Si              el objeto se moverá hacia la derecha con celeridad constante 
Si se elimina la fuerza alicada, la fuerza de rozamiento que actúa hacia la izquierda 

proporciona al cubo una aceleración en la dirección –x y hace que el cubo se detenga 



Tipos de fuerzas:    
fuerzas de fricción 

Cuando un objeto se mueve sobre una superficie, o a través de un medio viscoso, 
existe una resistencia al movimiento debida a que el objeto interactúa con su entorno. 

Éstas son las fuerzas de rozamiento. 

Se debe a la naturaleza de las dos superficies (rugosidad, composición) y de la 
superficie de contacto 

Se pueden clasificar en: 

 - fuerzas de rozamiento estático         (cuando el objeto está parado) 

 - fuerzas de rozamiento dinámico       (cuando el objeto está en movimiento) 

5.8 Forces of Friction

When an object is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the object interacts with its surround-
ings. We call such resistance a force of friction. Forces of friction are very important
in our everyday lives. They allow us to walk or run and are necessary for the motion of
wheeled vehicles.

Imagine that you are working in your garden and have filled a trash can with yard clip-
pings. You then try to drag the trash can across the surface of your concrete patio, as in
Figure 5.16a. This is a real surface, not an idealized, frictionless surface. If we apply an ex-
ternal horizontal force F to the trash can, acting to the right, the trash can remains sta-
tionary if F is small. The force that counteracts F and keeps the trash can from moving
acts to the left and is called the force of static friction fs . As long as the trash can is not
moving, fs ! F. Thus, if F is increased, fs also increases. Likewise, if F decreases, fs also
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then the acceleration is up the incline for the block and
downward for the ball. Also note that the result for the ac-
celeration (5) can be interpreted as the magnitude of the
net force acting on the system divided by the total mass of
the system; this is consistent with Newton’s second law.

What If? (A) What happens in this situation if the angle
! " 90°? 

(B) What happens if the mass m1 " 0?

Answer (A) If " ! 90°, the inclined plane becomes vertical
and there is no interaction between its surface and m2.
Thus, this problem becomes the Atwood machine of Exam-
ple 5.9. Letting " : 90° in Equations (5) and (6) causes
them to reduce to Equations (3) and (4) of Example 5.9!
(B) If m1 ! 0, then m2 is simply sliding down an inclined
plane without interacting with m1 through the string. Thus,
this problem becomes the sliding car problem in Example
5.6. Letting m1 : 0 in Equation (5) causes it to reduce to
Equation (3) of Example 5.6!

Investigate these limiting cases at the Interactive Worked Example link at http://www.pse6.com.
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Active Figure 5.16 The direction of the force of friction f be-
tween a trash can and a rough surface is opposite the direction
of the applied force F. Because both surfaces are rough, contact
is made only at a few points, as illustrated in the “magnified”
view. (a) For small applied forces, the magnitude of the force of
static friction equals the magnitude of the applied force.
(b) When the magnitude of the applied force exceeds the
magnitude of the maximum force of static friction, the trash
can breaks free. The applied force is now larger than the force
of kinetic friction and the trash can accelerates to the right.
(c) A graph of friction force versus applied force. Note that
fs,max # fk .

Force of static friction

At the Active Figures link at http://www.pse6.com
you can vary the applied force on the trash can and
practice sliding it on surfaces of varying roughness.
Note the effect on the trash can’s motion and the corre-
sponding behavior of the graph in (c).



Tipos de fuerzas:                                                                    
fuerzas de fricción, dirección, sentido y módulo 
La dirección de la fuerza de rozamiento sobre un objeto es opuesta al movimiento del objeto, 
respecto de la superficie con la que se encuentra en contacto, o  

La dirección de la fuerza de rozamiento se opone al deslizamiento de una superficie sobre otra 

El módulo de la fuerza de rozamiento  

 

 - estático:  

 

 - dinámico: 

 

dónde µs y µk son unas constantes adimensionales denominadas, respectivamente 
los coeficientes de rozamiento estático y dinámico, 

n es el módulo de la fuerza normal. 

Igualdad en el umbral de deslizamiento: 

 

      Situación de movimiento inminente 
(o equilibrio estricto)  



Tipos de fuerzas:                                                                    
fuerzas de fricción, coeficientes de rozamiento 

Generalmente µk es menor que µs. 

Supondremos que µk es independiente de la velocidad relativa de las superficies. 



Tipos de fuerzas:                                                                    
fuerzas de fricción en un plano inclinado 

Descomposición del peso en una componente normal y otra tangencial al plano 

Módulo de la componente normal que el plano ejerce sobre el objeto 

Fuerzas de rozamiento: 



Determinación experimental de los 
coeficientes de rozamiento 

Un bloque se coloca sobre una superficie rugosa inclinada con respecto a la horizontal 

El ángulo de inclinación      aumenta hasta que el objeto comienza a moverse 

¿Cómo se relaciona el coeficiente de rozamiento estático con el ángulo crítico     
para que el bloque comience a moverse? 

n

f

y

x

θ

mg sin

mg cos θ

mg

θ
θ

Figure 5.19 (Example 5.12) The external forces exerted on a
block lying on a rough incline are the gravitational force mg, the
normal force n, and the force of friction f. For convenience, the
gravitational force is resolved into a component along the incline
mg sin ! and a component perpendicular to the incline mg cos !.
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Conceptual Example 5.11 Why Does the Sled Accelerate?

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts a force of equal magni-
tude and opposite direction on the horse. In view of this,
how can the sled accelerate—don’t the forces cancel? Under
what condition does the system (horse plus sled) move with
constant velocity?

Solution Remember that the forces described in Newton’s
third law act on different objects—the horse exerts a force 
on the sled, and the sled exerts an equal-magnitude and op-
positely directed force on the horse. Because we are inter-
ested only in the motion of the sled, we do not consider the
forces it exerts on the horse. When determining the motion

of an object, you must add only the forces on that object.
(This is the principle behind drawing a free-body diagram.)
The horizontal forces exerted on the sled are the forward
force T exerted by the horse and the backward force of fric-
tion fsled between sled and snow (see Fig. 5.18b). When the
forward force on the sled exceeds the backward force, the
sled accelerates to the right.

The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant
of these two forces causes the horse to accelerate.

The force that accelerates the system (horse plus sled) is
the net force fhorse " fsled. When fhorse balances fsled, the sys-
tem moves with constant velocity.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 (Conceptual Example 5.11)

Example 5.12 Experimental Determination of !s and !k

The following is a simple method of measuring coefficients
of friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19.
The incline angle is increased until the block starts to move.
Show that by measuring the critical angle !c at which this
slipping just occurs, we can obtain #s .

Solution Conceptualizing from the free body diagram in Fig-
ure 5.19, we see that we can categorize this as a Newton’s second
law problem. To analyze the problem, note that the only forces
acting on the block are the gravitational force mg, the normal
force n, and the force of static friction fs . These forces balance
when the block is not moving. When we choose x to be paral-
lel to the plane and y perpendicular to it, Newton’s second law
applied to the block for this balanced situation gives

We can eliminate mg by substituting mg $ n/cos ! from (2)
into (1) to find

When the incline angle is increased until the block is on the
verge of slipping, the force of static friction has reached its
maximum value #sn. The angle ! in this situation is the criti-
cal angle !c , and (3) becomes

#sn $ n  tan  !c

(3)   fs $ mg  sin  ! $ ! n
cos  ! " sin ! $ n   tan  !

(2)   #Fy $ n " mg  cos  ! $ may $ 0

(1)   #Fx $ mg  sin  ! " fs $ max $ 0

For example, if the block just slips at !c $ 20.0°, then we
find that #s $ tan 20.0° $ 0.364.

To finalize the problem, note that once the block starts to
move at ! % !c , it accelerates down the incline and the force
of friction is fk $ #kn. However, if ! is reduced to a value less
than !c , it may be possible to find an angle !c& such that the
block moves down the incline with constant speed (ax $ 0).
In this case, using (1) and (2) with fs replaced by fk gives

where !c& ' !c .

#k $ tan !c&

#s $ tan   !c

Seleccionamos un sistema de coordenadas con un 
eje x positivo paralelo al plano inclinado 

Mientras que el bloque no se mueve, las fuerzas se 
compensan y el bloque se encuentra en equilibrio 

De la 2 Ecuación Sustituyendo en la 1 Ecuación 



Determinación experimental de los 
coeficientes de rozamiento 

Un bloque se coloca sobre una superficie rugosa inclinada con respecto a la horizontal 

El ángulo de inclinación      aumenta hasta que el objeto comienza a moverse 

¿Cómo se relaciona el coeficiente de rozamiento estático con el ángulo crítico     
para que el bloque comience a moverse? 
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Figure 5.19 (Example 5.12) The external forces exerted on a
block lying on a rough incline are the gravitational force mg, the
normal force n, and the force of friction f. For convenience, the
gravitational force is resolved into a component along the incline
mg sin ! and a component perpendicular to the incline mg cos !.
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Conceptual Example 5.11 Why Does the Sled Accelerate?

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts a force of equal magni-
tude and opposite direction on the horse. In view of this,
how can the sled accelerate—don’t the forces cancel? Under
what condition does the system (horse plus sled) move with
constant velocity?

Solution Remember that the forces described in Newton’s
third law act on different objects—the horse exerts a force 
on the sled, and the sled exerts an equal-magnitude and op-
positely directed force on the horse. Because we are inter-
ested only in the motion of the sled, we do not consider the
forces it exerts on the horse. When determining the motion

of an object, you must add only the forces on that object.
(This is the principle behind drawing a free-body diagram.)
The horizontal forces exerted on the sled are the forward
force T exerted by the horse and the backward force of fric-
tion fsled between sled and snow (see Fig. 5.18b). When the
forward force on the sled exceeds the backward force, the
sled accelerates to the right.

The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant
of these two forces causes the horse to accelerate.

The force that accelerates the system (horse plus sled) is
the net force fhorse " fsled. When fhorse balances fsled, the sys-
tem moves with constant velocity.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 (Conceptual Example 5.11)

Example 5.12 Experimental Determination of !s and !k

The following is a simple method of measuring coefficients
of friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19.
The incline angle is increased until the block starts to move.
Show that by measuring the critical angle !c at which this
slipping just occurs, we can obtain #s .

Solution Conceptualizing from the free body diagram in Fig-
ure 5.19, we see that we can categorize this as a Newton’s second
law problem. To analyze the problem, note that the only forces
acting on the block are the gravitational force mg, the normal
force n, and the force of static friction fs . These forces balance
when the block is not moving. When we choose x to be paral-
lel to the plane and y perpendicular to it, Newton’s second law
applied to the block for this balanced situation gives

We can eliminate mg by substituting mg $ n/cos ! from (2)
into (1) to find

When the incline angle is increased until the block is on the
verge of slipping, the force of static friction has reached its
maximum value #sn. The angle ! in this situation is the criti-
cal angle !c , and (3) becomes

#sn $ n  tan  !c

(3)   fs $ mg  sin  ! $ ! n
cos  ! " sin ! $ n   tan  !

(2)   #Fy $ n " mg  cos  ! $ may $ 0

(1)   #Fx $ mg  sin  ! " fs $ max $ 0

For example, if the block just slips at !c $ 20.0°, then we
find that #s $ tan 20.0° $ 0.364.

To finalize the problem, note that once the block starts to
move at ! % !c , it accelerates down the incline and the force
of friction is fk $ #kn. However, if ! is reduced to a value less
than !c , it may be possible to find an angle !c& such that the
block moves down the incline with constant speed (ax $ 0).
In this case, using (1) and (2) with fs replaced by fk gives

where !c& ' !c .

#k $ tan !c&

#s $ tan   !c

En el ángulo crítico, el bloque se encuentra en el 
umbral de deslizamiento, la fuerza de rozamiento 

tiene su módulo máximo 



Determinación experimental de los 
coeficientes de rozamiento 

Un bloque se coloca sobre una superficie rugosa inclinada con respecto a la horizontal 

El ángulo de inclinación      aumenta hasta que el objeto comienza a moverse 

¿Cómo se relaciona el coeficiente de rozamiento estático con el ángulo crítico     
para que el bloque comience a moverse? 
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Figure 5.19 (Example 5.12) The external forces exerted on a
block lying on a rough incline are the gravitational force mg, the
normal force n, and the force of friction f. For convenience, the
gravitational force is resolved into a component along the incline
mg sin ! and a component perpendicular to the incline mg cos !.
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Conceptual Example 5.11 Why Does the Sled Accelerate?

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts a force of equal magni-
tude and opposite direction on the horse. In view of this,
how can the sled accelerate—don’t the forces cancel? Under
what condition does the system (horse plus sled) move with
constant velocity?

Solution Remember that the forces described in Newton’s
third law act on different objects—the horse exerts a force 
on the sled, and the sled exerts an equal-magnitude and op-
positely directed force on the horse. Because we are inter-
ested only in the motion of the sled, we do not consider the
forces it exerts on the horse. When determining the motion

of an object, you must add only the forces on that object.
(This is the principle behind drawing a free-body diagram.)
The horizontal forces exerted on the sled are the forward
force T exerted by the horse and the backward force of fric-
tion fsled between sled and snow (see Fig. 5.18b). When the
forward force on the sled exceeds the backward force, the
sled accelerates to the right.

The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant
of these two forces causes the horse to accelerate.

The force that accelerates the system (horse plus sled) is
the net force fhorse " fsled. When fhorse balances fsled, the sys-
tem moves with constant velocity.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 (Conceptual Example 5.11)

Example 5.12 Experimental Determination of !s and !k

The following is a simple method of measuring coefficients
of friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19.
The incline angle is increased until the block starts to move.
Show that by measuring the critical angle !c at which this
slipping just occurs, we can obtain #s .

Solution Conceptualizing from the free body diagram in Fig-
ure 5.19, we see that we can categorize this as a Newton’s second
law problem. To analyze the problem, note that the only forces
acting on the block are the gravitational force mg, the normal
force n, and the force of static friction fs . These forces balance
when the block is not moving. When we choose x to be paral-
lel to the plane and y perpendicular to it, Newton’s second law
applied to the block for this balanced situation gives

We can eliminate mg by substituting mg $ n/cos ! from (2)
into (1) to find

When the incline angle is increased until the block is on the
verge of slipping, the force of static friction has reached its
maximum value #sn. The angle ! in this situation is the criti-
cal angle !c , and (3) becomes

#sn $ n  tan  !c

(3)   fs $ mg  sin  ! $ ! n
cos  ! " sin ! $ n   tan  !

(2)   #Fy $ n " mg  cos  ! $ may $ 0

(1)   #Fx $ mg  sin  ! " fs $ max $ 0

For example, if the block just slips at !c $ 20.0°, then we
find that #s $ tan 20.0° $ 0.364.

To finalize the problem, note that once the block starts to
move at ! % !c , it accelerates down the incline and the force
of friction is fk $ #kn. However, if ! is reduced to a value less
than !c , it may be possible to find an angle !c& such that the
block moves down the incline with constant speed (ax $ 0).
In this case, using (1) and (2) with fs replaced by fk gives

where !c& ' !c .

#k $ tan !c&

#s $ tan   !c

Si el ángulo es mayor que el ángulo crítico,            
el bloque comienza a moverse, con un movimiento 

acelerado por el plano inclinado 

Hay que sustituir el coeficiente de rozamiento 
estático por el coeficiente de rozamiento dinámico 

(que es más pequeño) 

Si una vez que el bloque ha comenzado a moverse 
volvemos al ángulo crítico, el objeto seguirá acelerando 
por el plano inclinado (la fuerza de rozamiento es menor 

cuando se mueve que cuando está parado) 



Determinación experimental de los 
coeficientes de rozamiento 

Un bloque se coloca sobre una superficie rugosa inclinada con respecto a la horizontal 

El ángulo de inclinación      aumenta hasta que el objeto comienza a moverse 

¿Cómo se relaciona el coeficiente de rozamiento estático con el ángulo crítico     
para que el bloque comience a moverse? 
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Figure 5.19 (Example 5.12) The external forces exerted on a
block lying on a rough incline are the gravitational force mg, the
normal force n, and the force of friction f. For convenience, the
gravitational force is resolved into a component along the incline
mg sin ! and a component perpendicular to the incline mg cos !.
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Conceptual Example 5.11 Why Does the Sled Accelerate?

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts a force of equal magni-
tude and opposite direction on the horse. In view of this,
how can the sled accelerate—don’t the forces cancel? Under
what condition does the system (horse plus sled) move with
constant velocity?

Solution Remember that the forces described in Newton’s
third law act on different objects—the horse exerts a force 
on the sled, and the sled exerts an equal-magnitude and op-
positely directed force on the horse. Because we are inter-
ested only in the motion of the sled, we do not consider the
forces it exerts on the horse. When determining the motion

of an object, you must add only the forces on that object.
(This is the principle behind drawing a free-body diagram.)
The horizontal forces exerted on the sled are the forward
force T exerted by the horse and the backward force of fric-
tion fsled between sled and snow (see Fig. 5.18b). When the
forward force on the sled exceeds the backward force, the
sled accelerates to the right.

The horizontal forces exerted on the horse are the for-
ward force fhorse exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant
of these two forces causes the horse to accelerate.

The force that accelerates the system (horse plus sled) is
the net force fhorse " fsled. When fhorse balances fsled, the sys-
tem moves with constant velocity.

(b)

T

fsled

(a) (c)

T

fhorse

Figure 5.18 (Conceptual Example 5.11)

Example 5.12 Experimental Determination of !s and !k

The following is a simple method of measuring coefficients
of friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19.
The incline angle is increased until the block starts to move.
Show that by measuring the critical angle !c at which this
slipping just occurs, we can obtain #s .

Solution Conceptualizing from the free body diagram in Fig-
ure 5.19, we see that we can categorize this as a Newton’s second
law problem. To analyze the problem, note that the only forces
acting on the block are the gravitational force mg, the normal
force n, and the force of static friction fs . These forces balance
when the block is not moving. When we choose x to be paral-
lel to the plane and y perpendicular to it, Newton’s second law
applied to the block for this balanced situation gives

We can eliminate mg by substituting mg $ n/cos ! from (2)
into (1) to find

When the incline angle is increased until the block is on the
verge of slipping, the force of static friction has reached its
maximum value #sn. The angle ! in this situation is the criti-
cal angle !c , and (3) becomes

#sn $ n  tan  !c

(3)   fs $ mg  sin  ! $ ! n
cos  ! " sin ! $ n   tan  !

(2)   #Fy $ n " mg  cos  ! $ may $ 0

(1)   #Fx $ mg  sin  ! " fs $ max $ 0

For example, if the block just slips at !c $ 20.0°, then we
find that #s $ tan 20.0° $ 0.364.

To finalize the problem, note that once the block starts to
move at ! % !c , it accelerates down the incline and the force
of friction is fk $ #kn. However, if ! is reduced to a value less
than !c , it may be possible to find an angle !c& such that the
block moves down the incline with constant speed (ax $ 0).
In this case, using (1) and (2) with fs replaced by fk gives

where !c& ' !c .

#k $ tan !c&

#s $ tan   !c

Para volver a la situación de equilibrio habrá que 
replantear las ecuaciones de movimiento 

sustituyendo      por       y reducir el ángulo a un 
valor     tal que el bloque se deslice hacia abajo con 

velocidad constante 



Aceleración de dos objetos unidos por una 
cuerda en el caso de que exista fricción 

Determinar la aceleración del sistema asumiendo cuerda inextensible de masa 
despreciable, polea sin rozamiento y sin masa, y coeficiente de rozamiento dinámico 
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Solving for a, we obtain

(5)

To finalize the problem, note that the acceleration of the
block can be either to the right or to the left,5 depending
on the sign of the numerator in (5). If the motion is to the
left, then we must reverse the sign of fk in (1) because the

F(cos ! " #k  sin !) $ g(m2 " #km1)
m1 " m2

a %

F  cos  ! $ #k(m1g $ F  sin !) $ m2(a " g) % m1a force of kinetic friction must oppose the motion of the
block relative to the surface. In this case, the value of a is the
same as in (5), with the two plus signs in the numerator
changed to minus signs.

This is the final chapter in which we will explicitly show
the steps of the General Problem-Solving Strategy in all
worked examples. We will refer to them explicitly in occa-
sional examples in future chapters, but you should use the
steps in all of your problem solving.

m 1
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θ
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y
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Figure 5.21 (Example 5.14) (a) The external force F applied as shown can cause the
block to accelerate to the right. (b) and (c) The free-body diagrams assuming that the
block accelerates to the right and the ball accelerates upward. The magnitude of the
force of kinetic friction in this case is given by fk % #kn % #k(m1g $ F sin !).

Application Automobile Antilock Braking Systems (ABS)

If an automobile tire is rolling and not slipping on a road
surface, then the maximum friction force that the road
can exert on the tire is the force of static friction #sn.
One must use static friction in this situation because at
the point of contact between the tire and the road, no
sliding of one surface over the other occurs if the tire is
not skidding. However, if the tire starts to skid, the fric-
tion force exerted on it is reduced to the force of kinetic
friction #kn. Thus, to maximize the friction force and
minimize stopping distance, the wheels must maintain
pure rolling motion and not skid. An additional benefit
of maintaining wheel rotation is that directional control
is not lost as it is in skidding. Unfortunately, in emergency
situations drivers typically press down as hard as they can on
the brake pedal, “locking the brakes.” This stops the wheels
from rotating, ensuring a skid and reducing the friction
force from the static to the kinetic value. To address this
problem, automotive engineers have developed antilock
braking systems (ABS). The purpose of the ABS is to help
typical drivers (whose tendency is to lock the wheels in an
emergency) to better maintain control of their automobiles
and minimize stopping distance. The system briefly releases
the brakes when a wheel is just about to stop turning. This

maintains rolling contact between the tire and the pavement.
When the brakes are released momentarily, the stopping dis-
tance is greater than it would be if the brakes were being ap-
plied continuously. However, through the use of computer
control, the “brake-off” time is kept to a minimum. As a re-
sult, the stopping distance is much less than what it would be
if the wheels were to skid.

Let us model the stopping of a car by examining real
data. In an issue of AutoWeek,6 the braking performance
for a Toyota Corolla was measured. These data correspond
to the braking force acquired by a highly trained, profes-
sional driver. We begin by assuming constant acceleration.
(Why do we need to make this assumption?) The maga-
zine provided the initial speed and stopping distance in
non-SI units, which we show in the left and middle sec-
tions of Table 5.3. After converting these values to SI, we
use vf

2 % vi
2 " 2ax to determine the acceleration at differ-

ent speeds, shown in the right section. These do not vary
greatly, and so our assumption of constant acceleration is
reasonable.

6 AutoWeek magazine, 48:22–23, 1998.

5 Equation 5 shows that when #km1 & m2, there is a range of
values of F for which no motion occurs at a given angle !.

Asumimos que el módulo de la fuerza no es lo suficientemente grande como 
para levantar al objeto de la superficie 

Cuerpo 1 

Cuerpo 2 



Tipos de fuerzas:                                                                    
fuerzas en movimientos curvilíneos 

Caso de un movimiento circular uniforme  

(partícula moviéndose en trayectoria circular con celeridad constante) 

Partícula que se mueve en una trayectoria circular de radio r 
con velocidad uniforme v experimenta una aceleración 

centrípeta dirigida hacia el centro del círculo de módulo 

El vector aceleración siempre es perpendicular al vector velocidad 

Si hay una aceleración, hay una fuerza neta (segunda ley de Newton) 

Si la aceleración hacia el centro del círculo, la fuerza hacia el centro del círculo 

¿Qué hace que la partícula se mueva con trayectoria circular? 

In the preceding chapter we introduced Newton’s laws of motion and applied them to
situations involving linear motion. Now we discuss motion that is slightly more compli-
cated. For example, we shall apply Newton’s laws to objects traveling in circular paths.
Also, we shall discuss motion observed from an accelerating frame of reference and
motion of an object through a viscous medium. For the most part, this chapter consists
of a series of examples selected to illustrate the application of Newton’s laws to a wide
variety of circumstances.

6.1 Newton’s Second Law Applied 
to Uniform Circular Motion

In Section 4.4 we found that a particle moving with uniform speed v in a circular path
of radius r experiences an acceleration that has a magnitude

The acceleration is called centripetal acceleration because ac is directed toward the center
of the circle. Furthermore, ac is always perpendicular to v. (If there were a component
of acceleration parallel to v, the particle’s speed would be changing.)

Consider a ball of mass m that is tied to a string of length r and is being whirled at
constant speed in a horizontal circular path, as illustrated in Figure 6.1. Its weight is
supported by a frictionless table. Why does the ball move in a circle? According to
Newton’s first law, the ball tends to move in a straight line; however, the string prevents

ac !
v2

r

m

Fr

Fr

r

Figure 6.1 Overhead view of a ball moving in a
circular path in a horizontal plane. A force Fr
directed toward the center of the circle keeps
the ball moving in its circular path.

An athlete in the process of
throwing the hammer at the 1996
Olympic Games in Atlanta, Georgia.
The force exerted by the chain
causes the centripetal acceleration
of the hammer. Only when the
athlete releases the hammer will it
move along a straight-line path
tangent to the circle.
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Tipos de fuerzas:                                                                    
fuerzas en movimientos curvilíneos 

Caso de un movimiento circular uniforme 

Si hay una aceleración, hay una fuerza neta (segunda ley de Newton) 

Si la aceleración hacia el centro del círculo, la fuerza hacia el centro del círculo 

Tendencia natural: moverse en una línea recta con velocidad constante 

La cuerda impide este movimiento, ejerciendo una fuerza radial sobre el 
objeto que hace que siga una trayectoria circular  

Esta fuerza es la tensión de la cuerda: orientada según la 
longitud de la cuerda y se dirige hacia el centro del círculo 

Independientemente de la naturaleza de la fuerza que actúe sobre el objeto con 
movimiento circular, podemos aplicar la segunda ley de Newton según la dirección radial. 

In the preceding chapter we introduced Newton’s laws of motion and applied them to
situations involving linear motion. Now we discuss motion that is slightly more compli-
cated. For example, we shall apply Newton’s laws to objects traveling in circular paths.
Also, we shall discuss motion observed from an accelerating frame of reference and
motion of an object through a viscous medium. For the most part, this chapter consists
of a series of examples selected to illustrate the application of Newton’s laws to a wide
variety of circumstances.

6.1 Newton’s Second Law Applied 
to Uniform Circular Motion

In Section 4.4 we found that a particle moving with uniform speed v in a circular path
of radius r experiences an acceleration that has a magnitude

The acceleration is called centripetal acceleration because ac is directed toward the center
of the circle. Furthermore, ac is always perpendicular to v. (If there were a component
of acceleration parallel to v, the particle’s speed would be changing.)

Consider a ball of mass m that is tied to a string of length r and is being whirled at
constant speed in a horizontal circular path, as illustrated in Figure 6.1. Its weight is
supported by a frictionless table. Why does the ball move in a circle? According to
Newton’s first law, the ball tends to move in a straight line; however, the string prevents
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Figure 6.1 Overhead view of a ball moving in a
circular path in a horizontal plane. A force Fr
directed toward the center of the circle keeps
the ball moving in its circular path.

An athlete in the process of
throwing the hammer at the 1996
Olympic Games in Atlanta, Georgia.
The force exerted by the chain
causes the centripetal acceleration
of the hammer. Only when the
athlete releases the hammer will it
move along a straight-line path
tangent to the circle.
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Tipos de fuerzas:                                                                    
fuerzas en movimientos curvilíneos 

Caso de un movimiento circular uniforme 

Tendencia natural: moverse en una línea recta con velocidad constante 

La cuerda impide este movimiento, ejerciendo una fuerza radial sobre el 
objeto que hace que siga una trayectoria circular  

Si la fuerza que actúa sobre el objeto desaparece, este se 
desplazará a lo largo de una línea recta tangente al círculo. 

In the preceding chapter we introduced Newton’s laws of motion and applied them to
situations involving linear motion. Now we discuss motion that is slightly more compli-
cated. For example, we shall apply Newton’s laws to objects traveling in circular paths.
Also, we shall discuss motion observed from an accelerating frame of reference and
motion of an object through a viscous medium. For the most part, this chapter consists
of a series of examples selected to illustrate the application of Newton’s laws to a wide
variety of circumstances.

6.1 Newton’s Second Law Applied 
to Uniform Circular Motion

In Section 4.4 we found that a particle moving with uniform speed v in a circular path
of radius r experiences an acceleration that has a magnitude

The acceleration is called centripetal acceleration because ac is directed toward the center
of the circle. Furthermore, ac is always perpendicular to v. (If there were a component
of acceleration parallel to v, the particle’s speed would be changing.)

Consider a ball of mass m that is tied to a string of length r and is being whirled at
constant speed in a horizontal circular path, as illustrated in Figure 6.1. Its weight is
supported by a frictionless table. Why does the ball move in a circle? According to
Newton’s first law, the ball tends to move in a straight line; however, the string prevents

ac !
v2

r

m

Fr

Fr

r

Figure 6.1 Overhead view of a ball moving in a
circular path in a horizontal plane. A force Fr
directed toward the center of the circle keeps
the ball moving in its circular path.

An athlete in the process of
throwing the hammer at the 1996
Olympic Games in Atlanta, Georgia.
The force exerted by the chain
causes the centripetal acceleration
of the hammer. Only when the
athlete releases the hammer will it
move along a straight-line path
tangent to the circle.
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motion along a straight line by exerting on the ball a radial force Fr that makes it fol-
low the circular path. This force is directed along the string toward the center of the
circle, as shown in Figure 6.1. 

If we apply Newton’s second law along the radial direction, we find that the net
force causing the centripetal acceleration can be evaluated:

(6.1)

A force causing a centripetal acceleration acts toward the center of the circular path
and causes a change in the direction of the velocity vector. If that force should van-
ish, the object would no longer move in its circular path; instead, it would move
along a straight-line path tangent to the circle. This idea is illustrated in Figure 6.2
for the ball whirling at the end of a string in a horizontal plane. If the string breaks
at some instant, the ball moves along the straight-line path tangent to the circle at
the point where the string breaks.

! F ! mac ! m
v2

r
Force causing centripetal
acceleration

r

Active Figure 6.2 An overhead view of a ball
moving in a circular path in a horizontal plane.
When the string breaks, the ball moves in the
direction tangent to the circle.

Quick Quiz 6.1 You are riding on a Ferris wheel (Fig. 6.3) that is rotating
with constant speed. The car in which you are riding always maintains its correct
upward orientation—it does not invert. What is the direction of your centripetal ac-
celeration when you are at the top of the wheel? (a) upward (b) downward (c) im-
possible to determine. What is the direction of your centripetal acceleration
when you are at the bottom of the wheel? (d) upward (e) downward (f) impossible to
determine.

Quick Quiz 6.2 You are riding on the Ferris wheel of Quick Quiz 6.1. What is
the direction of the normal force exerted by the seat on you when you are at the top of
the wheel? (a) upward (b) downward (c) impossible to determine. What is the direc-
tion of the normal force exerted by the seat on you when you are at the bottom of the
wheel? (d) upward (e) downward (f) impossible to determine.

Figure 6.3 (Quick Quiz 6.1 and
6.2) A Ferris wheel located on the
Navy Pier in Chicago, Illinois.
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! PITFALL PREVENTION
6.1 Direction of Travel

When the String is Cut
Study Figure 6.2 very carefully.
Many students (wrongly) think
that the ball will move radially
away from the center of the circle
when the string is cut. The veloc-
ity of the ball is tangent to the cir-
cle. By Newton’s first law, the ball
continues to move in the direc-
tion that it is moving just as the
force from the string disappears.

At the Active Figures link
at http://www.pse6.com, you
can “break” the string yourself
and observe the effect on the
ball’s motion.



El péndulo cónico 

Un pequeño objeto de masa m suspendido de una cuerda de longitud L. 

El objeto gira con una celeridad v en un círculo de radio r.  

¿Cuánto vale v? 
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Conceptual Example 6.1 Forces That Cause Centripetal Acceleration

The force causing centripetal acceleration is sometimes
called a centripetal force. We are familiar with a variety of
forces in nature—friction, gravity, normal forces, tension,
and so forth. Should we add centripetal force to this list?

Solution No; centripetal force should not be added to this
list. This is a pitfall for many students. Giving the force caus-
ing circular motion a name—centripetal force—leads many
students to consider it as a new kind of force rather than a
new role for force. A common mistake in force diagrams is to
draw all the usual forces and then to add another vector for
the centripetal force. But it is not a separate force—it is sim-
ply one or more of our familiar forces acting in the role of a
force that causes a circular motion.

Consider some examples. For the motion of the Earth
around the Sun, the centripetal force is gravity. For an ob-
ject sitting on a rotating turntable, the centripetal force is
friction. For a rock whirled horizontally on the end of a
string, the magnitude of the centripetal force is the tension
in the string. For an amusement-park patron pressed against
the inner wall of a rapidly rotating circular room, the cen-
tripetal force is the normal force exerted by the wall. Further-
more, the centripetal force could be a combination of two
or more forces. For example, as you pass through the lowest
point of the Ferris wheel in Quick Quiz 6.1, the centripetal
force on you is the difference between the normal force ex-
erted by the seat and the gravitational force. We will not use
the term centripetal force in this book after this discussion.

Example 6.3 How Fast Can It Spin?

A ball of mass 0.500 kg is attached to the end of a cord
1.50 m long. The ball is whirled in a horizontal circle as
shown in Figure 6.1. If the cord can withstand a maximum
tension of 50.0 N, what is the maximum speed at which the
ball can be whirled before the cord breaks? Assume that the
string remains horizontal during the motion.

Solution It makes sense that the stronger the cord, the
faster the ball can twirl before the cord breaks. Also, we ex-
pect a more massive ball to break the cord at a lower speed.
(Imagine whirling a bowling ball on the cord!)

Because the force causing the centripetal acceleration in
this case is the force T exerted by the cord on the ball,

Equation 6.1 yields 

Solving for v, we have

This shows that v increases with T and decreases with larger
m, as we expect to see—for a given v, a large mass requires a
large tension and a small mass needs only a small tension.
The maximum speed the ball can have corresponds to the

v ! √ Tr
m

(1)      T ! m  
v  

2

r

Example 6.2 The Conical Pendulum

A small object of mass m is suspended from a string of
length L. The object revolves with constant speed v in a hor-
izontal circle of radius r, as shown in Figure 6.4. (Because
the string sweeps out the surface of a cone, the system is
known as a conical pendulum.) Find an expression for v.

Solution Conceptualize the problem with the help of Fig-
ure 6.4. We categorize this as a problem that combines equi-
librium for the ball in the vertical direction with uniform
circular motion in the horizontal direction. To analyze the
problem, begin by letting " represent the angle between
the string and the vertical. In the free-body diagram shown,
the force T exerted by the string is resolved into a vertical
component T cos " and a horizontal component T sin " act-
ing toward the center of revolution. Because the object does
not accelerate in the vertical direction, Fy ! may ! 0 and
the upward vertical component of T must balance the down-
ward gravitational force. Therefore,

Because the force providing the centripetal acceleration in
this example is the component T sin ", we can use Equation
6.1 to obtain

(2)   ! F ! T  sin " ! mac !
mv  2

r

(1)   T  cos " ! mg

!

Dividing (2) by (1) and using sin "/cos " ! tan ", we elimi-
nate T and find that

From the geometry in Figure 6.4, we see that r ! L sin ";
therefore,

v !

Note that the speed is independent of the mass of the object.

√Lg  sin  "  tan "

v ! √r g  tan "

tan " !
v 

2

r g

T

mg

T cos

mg

T sin
r

θ θ

θ

θ

L

Figure 6.4 (Example 6.2) The conical pendulum and its free-
body diagram.

La bola está en equilibrio en la dirección vertical 
La bola sigue un movimiento circular en la dirección horizontal 

Dibujamos el diagrama de cuerpo aislado 
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Figure 6.4 (Example 6.2) The conical pendulum and its free-
body diagram.

Como el objeto no se acelera en la dirección vertical 

La componente horizontal de la tensión es la 
responsable de la aceleración centrípeta 
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force on you is the difference between the normal force ex-
erted by the seat and the gravitational force. We will not use
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Figure 6.4 (Example 6.2) The conical pendulum and its free-
body diagram.
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Como el objeto no se acelera en la dirección vertical 

La componente horizontal de la tensión es la 
responsable de la aceleración centrípeta 

Dividiendo la segunda ecuación entre la primera 

Como 

Independiente de la 
masa del objeto 
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force vectors with the same magnitude, the normal force at
the bottom must be greater than that at the top. Because
the speed of the aircraft is constant (how likely is this?), we
can categorize this as a uniform circular motion problem,
complicated by the fact that the gravitational force acts at all
times on the aircraft. 

(A) Analyze the situation by drawing a free-body diagram for
the pilot at the bottom of the loop, as shown in Figure 6.7b.
The only forces acting on him are the downward gravitational
force Fg ! mg and the upward force nbot exerted by the seat.
Because the net upward force that provides the centripetal ac-
celeration has a magnitude nbot " mg, Newton’s second law
for the radial direction gives

Substituting the values given for the speed and radius gives

Hence, the magnitude of the force nbot exerted by the seat
on the pilot is greater than the weight of the pilot by a fac-
tor of 2.91. This means that the pilot experiences an appar-

2.91mgnbot ! mg !1 #
(225 m/s)2

(2.70 $ 103 m)(9.80 m/s2) " !

nbot ! mg # m
v  2

r
! mg!1 #

v  2

r g "
# F ! n bot "mg ! m 

v2

r

ent weight that is greater than his true weight by a factor
of 2.91. 

(B) The free-body diagram for the pilot at the top of the
loop is shown in Figure 6.7c. As we noted earlier, both the
gravitational force exerted by the Earth and the force ntop
exerted by the seat on the pilot act downward, and so the
net downward force that provides the centripetal accelera-
tion has a magnitude n top # mg. Applying Newton’s second
law yields

!

In this case, the magnitude of the force exerted by the seat
on the pilot is less than his true weight by a factor of 0.913,
and the pilot feels lighter. To finalize the problem, note that
this is consistent with our prediction at the beginning of the
solution.

0.913mg

n  top ! mg ! (225 m/s)2

(2.70 $ 103 m)(9.80 m/s2)
" 1"

n top ! m 
v 

2

r
 " mg ! mg ! v 
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# F ! n top # mg ! m  
v2

r
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ntop
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(b) (c)

Top

Bottom

A

(a)

Figure 6.7 (Example 6.6) (a) An aircraft executes a loop-the-loop maneuver as it
moves in a vertical circle at constant speed. (b) Free-body diagram for the pilot at the
bottom of the loop. In this position the pilot experiences an apparent weight greater
than his true weight. (c) Free-body diagram for the pilot at the top of the loop.

Un piloto de masa m ejecuta un loop . 

Determinar la fuerza ejercida por el asiento sobre el piloto en en el fondo y en el tope del loop 

Analicemos el diagrama del cuerpo aislado del 
piloto en la parte de debajo del loop 

La magnitud de la fuerza normal ejercida por el asiento 
sobre el piloto es mayor que el peso del piloto. 

 
El piloto experimenta un peso aparente que es mayor que 

su peso real. 
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bottom of the loop. In this position the pilot experiences an apparent weight greater
than his true weight. (c) Free-body diagram for the pilot at the top of the loop.



Fuerzas sobre un piloto en un 
movimiento circular 
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force vectors with the same magnitude, the normal force at
the bottom must be greater than that at the top. Because
the speed of the aircraft is constant (how likely is this?), we
can categorize this as a uniform circular motion problem,
complicated by the fact that the gravitational force acts at all
times on the aircraft. 

(A) Analyze the situation by drawing a free-body diagram for
the pilot at the bottom of the loop, as shown in Figure 6.7b.
The only forces acting on him are the downward gravitational
force Fg ! mg and the upward force nbot exerted by the seat.
Because the net upward force that provides the centripetal ac-
celeration has a magnitude nbot " mg, Newton’s second law
for the radial direction gives

Substituting the values given for the speed and radius gives

Hence, the magnitude of the force nbot exerted by the seat
on the pilot is greater than the weight of the pilot by a fac-
tor of 2.91. This means that the pilot experiences an appar-

2.91mgnbot ! mg !1 #
(225 m/s)2

(2.70 $ 103 m)(9.80 m/s2) " !

nbot ! mg # m
v  2

r
! mg!1 #

v  2

r g "
# F ! n bot "mg ! m 

v2

r

ent weight that is greater than his true weight by a factor
of 2.91. 

(B) The free-body diagram for the pilot at the top of the
loop is shown in Figure 6.7c. As we noted earlier, both the
gravitational force exerted by the Earth and the force ntop
exerted by the seat on the pilot act downward, and so the
net downward force that provides the centripetal accelera-
tion has a magnitude n top # mg. Applying Newton’s second
law yields

!

In this case, the magnitude of the force exerted by the seat
on the pilot is less than his true weight by a factor of 0.913,
and the pilot feels lighter. To finalize the problem, note that
this is consistent with our prediction at the beginning of the
solution.
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Figure 6.7 (Example 6.6) (a) An aircraft executes a loop-the-loop maneuver as it
moves in a vertical circle at constant speed. (b) Free-body diagram for the pilot at the
bottom of the loop. In this position the pilot experiences an apparent weight greater
than his true weight. (c) Free-body diagram for the pilot at the top of the loop.

Un piloto de masa m ejecuta un loop . 

Determinar la fuerza ejercida por el asiento sobre el piloto en en el fondo y en el tope del loop 

Analicemos el diagrama del cuerpo aislado del 
piloto en la parte de arriba del loop 

La magnitud de la fuerza normal ejercida por el asiento 
sobre el piloto es menor que el peso del piloto. 

 
El piloto experimenta un peso aparente que es menor que 

su peso real. 
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Ejemplo de fuerzas de fricción:                     
desplazamiento de un coche en una carretera horizontal 

Cuando un coche acelera en una carretera horizontal, la fuerza no equilibrada que 
causa la aceleración es debida al rozamiento entre los neumáticos y la carretera 

En reposo: el peso del coche está equilibrado por la fuerza 
normal que el suelo ejerce sobre los neumáticos 

Para que comience el movimiento:  el motor del coche ejerce un 
par sobre el eje de dirección 

Si no hubiera rozamiento con  la carretera: 
las ruedas simplemente girarían sobre sí 

mismas, con la superficie de los neumáticos 
moviéndose hacia atrás. 

Si hay rozamiento, pero el par no es lo 
suficientemente grande: los neumáticos no 
se deslizarán debido a la fricción estática.  



Ejemplo de fuerzas de fricción:                     
desplazamiento de un coche en una carretera curva 

La fuerza de fricción ejercida por la carretera sobre el coche tiene la dirección 
hacia delante y suministra la aceleración necesaria para que el coche acelere 

Si cada neumático rueda sin deslizamiento, su superficie de contacto 
con la carretera se encuentra en reposo relativo con ésta. 

Superficie de contacto con el suelo se mueve hacia atrás 
con respecto al eje con velocidad v 

El eje se desplaza hacia adelante con velocidad v con 
respecto a la carretera. 

El rozamiento entre las ruedas y el suelo es fricción estática 



Fuerzas sobre un coche que toma una curva en una 
carretera horizontal plana 

Un coche de masa m describe una curva de radio r sobre una carretera horizontal plana.  

Si el coeficiente de rozamiento estático entre los neumáticos y la carretera es µ,  

¿Cuál es la máxima celeridad que puede alcanzar el coche para tomar la curva sin salirse? 
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Example 6.4 What Is the Maximum Speed of the Car?

A 1 500-kg car moving on a flat, horizontal road negotiates a
curve, as shown in Figure 6.5. If the radius of the curve is
35.0 m and the coefficient of static friction between the tires
and dry pavement is 0.500, find the maximum speed the car
can have and still make the turn successfully.

Solution In this case, the force that enables the car to re-
main in its circular path is the force of static friction. (Static
because no slipping occurs at the point of contact between
road and tires. If this force of static friction were zero—for
example, if the car were on an icy road—the car would con-
tinue in a straight line and slide off the road.) Hence, from
Equation 6.1 we have

(1)      fs ! m 
v  2

r

The maximum speed the car can have around the curve is the
speed at which it is on the verge of skidding outward. At this
point, the friction force has its maximum value fs, max ! "sn.
Because the car shown in Figure 6.5b is in equilibrium in the
vertical direction, the magnitude of the normal force equals
the weight (n ! mg) and thus fs, max ! "smg. Substituting this
value for fs into (1), we find that the maximum speed is

!

Note that the maximum speed does not depend on the mass
of the car. That is why curved highways do not need multi-
ple speed limit signs to cover the various masses of vehicles
using the road.

What If? Suppose that a car travels this curve on a wet day
and begins to skid on the curve when its speed reaches only
8.00 m/s. What can we say about the coefficient of static fric-
tion in this case?

Answer The coefficient of friction between tires and a wet
road should be smaller than that between tires and a dry road.
This expectation is consistent with experience with driving, be-
cause a skid is more likely on a wet road than a dry road.

To check our suspicion, we can solve (2) for the coeffi-
cient of friction:

Substituting the numerical values,

This is indeed smaller than the coefficient of 0.500 for the
dry road.

"s !
v  2

max

g r
!

(8.00 m/s)2

(9.80 m/s2)(35.0 m)
! 0.187

"s !
vmax 

2

g r

13.1 m/s

! √(0.500)(9.80 m/s2)(35.0 m)

(2)      v max ! √ fs , max r
m

! √ "sm g r
m

! √"s  g r

n

mg

(a)

(b)

f s

f s

Figure 6.5 (Example 6.4) (a) The force of static friction di-
rected toward the center of the curve keeps the car moving in a
circular path. (b) The free-body diagram for the car.

Study the relationship between the car’s speed, radius of the turn, and the coefficient of static friction between road and
tires at the Interactive Worked Example link at http://www.pse6.com.

Interactive

maximum tension. Hence, we find

!

What If? Suppose that the ball is whirled in a circle of
larger radius at the same speed v. Is the cord more likely to
break or less likely?

Answer The larger radius means that the change in the di-
rection of the velocity vector will be smaller for a given time
interval. Thus, the acceleration is smaller and the required
force from the string is smaller. As a result, the string is less
likely to break when the ball travels in a circle of larger
radius. To understand this argument better, let us write

12.2 m/sv max ! √ T maxr
m

! √ (50.0 N) (1.50 m)
0.500 kg

Equation (1) twice, once for each radius:

Dividing the two equations gives us,

If we choose r2 # r1, we see that T2 $ T1. Thus, less tension
is required to whirl the ball in the larger circle and the
string is less likely to break.

T2

T1
!

! mv2

r2
"

! mv2

r1
"

!
r 1

r 2

T1 !
mv 

2

r 1
    T2 !

mv 
2

r 2

En este caso, la fuerza responsable de que el coche siga 
una trayectoria circular es la fuerza de rozamiento estática 

entre los neumáticos y la carretera  

Dibujamos el diagrama de cuerpo aislado 
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Interactive

maximum tension. Hence, we find

!

What If? Suppose that the ball is whirled in a circle of
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Answer The larger radius means that the change in the di-
rection of the velocity vector will be smaller for a given time
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Como el coche está en equilibrio en la dirección vertical 

No dependen de la masa 



Fuerzas sobre un coche que toma una curva en una 
carretera con peralte 

Si la curva está peraltada con un ángulo    la fuerza normal tendrá una componente 
apuntando hacia el centro de la curva 
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Example 6.5 The Banked Exit Ramp

A civil engineer wishes to design a curved exit ramp for a
highway in such a way that a car will not have to rely on
friction to round the curve without skidding. In other
words, a car moving at the designated speed can negotiate
the curve even when the road is covered with ice. Such a
ramp is usually banked; this means the roadway is tilted to-
ward the inside of the curve. Suppose the designated speed
for the ramp is to be 13.4 m/s (30.0 mi/h) and the radius
of the curve is 50.0 m. At what angle should the curve be
banked?

Solution On a level (unbanked) road, the force that causes
the centripetal acceleration is the force of static friction be-
tween car and road, as we saw in the previous example.
However, if the road is banked at an angle !, as in Figure
6.6, the normal force n has a horizontal component n sin !
pointing toward the center of the curve. Because the ramp
is to be designed so that the force of static friction is zero,
only the component nx " n sin ! causes the centripetal

acceleration. Hence, Newton’s second law for the radial di-
rection gives

The car is in equilibrium in the vertical direction. Thus,
from Fy " 0 we have

Dividing (1) by (2) gives

If a car rounds the curve at a speed less than 13.4 m/s, fric-
tion is needed to keep it from sliding down the bank (to the
left in Fig. 6.6). A driver who attempts to negotiate the curve
at a speed greater than 13.4 m/s has to depend on friction
to keep from sliding up the bank (to the right in Fig. 6.6).
The banking angle is independent of the mass of the vehicle
negotiating the curve.

What If? What if this same roadway were built on Mars in
the future to connect different colony centers; could it be
traveled at the same speed?

Answer The reduced gravitational force on Mars would
mean that the car is not pressed so tightly to the roadway.
The reduced normal force results in a smaller component
of the normal force toward the center of the circle. This
smaller component will not be sufficient to provide the cen-
tripetal acceleration associated with the original speed. The
centripetal acceleration must be reduced, which can be
done by reducing the speed v.

Equation (3) shows that the speed v is proportional to
the square root of g for a roadway of fixed radius r banked at
a fixed angle !. Thus, if g is smaller, as it is on Mars, the
speed v with which the roadway can be safely traveled is also
smaller.

20.1#! " tan$1! (13.4 m/s)2

(50.0 m)(9.80 m/s2) " "

(3)      tan ! "
v 

2

r g

(2)      n  cos ! " mg

#

(1)      # Fr " n  sin ! "
mv 

2

r

n

nx

ny

Fg
θ

Figure 6.6 (Example 6.5) A car rounding a curve on a road
banked at an angle ! to the horizontal. When friction is ne-
glected, the force that causes the centripetal acceleration and
keeps the car moving in its circular path is the horizontal com-
ponent of the normal force.

You can adjust the turn radius and banking angle at the Interactive Worked Example link at http://www.pse6.com.

Example 6.6 Let’s Go Loop-the-Loop!

A pilot of mass m in a jet aircraft executes a loop-the-loop,
as shown in Figure 6.7a. In this maneuver, the aircraft
moves in a vertical circle of radius 2.70 km at a constant
speed of 225 m/s. Determine the force exerted by the seat
on the pilot (A) at the bottom of the loop and (B) at the
top of the loop. Express your answers in terms of the weight
of the pilot mg.

Solution To conceptualize this problem, look carefully at
Figure 6.7. Based on experiences with driving over small

hills in a roadway, or riding over the top of a Ferris wheel,
you would expect to feel lighter at the top of the path. Simi-
larly, you would expect to feel heavier at the bottom of the
path. By looking at Figure 6.7, we expect the answer for
(A) to be greater than that for (B) because at the bottom of
the loop the normal and gravitational forces act in opposite
directions, whereas at the top of the loop these two forces
act in the same direction. The vector sum of these two forces
gives the force of constant magnitude that keeps the pilot
moving in a circular path at a constant speed. To yield net

Interactive

Imaginemos que se quiera diseñar la rampa de manera que un 
coche pudiera negociar la curva a un celeridad dada aún en 

ausencia de rozamiento 

Segunda ley de Newton 
en la dirección radial 

Segunda ley de Newton 
en la dirección y 



Tipos de fuerzas:                                                                    
fuerzas de fricción en fluidos 

Interacción entre el objeto y el medio a través del cual se mueve. 

El medio ejerce una fuerza de resistencia        cuando este se mueve a su través. 

Módulo depende de la celeridad relativa entre el objeto y el medio 

Dirección y sentido de        sobre el objeto es siempre opuesta a la dirección del movimiento  

Generalmente, el módulo de la fuerza aumenta a medida que aumenta el módulo de la velocidad 



Tipos de fuerzas:                                                                    
fuerzas de fricción en fluidos 

Fuerzas de resistencia proporcional a la velocidad del objeto 

Modelo válido a velocidades bajas 

b es una constante, depende de las propiedades del medio y de la forma y dimensiones del objeto. 

El signo menos nos dice que la fuerza de resistencia es opuesta a la velocidad. 



Tipos de fuerzas:                                                                    
fuerzas de fricción en fluidos 

Una esfera de masa m que se deja caer desde la la posición de reposo 

Únicas fuerzas: peso y fuerza de resistencia 

(ignoramos empuje de Arquímedes. Podría incluirse 
variando el peso aparente de la esfera). 

Condiciones iniciales: en t = 0 
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the gravitational force Fg , let us describe its motion.1 Applying Newton’s second law
to the vertical motion, choosing the downward direction to be positive, and noting that

Fy ! mg " bv, we obtain

(6.3)

where the acceleration dv/dt is downward. Solving this expression for the acceleration
gives

(6.4)

This equation is called a differential equation, and the methods of solving it may not be fa-
miliar to you as yet. However, note that initially when v ! 0, the magnitude of the resis-
tive force bv is also zero, and the acceleration dv/dt is simply g. As t increases, the magni-
tude of the resistive force increases and the acceleration decreases. The acceleration
approaches zero when the magnitude of the resistive force approaches the sphere’s
weight. In this situation, the speed of the sphere approaches its terminal speed vT. In
reality, the sphere only approaches terminal speed but never reaches terminal speed. 

We can obtain the terminal speed from Equation 6.3 by setting a ! dv/dt ! 0. This
gives

The expression for v that satisfies Equation 6.4 with v ! 0 at t ! 0 is

(6.5)

This function is plotted in Figure 6.15c. The symbol e represents the base of the nat-
ural logarithm, and is also called Euler’s number: e ! 2.718 28. The time constant
# ! m/b (Greek letter tau) is the time at which the sphere released from rest reaches
63.2% of its terminal speed. This can be seen by noting that when t ! #, Equation 6.5
yields v ! 0.632vT.

v !
mg
b

 (1 " e"bt/m ) ! vT (1 " e"t/# )

mg " bvT ! 0      or      vT !
mg
b

dv
dt

! g "
b
m

 v

mg " bv ! ma ! m
dv
dt

!

(c)

v

vT

0.632vT

tτ

R

mg

v

(a)

v = vT
a = 0

v = 0
a = g

(b)

Active Figure 6.15 (a) A small sphere falling through a liquid. (b) Motion diagram of
the sphere as it falls. (c) Speed–time graph for the sphere. The sphere reaches a
maximum (or terminal) speed vT, and the time constant # is the time interval during
which it reaches a speed of 0.632vT.

Terminal speed

At the Active Figures link
at http://www.pse6.com, you
can vary the size and mass of
the sphere and the viscosity
(resistance to flow) of the
surrounding medium, then
observe the effects on the
sphere’s motion and its
speed–time graph.

1 There is also a buoyant force acting on the submerged object. This force is constant, and its
magnitude is equal to the weight of the displaced liquid. This force changes the apparent weight
of the sphere by a constant factor, so we will ignore the force here. We discuss buoyant forces in
Chapter 14.



Tipos de fuerzas:                                                                    
fuerzas de fricción en fluidos 

Condiciones iniciales: en t = 0 

Cuando t aumenta, la velocidad aumenta, la fuerza de 
resistencia aumenta y la aceleración disminuye. 

La aceleración se hace cero cuando la fuerza de resistencia 
se equilibra con el peso. 

En ese momento, el objeto alcanza la velocidad límite vT, y a 
partir de ese momento se mueve con velocidad constante 
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to the vertical motion, choosing the downward direction to be positive, and noting that
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gives
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miliar to you as yet. However, note that initially when v ! 0, the magnitude of the resis-
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approaches zero when the magnitude of the resistive force approaches the sphere’s
weight. In this situation, the speed of the sphere approaches its terminal speed vT. In
reality, the sphere only approaches terminal speed but never reaches terminal speed. 

We can obtain the terminal speed from Equation 6.3 by setting a ! dv/dt ! 0. This
gives
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This function is plotted in Figure 6.15c. The symbol e represents the base of the nat-
ural logarithm, and is also called Euler’s number: e ! 2.718 28. The time constant
# ! m/b (Greek letter tau) is the time at which the sphere released from rest reaches
63.2% of its terminal speed. This can be seen by noting that when t ! #, Equation 6.5
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Tipos de fuerzas:                                                                    
fuerzas de fricción en fluidos 

Condiciones iniciales: en t = 0 

Solución general 
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Tipos de fuerzas:                                                                    
fuerzas ficticias 

Cuando la aceleración de un objeto se mide con respecto a un sistema de referencia que a su vez 
se acelera con respecto a un sistema de referencia inercial, la fuerza resultante no es igual al 

producto de la masa por la aceleración 

Las leyes de Newton sólo son validas en sistemas de referencia inerciales 

En el sistema de referencia acelerado:  

Incluso en este sistema de referencia acelerado, podemos utilizar la ley de Newton                            
si introducimos fuerzas ficticias o pseudofuerzas que dependan de la aceleración del sistema de 
referencia 



Tipos de fuerzas:                                                                    
fuerzas ficticias. Ejemplo 1 

Se deja caer un objeto en el interior de un vagón de ferrocarril con velocidad inicial nula y 
aceleración constante ac 

En el sistema de referencia del vagón se puede utilizar la segunda ley de Newton si 
introducimos una fuerza ficticia                    que actúa sobre cualquier objeto de masa m 

Un observador situado en la vía ve caer 
el objeto verticalmente (no hay 

velocidad inicial a lo largo de x), y con 
aceleración constante a lo largo de y, g 

Con respecto al vagón, posee una 
aceleración vertical g, y una 

aceleración horizontal –ac. La bola cae 
hacia la parte de atrás del vagón 



Tipos de fuerzas:                                                                    
fuerzas ficticias. Ejemplo 2 

Una lámpara que cuelga de una cuerda del techo de un vagón.                                                        
Para cada observador, la componente vertical de la tensión es igual al peso de la lámpara.  

Un observador situado en la vía ve que la 
lámpara se acelera hacia la derecha debido a la 

acción de de la fuerza no equilibrada, la 
componente horizontal de la tensión. 

Con respecto al vagón, la lámpara está en 
equilibrio, y no tiene aceleración. La 

componente horizontal de la tensión equilibra 
una fuerza ficticia que actúa sobre todos los 

objetos del vagón para un observador situado 
en el vagón. 

Física, P. A. Tipler, Ed. Reverté, Tercera Edición, Capítulo 5 



Tipos de fuerzas:                                                                    
fuerzas ficticias. Ejemplo 3 

Una plataforma giratoria.                                                                                                                          
Cada punto de la trayectoria se mueve en círculo y tiene una aceleración centrípeta. 

Para un observador inercial, el bloque se mueve 
en círculo con velocidad v, y está acelerado 

hacia el centro del círculo, v2/r, por la fuerza no 
equilibrada de la tensión de la fuerza.  

Para un observador en la plataforma, el bloque 
está en reposo y no acelera. Para usar la 

segunda ley de Newton se debe utilizar una 
fuerza fictica de magnitud v2/r y que apunte 
hacia fuera del círculo, la fuerza centrífuga. 

Física, P. A. Tipler, Ed. Reverté, Tercera Edición, Capítulo 5 



Tipos de fuerzas:                                                                    
fuerzas ficticias 

Supongamos que un observador se encuentra en un sistema de referencia acelerado 
(piénsese en el ascensor, un tiovivo, o la Tierra que al estar en rotación no es un sistema 
inercial). Este observador realiza experimentos físicos sencillos (dejar caer un objeto, 
medir la tensión de una cuerda..). Como el sistema de referencia en el que está sufre una 
aceleración, sus resultados, medidos por él, no coincidirán en general con los que 
obtendría en esos mismos experimentos si estuviera en reposo.  
Si este observador cree firmemente en las ecuaciones de Newton, las escribirá tal y como 
conocemos. Sin embargo, las aceleraciones su sistema está sufriendo, y que el desconoce 
que existen, las interpretará,(para que le cuadren las ecuaciones) como una cierta fuerza. 
Esta fuerza no existe como tal (no hay ninguna interacción de la naturaleza que las 
genere), pero necesita creer en su existencia para que sigan siendo válidas las ecuaciones 
de Newton.  
Estas fuerzas, que aparecen sólo en los sistemas de referencia no inerciales se denominan 
FUERZAS DE INERCIA, o fuerzas ficticias. 


