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Most important reference followed in the tutorial:
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Most important reference followed in the tutorial:

Richard M. Martin

Electronic Structure

Basic Theory and Practical Methods

comprehensive review of DFT,
including most relevant references and exercises




Other reference books

Density-Functional
Theory of Atoms
and Molecules

ROBERT . PARR
anl
WEI''AD YANG

OXFORD SCIENCE PUBLICATIONS

Rigurous and unified account of the fundamental principles of DFT

More intended for researchers and advanced den



Other references:
original milestones reviews and papers

Iterative minimization techniques for ab /nitio total-energy calculations:
molecular dynamics and conjugate gradients

M. C. Payne
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, United Kingdom

M. P. Teter and D. C. Allan
Applied Process Research, Corning Incorporated, Corning, New York 14831

T. A. Arias and J. D. Joannopoulos
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Reviews of Modern Physics, Vol. 64, No. 4, October 1882 Copyright @©:1982 The American Physical Society




Other interesting references:
Nobel lectures by W. Kohn and J. A. Pople

Nobel prize in Chemistry 1998
Walter Kohn

ELECTRONIC STRUCTURE OF MATTER — WAVE
FUNCTIONS AND DENSITY FUNCTIONALS

Nobel Lecture, January 28, 1999
by
WalTER KOHN

Department of Physics, University of California, Santa Barbara, CA 93106-
9530, USA

246

QUANTUM CHEMICAL MODELS

Nobel Lecture, December 8, 1998
by
Jonn A PorPLE

Department of Chemistry, Northwestern University, 2145 Sheridan Road,
Evanston, Illinois 60208, USA




Goal: Describe properties of matter from theoretical
methods firmly rooted in fundamental equations

structural \ / electronic
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Goal: Describe properties of matter from theoretical
methods firmly rooted in fundamental equations

Quantum Mechanics: Schrodinger equation (assuming no relativistic)
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Electromagnetism: Coulomb’s law

For a pair of charged particles
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The Schrodinger equation (differential) must be solved
subject to appropriate boundary conditions

W must be well behaved everywhere

Atoms and molecules Regular infinite solid

— 0 at infinity Appropriate periodic boundary conditions




The electrons are fermions, the solution must
satisfy the Pauli exclusion principle

A many electron wave function must be
antisymmetric with respect to the interchange
of the coordinate (both space and spin) of any

two electrons

—\If(iCl,...,iCj,...,LUi,...




Once the many-body wave function is known,
we compute the expectation values of observables

(W|A|W)  [U*AVdF
(w|w)y [0

Integration over all spatial coordinates

(A) =

Summation over spin coordinates

A particular measurement give particular eigenvalue of 4

Many measurements average to <A4>

The total energy is the expectation value of the hamiltonian

Bl = (i) = S

Ground state energy

Ey = m\gn E U]




Minimization of the energy functional,
totally equivalent to diagonalize the eigenvalue problem

Since the eigenstates of the many-body hamiltonian are stationary points (saddle
points or the minimum)

SE W] = 0

The normalization condition can be imposed using Lagrange multipliers

S [(P|H|T) — E(T|®) —1)| =0

Variation of the bra from <\IJ| E— <\IJ —|— 5 \If‘
(60U |H — E|¥) =0

This must holds for any variation in the bra, so this can be satisfied if the ket
satisfies

H |¥) = E|T)




A closer look to the hamiltonian:
A difficult interacting many-body system.

Kinetic energy operator for the electrons

Potential acting on the electrons
due to the nuclei

Electron-electron interaction

Kinetic energy operator for the nuclei

Nucleus-nucleus interaction




This hamiltonian can not be solved exactly:
practical and fundamental problems

Fundamental problem:

Schrodinger’s equation is exactly solvable for
- Harmonic oscillator (analytically)
- Two particles (analytically)
- Very few particles (numerically)

Practical problem:
The number of electrons and nuclei in a pebble is of the order of 1023




A macroscopic solid contains a
huge number of atoms

Au atomic weight: 196.966569 = 200

Number of moles in 1 kg of Au =

1000 gr
200 gr/mol

— 5 mol ~ 3 x 10°* atoms of gold




If the problem can not be solved exactly,
how can we work it out from first-principles?

Use a set of “accepted” approximations

to solve the corresponding equations on a computer

NO EMPIRICAL INPUT

Properties
. . w Equilibrium structure
Chemical composition

Band structure

Number of atoms o
E— mmmm)) Vibrational spectrum

Type : :
Magnetic properties

Position _
m Transport properties

IDEAL AB-INITIO CALCULATION




What are the main approximations?

Born-Oppenhaimer
Decouple the movement of the electrons and the nuclei.

Density Functional Theory

Treatment of the electron — electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) — valence.

Basis set

To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements

Efficient and self-consistent computations of H and S.

Supercells

To deal with periodic systems
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Adiabatic or Born-Oppenheimer approximation decouple
the electronic and nuclear degrees of freedom
M,

— >>1
Me

® —Nuclei much slower Celectron >> ]
than the electrons Unucleus

~ ~ 103 ~ 10°
VUelectron ~ UVp ~ 10 Cm/S Unucleus ~ 10 Cm/S

At any moment the electrons will be in their ground state for that particular
instantaneous ionic configuration.

Solve electronic equations assuming Move the nuclei as classical particles
fixed positions for nuclei in the potential generated by the e-

(2)




If the nuclear positions are fixed (ignore nuclear velocities),
the wave function can be decoupled
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The next problem...
how to solve the electronic equation

%
el . 2 exr o~
iy =2~ om, Vi ()

(2

Hﬁga \IJZZ{R }({Tz}) Eel\PZl{R }({Tz})

Exact solution only for one electron systems — H, hydrogenoid atoms, H,*

Main difficulty: very complicate electron-electron interactions.
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The many-electron problem in interaction:
An old and extremely hard problem.

Different approaches
Quantum Chemistry (Hartree-Fock, CI...)
Quantum Monte Carlo
Perturbation theory (propagators)
Density Functional Theory (DFT)

Very efficient and general
BUT implementations are approximate
and hard to improve
(no systematic improvement)

(... actually running out of ideas ...)




DFT: primary tool for calculation of electronic
structure in condensed matter

Many electron wave function One electron density
— — —
U (Z1,...,ZN) n ()

Undoubted merit: satisfies the All properties of the system can be
many-electron Schrodinger equation considered as unique functionals
of the ground state density

HU = BV

Contains a huge amount of information Integrates out this information

3N degrees of freedom for N electrons One equation for the density is

remarkably simpler than the full
many-body Schrodinger equation

A special role can be assigned to the density of particles in the
ground-state of a quantum many-body system




First theorem of Hohenberg-Kohn

PHYSICAL REVIEW VOLUME 136, NUMBER 3B 9 NOVEMEBR 1964

Inhomogeneous Electron Gas™

- P. HoHENBERGT
Fcole Normale Superieure, Paris, France
AND
W. Kouni _
We shall now show that conversely »(r) 1s a unique
functional of n(r), apart from a trivial additive constant.

The proof proceeds by reductio ad absurdum. As-

For any system of interacting particles in an external potential V_,; (),
the potential V_; (7) is determined uniquely, except for a constant,

by the ground state particle density n (7)




Corollary of first theorem of Hohenberg-Kohn

First theorem of Hohenberg-Kohn

Definition of the Hamiltonian of interacting electrons in an external potential
2
h

2me

Vits Z + Vi, (7))

‘Tz B Ty

Solving the Schrédinger equation: ground and excited many body wave fuction

(7)) = B L ({7

No prescription to solve this problem.

At this level we have gained nothing

All the properties of the system are completely determined
given only the ground state density ¢ ()




Second theorem of Hohenberg-Kohn

PHYSICAL REVIEW VOLUME 136, NUMBER 3B

Inhomogeneous Electron Gas™

- P. HoHENBERGT
Fcale Normale Superieure, Paris, France
AND
W. Kouni

where F[n] is a universal functional, valid for any
number of particles and any external potential. This
functional plays a central role in the present paper.

With its aid we define, for a given potential v(r), the
energy functional

E[n]= [ v(O)n(r)dr+F[n]. (10)

Clearly, for the correct n(r), E,[n] equals the ground-

state energy f.

9 NOVEMEBR 1964

A universal functional for the energy F|n] in terms of
the density n () can be defined, valid for any external potential V.. (7).
For any particular V_,; (i), the exact ground state of the system is the
global minimum value of this functional, and the density . (7) that
minimizes the functional is the exact ground state density n (7)




Some definitions
Function: rule for going from a variable x to a nhumber f(x)

Functional: rule for going from a function to a number

A function of which the variable is a function

Eyx [n] = T [n] + Eiy [n] + / A7 Vius (F) 0 (7) + Eyy

> =300 eV (a value for the energy)

Universal means the same for all electron systems, independent of the
external potential V,; (1)




The kinetic energy and the interaction energy of
the particles are functionals only of the density

EHK [TL]

If known, minimization of £ i [n| with respect variations of the density
would determine the exact ground state density and energy.

Excited states for the electrons must be determined by other means.

PROBLEM: Functional is unkown




The Kohn-Sham ansatz replaces the many-body
problem with an independent-particle problem

All the properties of the system are completely determined given only the
ground state density 7 (7“)

But no prescription to solve the difficult interacting many-body hamiltonian

(7)) = B ({7

Ground state density of the Density of an auxiliary non-interacting
many-body interacting system - independent particle system

Kohn-Sham ansatz

(never proven in general)




One electron or
independent particle model

We assume that each electron moves independently in a potential
created by the nuclei and the rest of the electrons.

Actual calculations performed on the auxiliary independent-particle system

'TO 1 o (7
Haux — _§v2 T eff (T)




The independent-particle kinetic energy Is given
explicitly as a functional of the orbitals

D NI LD RS 3 o2

o =1 =1

They rewrote the functional as

EKS[”] _I_ /d?“ V:ea:t (F) (7:) + EHartree[ ] + ﬁ‘xc[ng
Coulomb € rest.

Exchange-
correlation

Equivalent to independent particles under the potential

I?S (7?) = Veat (77) + VHartree (7:3 T V:UJC (F)




The one-particle eigenstates are filled following the
“Aufbau” principle: from lower to higher energies

E

Occupation numbers

The ground state has one (or two if spin independent)
in each of the orbitals with the lowest eigenvalues




The Kohn-Sham equations must be solved self-consistently
The potential (input) depends on the density (output)

Initial guess

n' (), n* ()

Calculate effective potential

e?ff (F) — ‘/emt (’F) + VHartree [n] + Vg;ac [nTa nl]

Solve the KS equation
1 o = o (= o_ /0 (=
5 V2 Vi (7| w5 (7) = e (7

Compute electron density
[ / Output quantities
n? (7) =Y f7 47 (7)|? S
i

elf-consistent? Energy, forces,
stresses ...




The paper by Kohn-Sham contains an error...

PHYSICAL REVIEW VOLUME 140, NUMBER 4A 15 NOVEMBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects®

W. Koan awp L. J. Sman
main source of error. We do not expect an accurate de-
scription of chemical binding. In large atoms, of course,

Density functional theory is the most widely used method
today for electronic structure calculations because of the
approach proposed by Kohn and Sham
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All the unknown terms below a carpet:
the exchange-correlation functional

O E e
Ve (7)

on (7, o)

Local Density Approximation (LDA)

Solids can be often considered as close to the limit of the homogeneous electron gas

In this limit, effects of exchange and correlation are local in character

Vie [n] = Ve [0 (7)]

Exchange-correlation energy of the homogeneous electron gas a function of density
Correlation:
calculated to great accuracy
with Monte Carlo methods

Exchange:
analytic form




ollows LDA

DFT thanks to Claudia Ambrosch (Graz)




All the unknown terms below a carpet:
the exchange-correlation functional
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Local Density Approximation (LDA)

Solids can be often considered as close to the limit of the homogeneous electron gas

In this limit, effects of exchange and correlation are local in character

Vie [n] = Ve [0 (7)]

Exchange-correlation energy of the homogeneous electron gas a function of density
Correlation:
calculated to great accuracy
with Monte Carlo methods

Exchange:
analytic form

Generalized Gradient Approximation (GGA)

Provide required accuracy for DFT to be adopted by the Chemistry Community

Problem: does not lead to consistent improvement over the LSDA



Accuracy of the xc functionals in the
structural and electronic properties

LDA GGA

-1% , -3% +1%

+10, +40% -20%, +10%

+15% -3%

-50% -50%

LDA: crude aproximation but sometimes is accurate enough (structural properties, ...).

GGA: usually tends to overcompensate LDA results, not always better than LDA.




In some cases, GGA is a must:
DFT ground state of iron

LSDA

LSDA | | —
PWII GG A

LSDA

NM

fcc

in contrast to
experiment

FM
bcc

Correct lattice
constant

Experiment

Volume (a.u®)

Results obtained with Wien2k.

Courtesy of Karl H. Schwartz

FM
bcc




CoO

in NaCl structure
antiferromagnetic: AF Il

insulator

t,, splits into a,; and e’

Both LDA and GGA find them to be

metals (although GGA almost splits
the bands)

Results obtained with Wien2k.

Courtesy of Karl H. Schwartz

Energy (mRy)

Kohn-Sham fails in strongly correlated systems
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The number of citations allow us to gauge the
importance of the works on DFT

11 papers published in APS journals since 1893 with >1000 citations in
APS journals (~5 times as many references in all science journals)

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

Publication # cites  Av. age Title Author(s)

PR 140, A1133 (1 E']l.'_-'|5] " Self-Consistent Equations Including Exchange and Caorrelation Effects] W. Kohn, L. ]. Sham
PR 136, B864 (1964) 2460 28.7 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn

Selt-Interaction Correction to Density-Functional Approximations for

RE 23, 5048 (1981) 2079 -
PRB 23, 5048 (1381) : Many-Electron Systemns

I. F. Perdew, A. Zunger
PRL 45, 566 (1980) 1781 4  Ground State of the Electron Gas by a Stochastic Method D. M. Ceperley, B. ]. Alder
PR108, 1175 (1957) 364 .2 Theory of Superconductivity ]. Bardeen, L. N. Cooper, ]. R. Schrieffer
PRL 19, 1264 (1 ) 1306 .5 A Model of Leptons S. Weinberg
PRB 12, 3060 (1975) 1259 4.4 Linear Methods in Band Theory O. K. Anderson
PR 124, 1866 (1961) 1178 28.0 Effects of Configuration Interaction of Intensities and Phase Shifts L. Fano
(1985) 1055 9.2 Disordered Electronic Systems F. A. Lee, T. V. Ramakrishnan
RMP 54, 437 (1982) 1045 0.8 Electronic Properties of Two-Dimensional Systems T Ando

PRE 13, 5188 (1976) 1023  20.8 Special Points for Brillouin-Zone Integrations

From Physics Today, June, 2005




What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory

Treatment of the electron — electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) — valence.

Basis set

To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements

Efficient and self-consistent computations of H and S.

Supercells

To deal with periodic systems




Treatment of the boundary conditions

Isolated objects (atoms, molecules, clusters)
open boundary conditions

(defined at infinity)

3D periodic objects (crystals)
periodic boundary conditions

(might be considered as the repetition of a
building block, the unit cell)

Mixed boundary conditions
1D periodic (chains)

2D periodic (slabs and interfaces)




Periodic systems are idealizations of real systems
Conceptual problems

NO exactly periodic systems in Nature
(periodicity broken at the boundary)

BUT

The great majority of the physical quantities
are unaffected by the existence of a border




Periodic systems are idealizations of real systems
Computational problems

1. In a periodic solid:
«~ Number of atoms

c~ Number and electrons
U

c~ Number of wave functions ??

2. Wave function will be extended over the entire solid ()

Bloch theorem will rescue us!!




A periodic potential commensurate with the lattice.
The Bloch theorem

Bloch Theorem: The eigenstates of the one-electron Hamiltonian in a

periodic potential can be chosen to have the form of a plane wave times a

function with the periodicity of the Bravais lattice.

Y, i (F) = e Tu, 1 (7)

Periodicity in reciprocal space |




The wave vector k and the band index n allow us to
label each electron (good quantum numbers)

The Bloch theorem changes the problem

Instead of computing an infinite Finite number of wave functions at an
number of electronic wave functions infinite number of k-points.

In practice: electronic wave functions at k-points that are very close
together will be almost identical =

It is possible to represent electronic wave functions over a region of k-
space by the wave function at a single k-point.

[ dk — 3" Ak
:




Systems with open and mixed periodic boundary
conditions are made artificially periodic: supercells

Defects Molecules Surfaces

M. C. Payne et al., Rev. Mod. Phys., 64, 1045 (1992)




Recap

Born-Oppenheimer approximation

Electron nuclear decoupling

Many electron problem treated within DFT (LDA, GGA)

One electron problem in effective self-consistent potential
(iterate)

Extended crystals: periodic boundary conditions + k-sampling




Suplementary information




Length and time scales:

More suitable methods for a particular problem

Statistical Mechanics
or Thermodynamics

Density macroscopic
Functional regime
Theory
mesoscopic
regime

electronic

recime .
- time (s)

K. Reuter, C. Stampfl, and M. Scheffler, cond-mat/0404510




A classical view of the
Born-Oppenhaimer approximation

In equilibrium Out of equilibrium

Atomic Atomic

positions D A displacements
r1 = Zg Uy — 1 — Zo
L9 — 2$0 : : Uy — T9 — 25130

Length of the P 3  Spring’s

springs 3  elongation
11:970 > >’ Allle—a?o
ly = xg

The potential energy of the system equals:

1 1
V:§K<$1—$0)2—|—§K($2—ZC1—$0)2 ,K>O

And the equation of motion of the two particles:
K

Vi
i

Mﬁfl — —K (5171 — ZCo) —+ K(CUQ — 1 — ZU()) ’l.il — —w?\,ul +w?v (’LLQ — Ul) WN =

K

m:i‘g = —K (CL‘Q — 1 — $0) ?.,2/2 = —wz (”U,Q — ’LLl) We =



A classical view of the
Born-Oppenhaimer approximation

’&,1 — —w?\,ul -+ w?v (UQ — ul) Wy =

iy = —w? (g — uy) we =1/~

Making the change of variablest = Uy — Uy

il = —Witly + wiu

2

TR 2 P
U = Wyl — <wN—|—we> U

Seek stationary solutions of the kind:

Wi — w? —wa; a \
—wy W+ wy — w? 3] L0

Solving this equation, we find two solutions for «, &1 and 2,
each with the corresponding eigenvector (normal between them)

wi — {au, B} wy — {az, B2} a0y + 102 = 0




A classical view of the
Born-Oppenhaimer approximation

The equation

Wi — w? — Wy a ) (0
—wh W+ wy — w? 3] \ 0

has non trivial solutions if and only if

det [H — w’I| =0, H—( 1_<

Assuming that SO we can decompose

2 2
/ _ Wy  —Wy
H=Ho T om0 )
Then, H is just a perturbation of H,

Then, at first order, the only thing we have to do is find the
eigenvalue of H,




A classical view of the
Born-Oppenhaimer approximation

Solution at first-order:

—w? 0

0 w?-—w

2

det {Ho - wQI} =

Mode 1




