Norm-conserving pseudopotentials in electronic structure calculations

Javier Junquera

Alberto García
Bibliography used in the present lecture

Bibliography used in the present lecture

Richard M. Martin

Electronic Structure
Basic Theory and Practical Methods
Atomic calculation using DFT: Solving the Schrödinger-like equation

One particle Kohn-Sham equations

\[
\left(\hat{T} + \hat{V}_{\text{ion}} - e - e - e + \hat{V}_H + \hat{V}_{\text{xc}} \right) \psi_i = \varepsilon_i \psi_i
\]
Difficulty: how to deal accurately with both the core and valence electrons
Difficulty: how to deal accurately with both the core and valence electrons
Si atomic configuration: $1s^2 \ 2s^2 \ 2p^6 \ \underline{\text{core}} \ \underline{3s^2 \ 3p^2} \ \text{valence}$
Core eigenvalues are much deeper than valence eigenvalues.
Core wavefunctions are very localized around the nuclei.

Atomic Si
Core wavefunctions are very localized around the nuclei

Core electrons...
- highly localized
- very depth energy

... are chemically inert
Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density

Valence charge density

Neutral configuration: 1s² 2s² 2p³

$(4\pi r^2) \times \text{Core charge density (electrons/bohr)}$

$(4\pi r^2) \times \text{Valence charge density (electrons/bohr)}$
Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density

Valence charge density
Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density

Valence charge density
Core electrons are chemically inert

All electron calculation for an isolated N atom

Core charge density

Valence charge density

The core charge density remains unperturbed

Although there are drastic modifications in the valence charge density

Peak due to the 2s all-electron orbitals of N, (they have a node to be orthogonal with the 1s)
Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities
Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities

![Graph showing charge density against distance from nuclei (bohr)]

- **Neutral configuration:** $2s^2 2s^2 2p^6 3s^2 3p^2$
- **Ionic configuration +1:** $1s^2 2s^2 2p^6 3s^2 3p^1$
Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities
Core electrons are chemically inert

All electron calculation for an isolated Si atom

Angularly integrated core and valence charge densities
Valence wave functions must be orthogonal to the core wave functions.

Core electrons...
- highly localized
- very depth energy

... are chemically inert
Fourier expansion of a valence wave function has a great contribution of short-wave length. To get a good approximation we would have to use a large number of plane waves.
Pseudopotential idea:

Core electrons are chemically inert
(only valence electrons involved in bonding)

Core electrons make the calculation more expensive
more electrons to deal with
orthogonality with valence \(\Rightarrow\) poor convergence in PW

Core electrons main effect: screen nuclear potential

Idea:
Ignore the dynamics of the core electrons (freeze them)
And replace their effects by an effective potential
The nodes are imposed by orthogonality to the core states.
Idea, eliminate the core electrons by ironing out the nodes.

![Graph showing electron behavior in Si with two curves labeled $u_{3,s}^{AE}(r)$ and $u_{3,s}^{PS}(r)$, with a node at R_c.](image-url)
The pseudopotential transformation: Seeking for the wave equation of the “smooth”

Replace the OPW form of the wave function into the Schrödinger equation

\[\psi_v^i(\vec{r}) = \tilde{\psi}_v^i(\vec{r}) - \sum_j \langle \psi_j^c | \tilde{\psi}_v^i \rangle \psi_j^c(\vec{r}) \]

\[\hat{H} \psi_v^i(\vec{r}) = \left[-\frac{1}{2} \nabla^2 + V(\vec{r}) \right] \psi_v^i(\vec{r}) = \varepsilon_v^i \psi_v^i(\vec{r}) \]

\[\Downarrow \]

Equation for the smooth part, with a non local operator

\[\hat{H}^{PKA} \tilde{\psi}_v^i(\vec{r}) \equiv \left[-\frac{1}{2} \nabla^2 + \hat{V}^{PKA} \right] \tilde{\psi}_v^i(\vec{r}) = \varepsilon_v^i \tilde{\psi}_v^i(\vec{r}) \]
The original potential is replaced by a weaker non-local pseudopotential

\[\hat{V}^{PKA} = V + \hat{V}^R \]

\[\hat{V}^R \psi^v_i(\vec{r}) = \sum_j (\varepsilon^v_i - \varepsilon^c_j) \langle \psi^c_j | \tilde{\psi}^v_i \rangle \psi^c_j(\vec{r}) \]

Advantages

- Repulsive
 \[\varepsilon^v_i - \varepsilon^c_j > 0 \]
 \[\Downarrow \]
 \[V^{PKA} \text{ is much weaker than the original potential } V(\vec{r}) \]

- Spatially localized
 \[\text{vanishes where } \psi^c_j = 0 \]

Disadvantages

- Non-local operator
 \[\tilde{\psi}^v_i \text{ are not orthonormal} \]

- \[\hat{V}^R \text{ is not smooth} \]

- I-dependent
Ab-initio pseudopotential method: fit the valence properties calculated from the atom.
List of requirements for a good norm-conserving pseudopotential:

Choose an atomic reference configuration

Si: $1s^2 \ 2s^2 \ 2p^6 \ \text{core} \quad 3s^2 \ 3p^2 \ \text{valence}$

1. All electron and pseudo valence eigenvalues agree for the chosen reference configuration

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>All electron</th>
<th>Pseudopotential</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{3s}</td>
<td>-10.83</td>
<td>-10.83</td>
</tr>
<tr>
<td>ε_{3p}</td>
<td>-4.17</td>
<td>-4.17</td>
</tr>
</tbody>
</table>
List of requirements for a good norm-conserving pseudopotential:

Choose an atomic reference configuration

Si: \(1s^2 2s^2 2p^6\) \(3s^2 3p^2\)

2. All electron and pseudo valence wavefunctions agree beyond a chosen cutoff radius \(R_c\) (might be different for each shell)
List of requirements for a good norm-conserving pseudopotential:

Choose an atomic reference configuration

\[\text{Si: } 1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^2 \]

3. The \textbf{logarithmic derivatives} of the all-electron and pseudowave functions agree at \(R_c \)

\[D_l(\varepsilon, r) \equiv r \frac{\psi'_l(\varepsilon, r)}{\psi_l(\varepsilon, r)} = r \frac{d}{dr} \ln [\psi_l(\varepsilon, r)] \]
List of requirements for a good norm-conserving pseudopotential:

Choose an atomic reference configuration

Si: $1s^2 \underbrace{2s^2 \, 2p^6}_{\text{core}} \underbrace{3s^2 \, 3p^2}_{\text{valence}}$

4. The integrals from 0 to r of the real and pseudo charge densities agree for $r > R_c$ for each valence state

$$Q_l = \int_0^{R_c} drr^2 |\psi_l(r)|^2$$

Q_l is the same for ψ_l^{PS} as for the all electron radial orbital ψ_l

\Downarrow

• Total charge in the core region is correct
• Normalized pseudoorbital is equal to the true orbital outside of R_c
List of requirements for a good norm-conserving pseudopotential:

Choose an atomic reference configuration

Si: \(1s^2 2s^2 2p^6\) core \(3s^2 3p^2\) valence

5. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo wave functions agrees at \(R_c\)

Central point due to Hamann, Schlüter and Chiang:

Norm conservation \([(4)] \Rightarrow (5)\)

\[
2\pi \left[(r\psi)^2 \frac{d}{d\varepsilon} \frac{d}{dr} \ln \psi \right]_R = 4\pi \int_0^R r^2 \psi^2 dr
\]
Equality of AE and PS energy derivatives of the logarithmic derivatives essential for transferability

If condition 5 is satisfied, the change in the eigenvalues to linear order in the change in the potential is reproduced.
Choose an atomic reference configuration, i.e., a given distribution of electrons in the atomic energy levels (degree of freedom)
Generation of l-dependent norm-conserving pseudo: Step 1, choosing the reference configuration

Question: how to choose the electronic configuration of the isolated atom (the reference atomic configuration) so that the pseudopotential remains useful in molecular systems and solids (the target system)

The reference configuration is arbitrary, the user has a degree of freedom here

If the pseudopotential is transferable enough, the choice is not so critical, but transferability tests are mandatory

Transferability is expected to work best for electronic configurations close to the reference one, but it is not obvious for rather different configurations (would a pseudopotential generated for neutral K work well in K^+?)
Generation of \(l \)-dependent norm-conserving pseudo:
Step 1, choosing the reference configuration

Standard first choice: ground state configuration of the neutral isolated atom

However, states of angular momenta that are unoccupied in the neutral atom hybridize with the occupied states in the presence of a different environment, becoming partially occupied.

In these cases, it is necessary to include these angular momenta as non-local components of the pseudopotential.
Generation of l-dependent norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of electrons in the atomic energy levels (degree of freedom)

Solve the all-electron radial Schrödinger equation for the chosen atomic reference configuration

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V_{\text{eff}}[n](r) \right] u_{nl}^{\text{AE}}(r) = \varepsilon_{nl} u_{nl}^{\text{AE}}(r)$$

$$V_{\text{eff}}[n](r) = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + V_{xc}[n] = -\frac{Z}{r} + \int \frac{n(r')}{|r - r'|} dr' + V_{xc}[n]$$

- sum of electronic charges for occupied states
- Z = bare nuclear charge
Generation of l-dependent norm-conserving pseudo: Step 2, solving the radial wave function

Since, in the isolated atom, the potential is spherically symmetric, the one electron wave functions can be decoupled as the product of a radial part times an spherical harmonic

$$\psi_{nlm}(\vec{r}) = \psi_{nlm}(r, \theta, \phi) = R_{nl}(r)Y_{lm}(\theta, \phi) = \frac{1}{r} u_{nl}(r)Y_{lm}(\theta, \phi)$$

The radial equation (in atomic units) reads

$$\left\{ -\frac{1}{2r} \frac{d^2}{dr^2}r + \frac{l(l + 1)}{2r^2} + V_{\text{eff}}[n](r) \right\} R_{nl}(r) = \varepsilon_{nl}R_{nl}(r)$$

$$V_{\text{eff}}[n](r) = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + V_{\text{xc}}[n] = -\frac{Z}{r} + \int \frac{n(r')}{|r-r'|}dr' + V_{\text{xc}}[n]$$

If, as in many textbooks, we redefine the radial part of the wave function, to simplify the differential operator

$$R_{nl}(r) = \frac{1}{r} u_{nl}(r)$$

$$\left\{ -\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l + 1)}{2r^2} + V_{\text{eff}}[n](r) \right\} u_{nl}(r) = \varepsilon_{nl}u_{nl}(r)$$
Generation of l-dependent norm-conserving pseudo:
Step 2, solving the radial wave function

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V_{\text{eff}}[n](r) \right] u_{nl}(r) = \varepsilon_{nl} u_{nl}(r)$$

The equation has to be solved subject to the following boundary conditions

\[u_{nl}(r) \propto r^{l+1} \quad \text{for} \quad r \to 0 \quad \Rightarrow u_{nl}(r = 0) = 0 \]

\[R_{nl}(r) = \frac{u_{nl}(r)}{r} \propto r^{l} \]

\[u_{nl}(r) \to 0 \quad \text{for} \quad r \to \infty \]

And the radial part of the wave function has to be normalized as

$$\int_0^\infty r^2 |R_{nl}(r)|^2 dr = \int_0^\infty |u_{nl}(r)|^2 dr = 1$$
Generation of l-dependent norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of electrons in the atomic energy levels (degree of freedom)

Solve the all-electron radial Schrödinger equation for the chosen atomic reference configuration

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l + 1)}{2r^2} + V_{\text{eff}}[n](r)\right] u_{nl}^{\text{AE}}(r) = \varepsilon_{nl} u_{nl}^{\text{AE}}(r)$$

$$V_{\text{eff}}[n](r) = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + V_{xc}[n] = -\frac{Z}{r} + \int \frac{n(r')}{|r-r'|}dr' + V_{xc}[n]$$

- $n(r)$ = sum of electronic charges for occupied states
- Z = bare nuclear charge

Parametrization of the pseudo-wave functions for $r < R_c$ according to any of the available prescriptions (degree of freedom)
Generation of l-dependent norm-conserving pseudo: Step 3, parametrization of the pseudowave functions

Independently of the method, two conditions usually imposed:

- Smooth matching between the all electron and the pseudo wave function at the cutoff radius R_c
- Conservation of the norm of the pseudo wave function.

Degree of freedom in the choice of the flavour of the pseudopotential and R_c

Several schemes available in the literature for norm-conserving pseudopotentials

Different methods to generate norm-conserving pseudopotential

Troullier-Martins Kerker Haman-Schlüter-Chiang Vanderbilt

Generation of l-dependent norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of electrons in the atomic energy levels (degree of freedom).

Solve the all-electron radial Schrödinger equation for the chosen atomic reference configuration:

\[
\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V_{\text{eff}}[n](r)\right] u_{nl}^{\text{AE}}(r) = \varepsilon_{nl} u_{nl}^{\text{AE}}(r)
\]

\[
V_{\text{eff}}[n](r) = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + V_{\text{xc}}[n] = -\frac{Z}{r} + \int \frac{n(r')}{|r-r'|} dr' + V_{\text{xc}}[n]
\]

- $n(r)$ = sum of electronic charges for occupied states
- Z = bare nuclear charge

Parametrization of the pseudo-wave functions for $r < R_c$ according to any of the available prescriptions (degree of freedom).

Invert the radial Schrödinger equation for the screened pseudopotential.
Generation of \(l \)-dependent norm-conserving pseudo: Step 4, inversion of the radial Schrödinger equation

Search for the Schrödinger-like equation that would satisfy the pseudo-orbital

\[
\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V_{(sc)l}^{PS}(r) \right] u_l^{PS}(r) = \varepsilon_l u_l^{PS}(r)
\]

\[
-\frac{1}{2} \frac{d^2 u_l^{PS}(r)}{dr^2} + \frac{l(l+1)}{2r^2} u_l^{PS}(r) + V_{(sc)l}^{PS}(r) u_l^{PS}(r) = \varepsilon_l u_l^{PS}(r)
\]

\[
-\frac{1}{2 u_l^{PS}(r)} \frac{d^2 u_l^{PS}(r)}{dr^2} + \frac{l(l+1)}{2r^2} + V_{(sc)l}^{PS}(r) = \varepsilon_l
\]

\[
V_{(sc)l}^{PS}(r) = \varepsilon_l - \frac{l(l+1)}{2r^2} + \frac{1}{2 u_l^{PS}(r)} \frac{d^2 u_l^{PS}(r)}{dr^2}
\]
Generation of l-dependent norm-conserving pseudo: Step 4, inversion of the radial Schrödinger equation

Search for the Schrödinger-like equation that would satisfy the pseudo-orbital

$$V_{(sc)l}^{PS}(r) = \varepsilon_l - \frac{l(l + 1)}{2r^2} + \frac{1}{2u_l^{PS}(r)} \frac{d^2u_l^{PS}(r)}{dr^2}$$

The inversion can always be done because of the nodeless condition

Note that the principal quantum number has dropped, because the pseudization is done for the lowest-lying valence state of each angular momentum

Higher lying valence states of the same angular momentum correspond to excited states of the pseudopotential
Generation of l-dependent norm-conserving pseudopotential

Choose an atomic reference configuration, i.e., a given distribution of electrons in the atomic energy levels \(\text{degree of freedom} \)

Solve the all-electron radial Schrödinger equation for the chosen atomic reference configuration

\[
\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l + 1)}{2r^2} + V_{\text{eff}}[n](r) \right] u_{nl}^{\text{AE}}(r) = \varepsilon_{nl} u_{nl}^{\text{AE}}(r)
\]

\[
V_{\text{eff}}[n](r) = V_{\text{ext}}(r) + V_{\text{Hartree}}[n] + V_{xc}[n] = -\frac{Z}{r} + \int \frac{n(r')}{|r - r'|} dr' + V_{xc}[n]
\]

- sum of electronic charges for occupied states
- \(Z \) = bare nuclear charge

Parametrization of the pseudo-wave functions for \(r < R_c \) according to any of the available prescriptions \(\text{degree of freedom} \)

Invert the radial Schrödinger equation for the screened pseudopotential

Subtract (unscreen) the Hartree and exchange-correlation potentials
Generation of l-dependent norm-conserving pseudo: Step 5, unscreening of the pseudopotential

The pseudo-wave function obeys

$$
\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l + 1)}{2r^2} + V_{(sc)l}^{PS}(r) \right] u_l^{PS}(r) = \varepsilon_l u_l^{PS}(r)
$$

Where the effective potential is computed in the atom

- **Bare nuclei-valence interaction**
- **Hartree interaction**
- **Exchange-correlation interaction**

includes

- Computed with an atomic charge density
 $$n_{\text{atom}}(\vec{r}) = n_{\text{atom}}^{\text{core}}(\vec{r}) + n_{\text{atom}}^{\text{valence}}(\vec{r})$$

Blind to the chemical environment
Extremely dependent on the chemical environment

In the molecular system or condensed phase, we have to screen the (ion+core)-valence interaction with the valence charge density computed in the targeted system.
Generation of l-dependent norm-conserving pseudo: Step 5, unscreening of the pseudopotential

In the molecular system or condensed phase, we have to screen the (ion+core)-valence interaction with the valence charge density computed in the targeted system.

So, the pseudopotential is finally obtained by subtracting (unscreening) the Hartree and exchange and correlation potential calculated only for the valence electrons (with the valence pseudo-wave function)

$$
V_l^{PS} = V_{(sc)l}^{PS} - V_{Hartree}[n_v] - V_{xc}[n_v]
$$

$$
= V_{(sc)l}^{PS} - \int \frac{n_v(r')}{|r - r'|} dr' - V_{xc}[n_v]
$$

Where the pseudo-valence charge density is computed as

$$
n_v(r) = \sum_{l=0}^{l_{max}} \sum_{m=-l}^{l} |u_{nl}^{PS}(r)|^2
$$

Exchange-correlation functional in the DFT all-electron calculation used to construct the pseudopotential has to be the same as in the target calculation.
When there is a significant overlap of core and valence charge densities: problem with unscreening

The exchange and correlation potential and energy are not linear functions of the density

\[E_{xc}[n_{\text{atom}}(\mathbf{r})] \neq E_{xc}[n_{\text{atom}}^{\text{core}}(\mathbf{r})] + E_{xc}[n_{\text{atom}}^{\text{valence}}(\mathbf{r})] \]

In cases where the core and valence charge density overlap significantly:

- In systems with few valence electrons (alkali atoms)
- In systems with extended core states
- In transition metals, where the valence \(d \) bands overlap spatially with the code \(s \) and \(p \) electrons

the unscreening procedure as explained before is not fully justified.

\[V_{xc}[n_{\text{atom}}^{\text{core}}(\mathbf{r}) + n_{\text{atom}}^{\text{valence}}(\mathbf{r})] = (V_{xc}[n_{\text{atom}}^{\text{core}}(\mathbf{r}) + n_{\text{atom}}^{\text{valence}}(\mathbf{r})] - V_{xc}[n_{\text{atom}}^{\text{valence}}(\mathbf{r})]) + V_{xc}[n_{\text{atom}}^{\text{valence}}(\mathbf{r})] \]

xc potential that appears in the unscreened potential

Since xc is not linear, if core and valence overlap, the contribution from valence is not fully canceled

xc potential that is removed in the unscreening procedure

Then, the screening pseudopotential are dependent on the valence configuration, a feature highly undesirable since it reduces the transferability of the potential.
When there is a significant overlap of core and valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)

Step 1: Replace the previous unscreening expression by

\[V_l^{PS}(r) = V_l^{(sc)l}(r) - \int \frac{n_v(r')}{|r - r'|} dr' - V_{xc}[n_v + n_c] \]

Step 2: In the actual electronic structure calculations performed with this pseudopotential, the exchange and correlation distribution is computed from the full electronic charge, \([n_v + n_c]\), instead of the usual valence charge. The frozen core charge density of isolated atoms is used for \(n_c\).

Step 3: The full core density, with its very high Fourier components, is impractical to use. However, the core charge has significant effect only where the core and valence charge densities are of similar magnitude. We can therefore, replace the full core charge density with a partial core charge density.
When there is a significant overlap of core and valence charge densities: non-linear core correction

Solution 1: Include explicitly the extended core orbitals in the valence (semicore in valence)

Expensive since:
- We have to include explicitly more electrons in the simulation
- The semicore orbitals tend to be very localized and hard, in the sense that high Fourier components are required
When there is a significant overlap of core and valence charge densities: non-linear core correction

Solution 2: Include non-linear core corrections (NLCC)

Models for the partial core

1. Original one proposed by S. Louie et al. (in ATOM, the default for LDA)

\[n_{\text{core}}(r) = \begin{cases} \frac{a \sin(br)}{r}, & r < r_{pc} \\ n_{\text{core}}(r), & r > r_{pc} \end{cases} \]

Parameters \(a\) and \(b\) determined by the continuity of the partial core and its first derivative at \(r_{pc}\)

2. New one that fixes some problems in the generation of GGA pseudos

\[n_{\text{core}}(r) = \begin{cases} r^2 e^{(a+br^2+cr^4)}, & r < r_{pc} \\ n_{\text{core}}(r), & r > r_{pc} \end{cases} \]

Parameters \(a\), \(b\) and \(c\) determined by the continuity of the partial core and its first and second derivatives at \(r_{pc}\)

\(r_{pc}\) has to be chosen such that the valence charge density is negligible compared to the core one for \(r < r_{pc}\).

Tests show that it might be located where the core charge density is from 1 to 2 times larger than the valence charge density.
When there is a significant overlap of core and valence charge densities: non-linear core correction

Bulk NaCl (rocksalt structure)

Without core corrections for Na:
Semi metal

With core corrections for Na:
Insulator

J. Hebenstreit and M. Scheffler,
The screened potential depends on the angular momentum of the valence electron: is l-dependent

Reason for the l-dependency: different orthogonality conditions

For instance, in the Si atom

The $3s$ valence state has to be orthogonal with the $2s$ and $1s$ core states

The $3p$ valence state does not feel the orthogonality constraint with the $2s$ and $1s$ core states, because they have different angular momentum quantum numbers

Within the core region, these electrons feel different potentials from the ionic core.

At large distances (beyond R_c) the potential is $-\frac{Z_{\text{ion}}}{r}$, independently of l, because the ionic core is seen as a point charge of magnitude equal to the valence charge Z_{ion}.
General form of a l-dependent pseudopotential

$$\hat{V}^{PS}(\vec{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} V_{l}^{PS}(r) |Y_{lm}\rangle \langle Y_{lm}| = \sum_{l=0}^{\infty} V_{l}^{PS}(r) \hat{P}_{l}$$

Where \hat{P}_{l} is a projector operator onto the l-th angular momentum subspace

$$\hat{P}_{l} = \sum_{m=-l}^{l} |Y_{lm}\rangle \langle Y_{lm}| \quad \hat{P}_{l} \quad \text{is spherically symmetric}$$

Meaning of the previous expression:

When the pseudopotential operator \hat{V}^{PS} acts on an electronic wave function, the projector operator \hat{P}_{l} selects the different angular momentum components of the wave function, which are then multiplied by the corresponding pseudopotential.

The contributions of all the angular momentums are finally added up to form the total pseudopotential contribution to the Hamiltonian matrix elements that enter Schrödinger equation.
General form of a l-dependent pseudopotential

$$\hat{V}^{PS}(\vec{r}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} V_l^{PS}(r) |Y_{lm}\rangle \langle Y_{lm}| = \sum_{l=0}^{\infty} V_l^{PS}(r) \hat{P}_l$$

Where \hat{P}_l is a projector operator onto the l-th angular momentum subspace.

This pseudopotential form is semilocal:

It is local in r but non-local in θ, ϕ

If we want to know the result of applying this operator to a function f in a point (r, θ, ϕ)

$$[\hat{V}^{PS} f](r, \theta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} V_l^{PS}(r) Y_{lm}(\theta, \phi) \int d(\cos \theta') d\phi' Y_{lm}(\theta', \phi') f(r, \theta', \phi')$$

We need to know the value of f at all the points (r, θ', ϕ')
It is useful to separate the ionic pseudopotentials into a local (l-independent) part and non-local terms.

\[V_l^{PS}(r) = V_{local}(r) + \delta V_l(r) \]

The local part of the pseudo-potential is in principle arbitrary, but it must join the semilocal potentials \(V_l(r) \), which by construction, all become equal to the (unscreened) all electron potential beyond the pseudopotential core radius \(R_c \).

Thus, the non-local part is short range:

\[\delta V_l(r) = 0, \text{ for } r > R_c \]

All the long-range effects of the Coulomb potential are included in the local part of the pseudopotential.
It is useful to separate the ionic pseudopotentials into a local (l-independent) part and non-local terms.

In SIESTA, the local pseudopotential is optimized for smoothness, because it is represented in the real space grid.

It is defined as the potential generated by a positive charge distribution of the form

\[n_{\text{local}}(r) \propto e^{-\left(\frac{\sinh(abr)}{\sin b}\right)^2} \]

\(a \) and \(b \) are chosen to provide simultaneously optimal real-space localization and reciprocal-space convergence:

\[b = 1 \quad a = \frac{1.82}{R_c} \]
The pseudopotential operator in the semilocal form: local in radial variable, non-local in the angular variable

\[V_{SL}^{PS}(r) = V_{local}(r) + \sum_{l=0}^{l_{max}} \sum_{m=-l}^{l} |Y_{lm}\rangle \delta V_{l}(r) \langle Y_{lm}| \]

Matrix elements of the pseudopotential in some basis \(\langle \phi_{\alpha} \rangle \) assume the form

\[V_{SL,\alpha\beta}^{PS} = \langle \phi_{\alpha} | V_{SL}^{PS} | \phi_{\beta} \rangle = \langle \phi_{\alpha} | V_{local}(r) | \phi_{\beta} \rangle + \sum_{l=0}^{l_{max}} \sum_{m=-l}^{l} \langle \phi_{\alpha} | Y_{lm} \rangle \delta V_{l}(r) \langle Y_{lm} | \phi_{\beta} \rangle \]

\[\delta V_{l}^{PS}(\alpha, \beta) = \sum_{m=-l}^{l} \langle \phi_{\alpha} | Y_{lm} \rangle \delta V_{l}(r) \langle Y_{lm} | \phi_{\beta} \rangle \]

\[= \sum_{m=-l}^{l} \int \int \phi_{\alpha}^{*}(\vec{r}) Y_{lm}(\vec{r}) \delta V_{l}^{PS}(r) Y_{lm}^{*}(\vec{r}') \phi_{\beta}(\vec{r}') d\vec{r} d\vec{r}' \]

Where due to the semilocal character of the pseudopotential, a factor \(\delta(r - r') \) is understood
The pseudopotential operator in the semilocal form: local in radial variable, non-local in the angular variable

\[\delta V_i^{\text{PS}}(\alpha, \beta) = \sum_{m=-l}^{l} \langle \phi_\alpha | Y_{lm} \rangle \delta V_i(r) \langle Y_{lm} | \phi_\beta \rangle \]

\[= \sum_{m=-l}^{l} \int \int \phi_\alpha^*(\vec{r}) Y_{lm}(\vec{r}) \delta V_i^{\text{PS}}(r) Y_{lm}^*(\vec{r}') \phi_\beta(\vec{r}') d\vec{r} d\vec{r}' \]

The most common basis functions:
- floating (plane waves) \[e^{i\vec{k}\cdot\vec{r}} = 4\pi \sum_{l,m} \hat{j}_l(kr) Y_{lm}(\hat{k}) Y_{lm}^*(\hat{r}) \]
- atom-centered (product of radial function and spherical harmonics) \[\phi_\alpha(\vec{r}) = \phi_\alpha(r) Y_{lm}(\theta, \phi) \]

In either case, the above integral factorizes into two angular-dependent parts that can be integrated separately, and a radial integral of the form

\[G_{\alpha\beta} = \int r^2 \varphi_\alpha^*(r) \delta V_i(r) \varphi_\beta(r) dr \]

Local integral in the radial variable

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)
The pseudopotential operator in the semilocal form: local in radial variable, non-local in the angular variable

\[G_{\alpha\beta} = \int r^2 \varphi^*_\alpha(r) \delta V_l(r) \varphi_\beta(r) \, dr \]

Radial part of the basis function (for AO) or the spherical Bessel functions (for PW)

The computation of these integrals is very expensive. It scales as \(O(NM^2) \)

- \(M \) Number of basis functions
- \(N \) Number of atoms in the system (for every atom \(\delta V_l \) changes)

Solution: replace the semilocal pseudopotential by a fully separable non-local pseudopotential (Kleinman-Bylander approach)
Replacing the semi-local operator by a fully non-local form separable in the radial variables

Replacing the semi-local operator with a fully non-local form separable in the radial variables, allows a factorization of the problem

\[\delta V_l(r) \rightarrow \delta V_l^{\text{sep}}(r, r') = \zeta_l(r) \zeta^*_l(r') \]

\[\delta V_l^{\text{sep}}(\alpha, \beta) = \sum_{m=-l}^{l} F_{\alpha lm}^* F_{\beta lm} \quad \text{with} \quad F_{\alpha lm} = \int \zeta_l^*(r) Y_{lm}(\vec{r}) \phi_\alpha(\vec{r}) d\vec{r} \]

Now, the non-local part can be cheaply and accurately computed as two-center integrals
General expression for a separable non-local potential of the Kleinman-Bylander form

\[\delta V_l^{\text{sep}}(\alpha, \beta) = \sum_{m=-l}^{l} F_{\alpha lm}^* F_{\beta lm} \quad \text{with} \quad F_{\alpha lm} = \int \zeta_l^*(r) Y_{lm}(\vec{r}) \phi_\alpha(\vec{r}) d\vec{r} \]

\[\delta \hat{V}_l^{\text{sep}} = \sum_{m=-l}^{l} \frac{|\zeta_{lm}\rangle \langle \zeta_{lm}|}{\langle \zeta_{lm}| \psi_{lm}^{\text{PS}} \rangle} \]

where \(\psi_{lm}^{\text{PS}}(\vec{r}) \) are the atomic, reference pseudo-wave function

The only relevant aspect is to reproduce the all-electron calculation for the reference configuration.
Kleinman-Bylander fully non-local separable form

Request: the action of the fully non-local separable pseudopotential \(\delta \hat{V}_{l}^{\text{sep}} \) on the reference pseudo-wave function is the same as that of the original semi-local form.

For that, they proposed

\[
|\zeta_{lm}^{\text{KB}}\rangle = |\delta \hat{V}_{l}(r)\psi_{lm}\rangle
\]

so that

\[
\delta \hat{V}_{l}^{\text{sep}} |\psi_{lm}\rangle = \left[\frac{|\delta \hat{V}_{l}^{\text{PS}} \psi_{lm}^{\text{PS}} \rangle \langle \psi_{lm}^{\text{PS}} \delta \hat{V}_{l}^{\text{PS}} |}{\langle \psi_{lm}^{\text{PS}} | \delta \hat{V}_{l}^{\text{PS}} | \psi_{lm}^{\text{PS}} \rangle} \right] |\psi_{lm}^{\text{PS}}\rangle = \delta \hat{V}_{l}^{\text{PS}} |\psi_{lm}^{\text{PS}}\rangle
\]
Kleinman-Bylander fully non-local separable form

The Kleinman–Bylander projector is then written as

$$\delta \hat{V}_l^{\text{KB}} = \sum_{m=-l}^{l} \left| \xi_{lm}^{\text{KB}} \right\rangle E_{lm}^{\text{KB}} \left\langle \xi_{lm}^{\text{KB}} \right|$$

Where the normalized projection functions are given by

$$\left| \xi_{lm}^{\text{KB}} \right\rangle = \frac{\left| \xi_{lm}^{\text{KB}} \right\rangle}{\left\langle \xi_{lm}^{\text{KB}} \right| \xi_{lm}^{\text{KB}} \rangle} = \frac{\left| \delta \hat{V}_l \psi_{lm}^{\text{PS}} \right\rangle}{\left\langle \psi_{lm}^{\text{PS}} \delta \hat{V}_l \right| \delta \hat{V}_l \psi_{lm}^{\text{PS}}}$$
Kleinman-Bylander fully non-local separable form

The strength of the non-locality is determined by

\[
E_{lm}^{KB} = \frac{\langle \psi_{lm}^{PS} \left| (\delta \hat{V}_l^{PS})^2 \right| \psi_{lm}^{PS} \rangle}{\langle \psi_{lm}^{PS} \left| \delta \hat{V}_l^{PS} \right| \psi_{lm}^{PS} \rangle}
\]
Balance between softness and transferability controlled by R_c

Representability by a reasonable small number of PW

Accuracy in varying environments

SOFTNESS

TRANSFERABILITY

Larger R_c: softer pseudo

First guess: last peak of the all electron wave function

Shorter R_c: harder pseudo

Accuracy in varying environments

First guess: last peak of the all electron wave function
A transferable pseudo will reproduce the AE energy levels and wave functions in arbitrary environments.

- Compute the energy of two different configurations E_{C1}, E_{C2}
- Compute the difference in energy $\Delta E = E_{C2} - E_{C1}$
- For the pseudopotential to be transferible:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st CONFIG</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd CONFIG</td>
<td>0.4308</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd CONFIG</td>
<td>0.4961</td>
<td>0.0653</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th CONFIG</td>
<td>0.9613</td>
<td>0.5305</td>
<td>0.4652</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>5th CONFIG</td>
<td>1.4997</td>
<td>1.0689</td>
<td>1.0036</td>
<td>0.5384</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

ΔE_{AE}

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st CONFIG</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd CONFIG</td>
<td>0.4304</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd CONFIG</td>
<td>0.4958</td>
<td>0.0654</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th CONFIG</td>
<td>0.9602</td>
<td>0.5297</td>
<td>0.4643</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>5th CONFIG</td>
<td>1.4970</td>
<td>1.0666</td>
<td>1.0012</td>
<td>0.5369</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

ΔE_{PS}

- $3s^2 3p^2$ (reference)
- $3s^2 3p^1 3d^1$
- $3s^1 3p^3$
- $3s^1 3p^2 3d^1$
- $3s^0 3p^3 3d^1$
Problematic cases: first row elements
2p and 3d elements

O: $1s^2 \overbrace{2s^2 2p^4}^{\text{core valence}}$

No nodes because there are no p states to be orthogonal to

Pseudopotential is hard
Conclusions

• Core electrons…
 highly localized and very deep energy
 … are chemically inert

• Pseudopotential idea
 Ignore the dynamics of the core electrons (freeze them)
 And replace their effects by an effective potential

• Pseudopotentials are not unique
 there might be many “best choices”

• Two overall competing factors: transferability vs hardness

• Norm conservation helps transferability

• Always test the pseudopotential in well-known situations
How to: input file to generate the pseudopotential

Pseudopotential generation for Silicon
pg: simple generation
#
pg
Silicon

 tm2 3.0 # PS flavor, logder R
n=Si c=car # Symbol, XC flavor, { |r|s}
 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 3 4 # norbs_core, norbs_valence
 3 0 2.00 0.00 # 3s2
 3 1 2.00 0.00 # 3p2
 3 2 0.00 0.00 # 3d0
 4 3 0.00 0.00 # 4f0
 1.90 1.90 1.90 1.90 0.00 0.00

Last line (above):
rc(s) rc(p) rc(d) rc(f) rcore_flag rcore
#
2345678901234567890123456789012345678901234567890
Generation Mechanics

$ pg.sh Si.tm2.inp
Calculation for Si.tm2 completed. Output in directory Si.tm2
$ ls Si.tm2
AECHARGE AEWFNR3 PSLOGD3 PSPOTR3 PSWFNR3 charge.gplot
AELOGD0 CHARGE PSPOTQ0 PSWFNQ0 RHO charge.gps
AELOGD1 INP PSPOTQ1 PSWFNQ1 SCRPSPOTR0 pots.gplot
AELOGD2 OUT PSPOTQ2 PSWFNQ2 SCRPSPOTR1 pots.gps
AELOGD3 PSCHARGE PSPOTQ3 PSWFNQ3 SCRPSPOTR2 pseudo.gplot
AEWFNR0 PSLOGD0 PSPOTR0 PSWFNR0 SCRPSPOTR3 pseudo.gps
AEWFNR1 PSLOGD1 PSPOTR1 PSWFNR1 VPSFMT pt.gplot
AEWFNR2 PSLOGD2 PSPOTR2 PSWFNR2 VPSOUT pt.gps
$ cd Si.tm2
$
$ # PLOTTING
$
$ gnuplot pseudo.gps
==> Postscript output in pseudo.ps
Testing Mechanics

ae Si Test -- 3s0 3p3 3d1
Si ca
 0.0
 3 3
 3 0 0.00
 3 1 3.00
 3 2 1.00

(Same configuration)

pt Si Test -- 3s0 3p3 3d1
Si ca
 0.0
 3 3
 3 0 0.00
 3 1 3.00
 3 2 1.00
sh ../.pt.sh Si.test.inp Si.tm2.vps
Output data in directory Si.test-Si.tm2...
$ cd Si.test-Si.tm2
$ ls [A-Z]*
AECHARGE AEWFNR1 CHARGE OUT PTWFNR0 PTWFNR2 VPSIN
AEWFNR0 AEWFNR2 INP PTCHARGE PTWFNR1 RHO
$
$ # # EIGENVALUE TEST
$
$ grep ’&v’ OUT
<table>
<thead>
<tr>
<th>ATM3</th>
<th>11-JUL-02</th>
<th>Si Test -- 3s0 3p3 3d1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3s</td>
<td>0.0</td>
<td>0.0000 -1.14358268 3.71462770</td>
</tr>
<tr>
<td>3p</td>
<td>0.0</td>
<td>3.0000 -0.60149474 2.68964513</td>
</tr>
<tr>
<td>3d</td>
<td>0.0</td>
<td>1.0000 -0.04725203 0.46423687</td>
</tr>
</tbody>
</table>

--
<table>
<thead>
<tr>
<th>ATM3</th>
<th>11-JUL-02</th>
<th>Si Test -- 3s0 3p3 3d1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>0.0</td>
<td>0.0000 -1.14353959 0.56945741</td>
</tr>
<tr>
<td>2p</td>
<td>0.0</td>
<td>3.0000 -0.59931810 0.95613808</td>
</tr>
<tr>
<td>3d</td>
<td>0.0</td>
<td>1.0000 -0.04733135 0.45664551</td>
</tr>
</tbody>
</table>

--
&d total energy differences in series

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>&d</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>0.4308</td>
<td>0.0653</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>0.4961</td>
<td>0.0653</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>0.9613</td>
<td>0.5305</td>
<td>0.4652</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>1.4997</td>
<td>1.0689</td>
<td>1.0036</td>
<td>0.5384</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

ATM3 11-JUL-02 Si Test -- GS 3s2 3p2
ATM3 11-JUL-02 Si Test -- 3s2 3p1 3d1
ATM3 11-JUL-02 Si Test -- 3s1 3p3
ATM3 11-JUL-02 Si Test -- 3s1 3p2 3d1
ATM3 11-JUL-02 Si Test -- 3s0 3p3 3d1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>&d</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>0.4299</td>
<td>0.0694</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>0.4993</td>
<td>0.0694</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>0.9635</td>
<td>0.5336</td>
<td>0.4642</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>&d</td>
<td>1.5044</td>
<td>1.0745</td>
<td>1.0051</td>
<td>0.5409</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Core electrons are chemically inert
Core electrons are chemically inert
Generation of l-dependent norm-conserving pseudopotential

All electron self consistent atomic calculation
Each state l,m treated independently

Identify the valence states

Freedom (different approaches)

Generate the pseudopotential $V_{l,total}(r)$ and pseudoorbitals $\psi_{l}^{PS}(r)$

$V_{l,total}(r)$ screened pseudopotential acting on valence electrons

“Unscreened” by subtracting from the total potential $V_{Hxc}^{PS}(r)$

$V_{l}(\vec{r}) \equiv V_{l,total}(\vec{r}) - V_{Hxc}^{PS}(\vec{r})$