PSML pseudopotential format

How to generate PSML pseudopotentials
and

run SIESTA and ABINIT with the same pseudo

Javier Junquera Matthieu Verstraete Alberto Garcia
Yann Pouillon

uc | U % I |NSTITUT DE CIENCIA DE MATERIALS DE BARCELONA
UNIVERSIDAD , D xcagon C S (.
DE CANTABRIA UNIVERSITE de Liege ﬁsg OCHOA .

Main reference

Computer Physics Communications 227 (2018) 51-71

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

The psMmL format and library for norm-conserving pseudopotential
data curation and interoperability”

Alberto Garcia®*, Matthieu J. Verstraete , Yann Pouillon ¢, Javier Junquera ¢

2 Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
b nanomat/Q-MAT/CESAM, Université de Liége, Allée du 6 Aoiit 19 (B5a), B-4000 Liége, Belgium

¢ Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Avenida de los
Castros s/n, 39005 Santander, Spain

e §
COMPUTER PHYSICS

Check for
updates

Outline of the Tutorial

1. How to compile the different codes

Two codes to generate pseudopotentials: Two client Solid State Physic codes

ATOM SIESTA
(http://www.icmab.es/siesta/Pseudopotentials) (http://www.icmab.es/siesta)

ONCVPSP ABINIT
(http://lwww.quantum-simulation.org/potentials/sg15_oncv/) (http://lwww.abinit.org)

2. How to generate the psml pseudopotentials with oNCVPSP and ATOM

3. How to run sieSTA and ABINIT with the same pseudopotentials

Test of the convergence of a numerical atomic orbital basis set with
respect to the asymptotic limit of a converged basis of plane waves

Compute the equation-of-state (energy versus volume profiles) for
elemental crystals, a test that has been proposed as a benchmark for
the comparison of different codes

Preliminary notes in the installation
of the libraries and codes

Installation processes might change from one platform to another,
or be dependent on the compiler

For the sake of simplicity, we shall assume that all the required
libraries will be compiled locally in a directory lib, directly beneath
the SHOME directory

$cd SHOME
$mkdir lib

All procedures described here have been tested on a Mac with gfortran compiler
Might be you have to change them slightly to accomodate to your platform.

Consult your local computer administrator in case you require some extra help

Installation of ONCVPSP in order to generate PSML files

Installation of ONCVPSP in order to generate pPswmL files
Dependence on other libraries

ONCVPSP
(here, version 3.3.1)

LIBXC XMLF90
(between versions (at least version 1.5.4)

2.2.3 and 3.0.1)

Installation of ONCVPSP in order to generate pPswmL files
Dependence on other libraries

ONCVPSP
(here, version 3.3.1)

LIBXC XMLF90
(between versions (at least version 1.5.4)

2.2.3 and 3.0.1)

Preliminaries: installation of required libraries:
LIBXC

LiBXC is a library of exchange-correlation functionals for density-functional theory

The aim is to provide a portable, well tested and reliable set of exchange and
correlation functionals that can be used by many electronic structure codes

Computer Physics Communications 183 (2012) 2272-2281

Contents lists available at SciVerse ScienceDirect COMPUTER PHYSICS
COMMUNICATIONS

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

LiBxc: A library of exchange and correlation functionals for density functional
theory”

Miguel A.L. Marques ***, Micael].T. Oliveira ¢, Tobias Burnus ¢

2 Université de Lyon, F-69000 Lyon, France

b PMCN, CNRS, UMR 5586, Université Lyon 1, F-69622 Villeurbanne, France

¢ Center for Computational Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal

d Peter Griinberg Institut and Institute for Advanced Simulation, Forschungszentrum Jiilich, and Jiilich Aachen Research Alliance, 52425 Jiilich, Germany

Preliminaries: installation of required libraries:
LIBXC

For download and installation, simply visit:

http://octopus-code.org/wiki/Libxc:download

Preliminaries: installation of required libraries:
LIBXC

Installation Option 1:
From the source

$ tar -xvf libxc-3.0.1.tar

$ cd 1ibxc-3.0.1

$ mkdir Gfortran

$ cd Gfortran

$../configure --prefix=$HOME/1lib/Gfortran --enable-fortran
$ make -j4

$ make install

The libraries libxc.a and libxcf90.a will be automatically included in
$HOME!/lib/Gfortran/lib

Preliminaries: installation of required libraries:

LIBXC In Mac platforms, libxc is already included in the macports.
For installation, simply type:
$sudo port selfupdate Installation Option 2:
$sudo port search libxc From macports
$sudo port install libxc

$ sudo port search libxc
Password:
libxc ©2.2.3 (science)
exchange-correlation functionals for DFT

xorg-libxcb @1.12_2 (x11, devel)
X.org libxcb

xorg-libXcomposite @0.4.4 (x11, devel)
X.org libXcomposite

xorg-libXcursor @1.1.14 (x11, devel)
X.org libXcursor

Found 4 ports.

$ sudo port install libxc

---> Computing dependencies for libxc
--=> C(Cleaning libxc

---> Scanning binaries for linking errors
--=> No broken files found.

At least in my mac, the libraries libxc.a and libxcf90.a are included in /opt/local/lib
The installation point might change from one platform to another

Installation of ONCVPSP in order to generate pPswmL files
Dependence on other libraries

ONCVPSP
(here, version 3.3.1)

LIBXC XMLF90
(between versions (at least version 1.5.4)

2.2.3 and 3.0.1)

Preliminaries: installation of required libraries:
XMLF90

XMLF90 is a suite of libraries to handle XML in Fortran.
It has two major components:

A XML parsing library. The parser was designed to be a useful tool in the
extraction and analysis of data in the context of scientific computing, and thus
the priorities were efficiency and the ability to deal with very large XML files
while maintaining a small memory footprint. The most complete programming
interface is based on the very successful SAX (Simple API for XML) model,
although a partial DOM interface and a very experimental XPATH interface are
also present.

A library (xmlIf90-wxml) that facilitates the writing of well-formed XML, including
such features as automatic start-tag completion, attribute pretty-printing, and
element indentation. There are also helper routines to handle the output of
numerical arrays.

Credits to Alberto Garcia,

Download and compile the latest version of XMLF90
library, required to dump output in PSML format

Download the latest version (minimum, version 1.5.4) from

Move xmlf90-1.5.4.tar (or more recent version) tar file to SHOME/lib

$ tar -xvf xmlf90-1.5.4.tar

$ cd xmlf90-1.5.4

$ mkdir Gfortran

$ cd Gfortran

$../configure --prefix=$HOME/1lib/Gfortran
$ make -j4

$ make install

The library libxmlIf90.a will bewill be automatically included in
$HOME/lib/Gfortran/lib

Installation of ONCVPSP in order to generate pPswmL files
Dependence on other libraries

ONCVPSP
(here, version 3.3.1)

LIBXC XMLF90
(between versions (at least version 1.5.4)

2.2.3 and 3.0.1)

Download the latest versions of the patcher to
ONCVPSP in order to generate PSML files

Go to:
https://[launchpad.net/pspgenpatch

And click to download the latest version. The examples below have been produced with

Copy the patcher to the $SHOME/lib directory
Unpack the patch and enter into the directory where it is included

$ tar -xvf patcher--oncvpsp-3.3.1--psml-3.3.1-75.tar
patcher--oncvpsp-3.3.1--psml-3.3.1-75/
patcher--oncvpsp-3.3.1--psml1-3.3.1-75/get_xml1f90. sh
patcher--oncvpsp-3.3.1--psml-3.3.1-75/oncvpsp-3.3.1--psml-3.3.1-75.patch
patcher--oncvpsp-3.3.1--psml-3.3.1-75/README
patcher--oncvpsp-3.3.1--psml-3.3.1-75/setup.sh

The number of the version will change in the future

Download the latest version of ONCVPSP
and apply the patches

Download oNcVvPSP code and apply the patches.
An automatic script will do both things for you.
Simply type:
$sh setup.sh

$ cd patcher--oncvpsp-3.3.1--psml-3.3.1-75
$ sh setup.sh
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 4617k 100 4617k 0 0 124k 0 0:00:37 0:00:37 --:--:-- 145k
Successfully downloaded oncvpsp-3.3.1.tar.gz
Successfully extracted pristine source to oncvpsp-3.3.1
patching file INSTALL
patching file doc/PSML_output.txt
patching file make.inc
patching file make.log
patching file scripts/README
patching file scripts/run.sh
patching file scripts/run_nr.sh
patching file scripts/run_r.sh
patching file src/.sratom.f90.swp
patching file src/Makefile
patching file src/exc_libxc.f90
patching file src/exc_libxc_stub.£90
patching file src/fortran.mk
patching file src/m_getopts.f90
patching file src/m_psmlout.f90
patching file src/m_uuid.f90
patching file src/modcore.f90
patching file src/modcore2.£90
patching file src/modcore3.£90
patching file src/oncvpsp.f90
patching file src/oncvpsp_nr.f90
patching file src/oncvpsp_r.£90
patching file src/vploc.£90
patching file sys_make_incs/easybuild.make.inc
patching file sys_make_incs/gfortran_macosx.make.inc
patching file sys_make_incs/original.make.inc
patching file tests/data/14_Si_GHOST.dat
patching file tests/data/57_La.dat
patching file tests/pg.sh
patching file tests/refs/14_Si_GHOST.out
patching file tests/run.sh
patching file tests/run_nr.sh
patching file tests/run_r.sh
Successfully patched oncvpsp to enable PSML output
Patched source in directory oncvpsp-3.3.1--psml-3.3.1-75

Follow the instructions in INSTALL to build the executables
and configure the scripts.

You can use the get_xmlf90.sh script to download the xmlf90 library

Download the latest version of ONCVPSP
and apply the patches

$ mv oncvpsp-3.3.1--psml-3.3.1-75 ..
$ cd ../oncvpsp-3.3.1--psml-3.3.1-75/
$ vi make.inc

System-dependent makefile options for ONCVPSP

This must be carefully edited before executing "make" in src

#

Copyright (c) 1989-2015 by D. R. Hamann, Mat-Sim Research LLC and Rutgers
University

Edit the following lines to correspond to your compilers

F77 = gfortran P

F90 = gfortran -

cC = gcc

FCCPP = cpp

FLINKER = $(F90)

FCCPPFLAGS = -ansi -DLIBXC_VERSION=203 #This probably should not be changed

Edit the following optimization flags for your system

FFLAGS = -03 -ffast-math -funroll-loops
CFLAGS -03

Edit the following LAPACK and BLAS library paths for your system

LIBS = -L/opt/local/lib -1lapack -lcblas -latlas -lopenblas

HitH#H

The xmlf90 library (its wxml subsystem) is needed to generate XML.
You can download xmlf90 from http://launchpad.net/xmlf90

Put the correct path here

#

A

XMLF90_RO0T=$ (HOME) /1ib/Gfortran
LIBS += -L$(XMLF90_RO0T)/1ib -1xm1£90
INC += -I$(XMLF90_ROOT)/include

Edit the following for to use libxc if available

oncvpsp is compatible with libxc

To build oncvpsp with libxc, uncomment 3 of the following lines and edit
the paths to point to your libxc library and include directories

make clean in src before rebuilding after changing this

##for libxc 2.1.0 and later use

LIBS += -L$(HOME)/1lib/Gfortran/lib -1xcf90 -lxc
FFLAGS += -I$(HOME)/1lib/Gfortran/include
0BJS_LIBXC = functionals.o exc_libxc.o

##for earlier releases use
#LIBS += -L/home/drh/abinit/fallbacks/exports/lib -1xc

Otherwise, use only the following line
#0BJS_LIBXC = exc_libxc_stub.o

Edit the make.inc file of
ONCVPSP

Select your compiler

Point to your linear algebra
libraries

Point to the directory where
we have installed xMLF90

Point to the directory where
we have installed LIBXC

To compile ONCVPSP and run the tests

Simply type

$ make

To check the results of the tests, go to

$ cd tests/data

And edit

$ vi TEST.reports

Installation of SIESTA in order to use PSML files

Installation of SIESTA in order to read PsML files
Dependence on other libraries

SIESTA
(here, trunk-psml branch, at least version 573)

LIBPSML LIBGRIDXC

(at least version 1.1.7) (at least version 0.8.0)

XMLF90 LIBXC
(at least version 1.5.4) (between versions
2.2.3 and 3.0.1)

Preliminaries: installation of required libraries:
LIBPSML

LIBPSML is a library that provides an API for parsing PSML files, including

accessors for the relevant data pieces, as well as a set of routines for generating
well-formed PSML.

Download the latest version of the pswmL library
from launchpad

Go to
and download the tar file from the right hand side bar
Copy the .tar file that you download in the $HOME!/lib directory

To compile the latest version of the PsSML library

$ tar -xvf libpsml-1.1.7.tar

$ cd libpsml-1.1.7

$ mkdir Gfortran

$ cd Gfortran

$../configure --prefix=$HOME/1ib/Gfortran --with-xmlf90=$HOME/1ib/Gfortran
$ make -j4

$ make install

Point to the directory where the other
libraries are installed

Then, the library libpsml.a should be in the directory $HOME/lib/Gfortran/lib

Installation of SIESTA in order to read PsML files
Dependence on other libraries

SIESTA
(here, trunk-psml branch, at least version 573)

LIBPSML LIBGRIDXC

(at least version 1.1.7) (at least version 0.8.0)

XMLF90 LIBXC
(at least version 1.5.4) (between versions
2.2.3 and 3.0.1)

Preliminaries: installation of required libraries:
LIBGRIDXC

LIBGRIDXC is a library to compute the exchange and correlation energy and
potential in spherical (i.e. an atom) or periodic systems.

LIBGRIDXC has replaced the former SiestaXC library.
It has been included in the Electronic Structure Library.

Download the latest version of LIBGRIDXC library

Go to:
https://launchpad.net/libgridxc

And click to download the latest version. The examples below have been produced with

Copy the tarball file in the lib directory, and unpack it

$ tar -xvf libgridxc-0.8.0.tgz
$ cd libgridxc-0.8.0

$ mkdir Gfortran

$ cd Gfortran

$ cp ../extra/fortran.mk .

$ vi fortran.mk

Compile the latest version of LIBGRIDXC library

Here we shall assume that we are linking against an existing version of the LIBXC
library previously installed

#

Example Fortran macros: gfortran
= L]
Make sure this variable is set if you intend to use libxc POInt tO the dlreCtory Where
LIBXC_ROOT=$(HOME) /1ib/Gfortran A

’ we have installed LIBXC

These two instances are needed, instead of just FC

FC_SERIAL=gfortran

FC_PARALLEL=mpifort

#

FFLAGS= -02 -fimplicit-none

FFLAGS_DEBUG= -g -00 -fbacktrace -fcheck=all -fimplicit-none

FFLAGS_CHECKS= -g -00 -g -Wall -Wextra -Warray-temporaries \
-Wconversion -fimplicit-none -fbacktrace \
-ffree-line-length-0 -fcheck=all \
-ffpe-trap=zero,overflow,underflow -finit-real=nan

LDFLAGS=

#

AR=ar

RANLIB=ranlib

#

DEFS_PREFIX=

INC_PREFIX= -I

MOD_PREFIX= -I

MOD_EXT=.mod

#

$(FC) -c $(FFLAGS) $(INCFLAGS) $(FPPFLAGS) $<
$(FC) -c $(FFLAGS) $(INCFLAGS) $<
$(FC) -c $(FFLAGS) $(INCFLAGS) $(FPPFLAGS) $<

$(FC) -c $(FFLAGS) $(INCFLAGS) $<

Compile the latest version of LIBGRIDXC library

Here we shall assume that we are installing the serial version,
and linking against an existing version of the LIBXC library previously installed

If you want to compile only a serial version of the library then

$ sh ../Src/config.sh
*xx*x Compilation setup done.
$ make clean
$ WITH_LIBXC=1 REFIX=$HOME/lib/Gfortran sh build.sh

If you want to compile both serial and parallel version of the library then

$ sh ../Src/config.sh
*x*x Compilation setup done.
$ make clean
$ WITH_LIBXC=1 REFIX=$HOME/lib/Gfortran sh build.sh

The library libGridXC will then be installed in the directory
$HOME/lib/Gfortran/serial/lib/libGridXC.a
And/or
$HOME/lib/Gfortran/mpi/lib/libGridXC.a

Installation of SIESTA in order to read PsML files
Dependence on other libraries

SIESTA
(here, trunk-psml branch, at least version 573)

LIBPSML LIBGRIDXC

(at least version 1.1.7) (at least version 0.8.0)

XMLF90 LIBXC
(at least version 1.5.4) (between versions
2.2.3 and 3.0.1)

Download the latest version of TRUNK-PSML branch
of siesta from

And download the version of siesta
siesta-psmli-r0.tgz

To compile the latest version of the SIESTA
compatible with psML

Add the following lines to the usual arch.make in the Obj directory
(as a starting point, you can take the template gfortran.make included in Obj)

Point to the directory

--- Edit the location of your psml files where PSML was installed
#

ROOT_GLOBAL=$ (HOME) /1ib/Gfortran Point to the directory where
PSML._ROOT=$ (ROOT_GLOBAL) XMLF90 was installed
XMLF90_RO0T=$ (ROOT_GLOBAL)

GRIDXC_ROOT=$(ROOT_GLOBAL)/serial (or mpi) Sty RTeR - Ne 1-1o0e)a A=
LIBXC_ROOT=$(ROOT_GLOBAL) LIBGRIDXC was installed

Point to the directory
where LIBXC was installed

Then, type
$ make
The proper location of the libraries will be done at compilation time...

--- reference section

PSML-related libs: /Users/javier/lib/Gfortran/lib/libpsml.a

XMLf90 1libs: /Users/javier/lib/Gfortran/lib/libxmlf90.a

GRIDXC libs: /Users/javier/lib/Gfortran/serial/l1ib/1ibGridXC.a -L/Users/javier/lib/Gfortran/lib -1 xcf90 -1 xc
--— end of reference section

Installation of ATOM in order to generate PSML files

Download the lastest version of the ATOM code to
generate the pseudopotentials in PSML format

Regarding the ATOM code, if you are an academic user, can be
downloaded from:

And follow the link to Pseudopotentials.
Then, if you qualify, accept that you are an academic user
The version we shall compile here is atom-4.2.6.tgz

Copy this tar ball to the lib directory and unpack it
$cp atom-4.2.6.tgz SHOME/lib

To compile it, you need the XMLF90 and LIBGRIDXC libraries, but both of them have
been previously compiled, and we have prepare the arch.make invoking them at
the time of the SIESTA compilation.

So we can use the same arch.make file we used for SIESTA

$ tar —xvf atom-4.2.6.tgz
$ cd atom-4.2.6

$ cp <your_path_to_siesta_dir>/0bj/arch.make .
$ make

Installation of PSOP

in order to generate fully non-local pseudopotentials
from semilocal pseudopotentials in PSML

Compilation of PSOP

Finally, we need to install a standalone program (PSoOP) to generate, from a
pseudopotential file holding semilocal-potential information, a full non-local
operator in the classic SIESTA style (special local part, plus Kleynman-Bylander
projectors).

The information is produced in XML, in a form compatible with the PSML format.

This program is included in the SIESTA tree

$ cd <your_path_to_siesta_dir>/Pseudo/vnl-operator
$ make OBJDIR=0Dbj

Installation of ABINIT in order to read psML files

Download abinit, at least version 8.8.1, from
http://lwww.abinit.org

After untar the package, type

cd abinit-8.8.1

This file contains instructions

mkdir Gfortran

cd Gfortran

to configure and compile

vi psml.ac abinit with PsmL.

Type the content of the box below in a
file and call it psml.ac

The psml.ac file should look like something as

(we assume a serial compilation)
Point to your compilers

CC="gcc"
FC="gfortran"
cxXx=" g++ n

FCFLAGS_EXTRA="-Wa,-q"
CFLAGS_EXTRA="-Wa,-q"

with_trio_flavor="psml"
with_dft_flavor="libxc"

ROOT_GLOBAL="$HOME/1ib/Gfortran"
with_psml_incs="-I$RO0T_GLOBAL/include"
with_psml_libs="-L$RO0OT_GLOBAL/1lib -lpsml -1xmlf90"
with_libxc_incs="-I$RO0T_GLOBAL/include"
with_libxc_libs="-L$ROOT_GLOBAL/1lib -1xcf90 -1lxc"

with_linalg libs="-L/usr/local/lib/ -llapack -1lblas"

prefix="$RO0T_GLOBAL"

Add the compilation flags

Tell ABINIT that we will link against PSML
and LiBXC (previously compiled)

Point to the corresponding libraries
Point to the linear algebra libraries

Define the prefix or directory where the
abinit executable will be finally stored

Installation of ABINIT in order to read psML files

To compile and run the tests, type

$../configure --with-config-file=psml.ac
$ make -j4

$ make install

$ cd tests

$../../tests/runtests.py -j4 psml

Outline of the Tutorial

1. How to compile the different codes

Two codes to generate pseudopotentials: Two client Solid State Physic codes

ATOM SIESTA
(http://www.icmab.es/siesta/Pseudopotentials) (http://www.icmab.es/siesta)

ONCVPSP ABINIT
(http://lwww.quantum-simulation.org/potentials/sg15_oncv/) (http://lwww.abinit.org)

2. How to generate the psml pseudopotentials with oNCVPSP and ATOM

3. How to run sieSTA and ABINIT with the same pseudopotentials

Test of the convergence of a numerical atomic orbital basis set with
respect to the asymptotic limit of a converged basis of plane waves

Compute the equation-of-state (energy versus volume profiles) for
elemental crystals, a test that has been proposed as a benchmark for
the comparison of different codes

How to generate a PSML pseudopotential with

ONCVPSP

How to generate a pseudopotential with
ONCVPSP in PSML format

http://Iwww.pseudo-dojo.org

The PseupoDojo: Training and grading a 85 element optimized norm-conserving
pseudopotential table

M. J. van Setten®?, M. Giantomassi®’, E. Bousquet®®, M. J. Verstraete®", D. R. Hamann%¢, X. Gonze®", G.-M. Rignanese®P
“Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
b European Theoretical Spectroscopy Facility (ETSF)
“Q-Mat, Department of Physics, University of Liége (Belgium)
4Department of Physics and Astrononty, Rutgers University, Piscataway, NJ 08854-8019, USA
¢Mat-Sim Research LLC, P. O. Box 742, Murray Hill, NJ, 07974, USA

https://arxiv.org/abs/1710.10138

® —
PsSEUDO
DOJO s

out
He

Accuracy Relativistic Format
0] _striment 0] [scalar 0_| [nspa :

La Ce Pr
89 90 a1

Ac Th Pa U Np

How to generate a pseudopotential with
ONCVPSP in PSML format

http://Iwww.pseudo-dojo.org

Periodic table with pseudopotentials generated with ONCVPSP code

LDA, PBE, and PBE-sol flavors of exchange and correlation

They have passed the Delta-test with ABINIT
Reproducibility in density functional theory calculations of solids.
K. Lejaeghere et. al., Science 25 Mar 2016, Vol. 351, Issue 6280,

They are directly available in psML format...
But, just in case you want to generate them by youself following the
recipe given in the following slides

How to generate a pseudopotential with
ONCVPSP in PSML format

http://Iwww.pseudo-dojo.org

0 get the

PSEUDO
DOJO v0.3 “ '

: Xc Aemcy Relativistic i

Downl |
Mg e e
20 21 22 z3

Cr ‘ Ga Ge

Gadum

49

'Sn

Mt Ds Rg

Pr Nd Pm Sm Eu Gd Dy Ho
" 82 93 ™ a5 26 97 96 o9 100 101

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No

Select xc, Accuracy and relativistic type of calculation and
download the pseudo in psp8 format

ATOM AND REFERENCE CONFIGURATION

atsym z nc nv iexc psfile
Fe 26.00 3 4 4 psp8

#

n f energy (Ha)
2.00 -2.5720573D+02
2.00 -3.0124388D+01
6.00 -2.5667700D+01
2.00 -3.4550911D+00
6.00 -2.2065345D+00
6.00 -2.7580112D-01
2.00 -1.9448241D-01

PSEUDOPOTENTIAL AND OPTIMIZATION
lmax

1, rc, ep, ncon, nbas, qcut
1.15 -3.46 3 7 9.90
1.10 -2.21 3 7 9.20
1.30 -0.28 3 7 11.80

LOCAL POTENTIAL
lloc, lpopt, rc(5), dvlocO
5 1.10 0.00

VANDERBILT-KLEINMAN-BYLANDER PROJECTORs
1, nproj, debl

2 3.2606

2 0.8000

2 0.8000

#
1
2
2
3
3
3
4
#
#
#
2
#
#
0
1
2
#
#
#
4
#
#
#
0
1
2
#

MODEL CORE CHARGE

icmod, fcfact, rcfact, rcfact
3 3.00 1.70

#

LOG DERIVATIVE ANALYSIS
epshl, epsh2, depsh
-24.00 12.00 0.02

#

OUTPUT GRID

rlmax, drl

6.00 0.01

#

#

TEST CONFIGURATIONS

ncnf

0

nvenf

n 1 £

How to generate a pseudopotential with
ONCVPSP in PSML format

Generate the input file for oNCVPSP

1. Edit the .psp8 file that you have downloaded from
pseudo-dojo

2. Cut and paste the last lines of that file into
another file. Rename this new file with an extension
“ dat”

In this example, | have called it Fe.dat

3. Move this file into the tests/data directory of your
ONCVPSP distribution

$mv Fe.dat <your_path_to_oncvpsp>/tests/data

4. Run
$../run.sh Fe (for a scalar-relativistic calculation)
o] §

$../run_r.sh Fe (for a fully relativistic calculation)

5. The pseudos are stored in Fe.psml and Fe _r.psml

How to generate a PSML pseudopotential with ATOM

How to generate and test a norm-conserving
pseudopotential with ATOM in PSML format

Generate the pseudopotential using the ATOM code as usual,
following the notes in the Tutorial
“How to generate a norm conserving pseudopotential”

Copy the input file in the corresponding atom/Tutorial/PS_Generation directory
and run

$../../Utils/pg.sh Fe.tm2.inp
==> (Qutput data in directory Fe.tm2
==> Pseudopotential in Fe.tm2.vps, Fe.tm2.psf, and Fe.tm2.psml

The pseudopotentials will be on the same parent directory:
.vps (unformatted) (required to test the pseudopotential)
.psf (formatted)

.psml (in PSML format)

Remember to test the pseudopotential using the ATOM code as usual,
following the notes in the Tutorial
“How to test the transferability of a norm conserving pseudopotential”

How to generate and test a norm-conserving
pseudopotential with ATOM in PSML format

The psML file generated so far contains the semilocal component of the
pseudopotential.

Most modern electronic-structure codes do not actually use the pseudopotential
in its semi-local form, but in a more efficient fully non-local form based on
short-range projectors plus a “local” potential

‘/;95 = Vlocal T Z ‘X’L>E,}L{B <Xz|

The local potential “a-la-sIiESTA” and the non-local projectors
(Kleinman-Bylander type) can be and added to the pswmL file just running
the psop code

$ <your_path_to_siesta_dir>/Pseudo/vnl-operator/psop -K -o Fe.psml Fe.tm2.psml

The local parts, projectors, etc are appended, and the full psmL file is written in
the file whose name is after the “-o0”.
For other options, type, try psop -h
The resuting output file is the one that can be directly used by SIESTA and ABINIT

How to generate and test a norm-conserving
pseudopotential with ATOM in PSML format

If you edit the last psML file, the whole provenance is perfectly identified

<provenance record-number="2" creator="psop-1.1" date="2017-08-03">
<annotation source-uuid="52959b00-6d35-11e7-412e-2ea7fffd684c"
command-line="/Users/javier/Code/Launchpad/trunk-psml/Pseudo/vnl-operator/psop -K -o Fe.psml Fe.tm2.psml"
action="inserted-local-potential" action-cont="inserted-nonlocal-projectors" />
</provenance>
<provenance record-number="1" creator="ATM4.2.6" date="20-JUL-17">
<annotation action="semilocal-pseudopotential-generation" />
<input-file name="INP">
<! [CDATA[# PS generation with core corrections
GGA (Perdew-Burke-Ernzerhof) XC , relativistic
#
pe Fe, GGA, rcore=0.70
tm2 3.0

0.0 . 0.0

4s2
4p0
3d6
410
2.00 0.00 0.70
I

Radius of pseudocore

</input-file>
</provenance>

Outline of the Tutorial

1. How to compile the different codes

Two codes to generate pseudopotentials: Two client Solid State Physic codes

ATOM SIESTA
(http://www.icmab.es/siesta/Pseudopotentials) (http://www.icmab.es/siesta)

ONCVPSP ABINIT
(http://lwww.quantum-simulation.org/potentials/sg15_oncv/) (http://lwww.abinit.org)

2. How to generate the psml pseudopotentials with oNCVPSP and ATOM

3. How to run sieSTA and ABINIT with the same pseudopotentials

Test of the convergence of a numerical atomic orbital basis set with
respect to the asymptotic limit of a converged basis of plane waves

Compute the equation-of-state (energy versus volume profiles) for
elemental crystals, a test that has been proposed as a benchmark for
the comparison of different codes

Examples to run SIESTA and ABINIT
with the same pseudos
1. Visit the web page:

and follow these links:
A self-explained SIESTA tutorial
Set of self-explained SIESTA exercises

Pseudos
How to use the same pseudopotential in SIESTA and ABINIT

2. Click on Pseudos, input and Readme

3. Untar the ball file
$ tar —xvf Siesta-Abinit.tar

This will generate a directory called Comparison-Siesta-Abinit with 4 directories:
$ cd Comparison-Siesta-Abinit
$Is -ltr
Si (example for a covalent semiconductor, LDA)
Al (example for a sp-metal, LDA)
Au (example for a noble metal, includes d-orbital, LDA)
Fe (example for a transition metal, includes NLCC, GGA)

Examples to run SIESTA and ABINIT
with the same pseudos

In every subdirectory it can be found:
$ cd Si
$Is —Itr
$ Runsiesta (files to run SIESTA)
$ Runabinit (files to run ABINIT)

In the directoris for Au and Fe, you will find two extra subdirectories:
One for the pseudos generated with ATom, and the second for ONCVPSP pseudos

Test of the convergence of a numerical atomic
orbital basis set with respect to the asymptotic limit

of a converged basis of plane waves

Convergence of the energy as a function
of the planewave cutoff in ABINIT
Required files in: Si/Runabinit/ATOM/

1. We run the same system (same lattice vectors and internal coordinates) at the
same level of approximations (same exchange and correlation functional,
Monkhorst-Pack mesh etc.) at a given lattice constant.

Here it has been written for you (file Si.input.convergence)

#Number of atoms, chemical species and atom types

natom 2 # Number of atoms in the unit cell
ntypat 1 # Number of types of atoms
typat 11 # Type of atoms
znucl 14.0 # Gives nuclear charge for each type of
#Coordinat d cell iabl H
o on A et T Diamond structure.
0.5 0.0 0.5 - .
05 o5 0.0 The lattice constant might be the
acell 5.38 5.38 5.38 Angstrom

xred -0.125 -0.125 -0.125 experimental, theoretical or

0.125 0.125 0.125
#PlaneWave cutoff and k-grid mesh integration C R
ecutsm 0.5 # Energy cutoff smearing (Ha) Whatever Other SenSIbIe Ch0|ce
nband 10
kptopt 1

Number of bands
Kpoints option
0 = read directly nkpt, kpt, kptnrm and wtk
1 = rely on ngkpt or kptrlatt, as well as
on nshiftk and shiftk to set up
the k points.
Full symmetry taken into account.
2 =1, but only time reversal symmetry
is taken into account.
3 =1, but do not take into account
any symmetry
A negative value = rely on kptbounds,
and ndivk to set up a band structure
calculation along different lines

B otarion e fo K pointe 6 X 6 X 6 Monkhorst-Pack mesh

This is a 3x3x3 FCC grid,
based on the primitive vectors
of the reciprocal space.
For a FCC real space lattice,
like the present one,
it actually corresponds to the
so-called 6x6x6 Monkhorst-Pack grid,
if the following shifts are used :

ngkpt 3 3 3

HOHFE H HHEHHHERHHHEFREHHEHEHEHHEREHHEHRHHER

nshiftk 4
shiftk 0.5 0.5 0.5 Shift for k points
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.
#Exchange-correlation
ixc 1009 # Integer for exchange-correlation choice
N # 0 = No xc H
1 = LDA or LSD, Teter Pade parametrization Ceperley-AIder (LDA) funCtlonaI
2 = LDA, Perdew-Zunger-Ceperley-Alder . .
3 = LDA, old Teter rational polynomial In the Ilbxc numeratlon, the CA
parametrization, fit to Ceperley-Alder . . - . .
#, _ data (o spin-polarization: no op) functional is identified as -1009,
= , Wigner functional (no sp)
5 = LDA, Hedin-Lundqvist functional (no sp) S = -
6 = LDA, "X-alpha" functional (no sp) 0 here Ixc mlght be also
7 = LDA or LSD, Perdew-Wang 92 functional 0
8 = LDA or LSD, x-only part of the PW 92 IXC -1 009
9 = LDA or LSD, x- and RPA part of the PW92
10= GGA, Perdew-Burke-Ernzerhof

-1009 = LDA, Perdew-Zunger in libxc

Convergence of the energy as a function
of the planewave cutoff in ABINIT
Required files in: Si/Runabinit/ATOM/

1. We run the same system (same lattice vectors and internal coordinates) at the
same level of approximations (same exchange and correlation functional,
Monkhorst-Pack mesh etc.) at a given lattice constant.

Here it has been written for you (file Si.input.convergence)

ndtset 21

2. Change the cutoff energy for the plane waves ecutt 4.00

ecut2 5.00
ecut3 6.00
ecutd 7.00

$ more Si.files ecutb 8.00
ecut6 9.00

Si.input.convergence ccut? 10.00

3. Edit the .files file and select S51.out ecuts 11.00

Sii ecut9 12.00

the input file and the pseudo Sio ecutl0 13.00

ecutll 14.00

file (in PsML format) tix ecuti2 15.00
Si.psml ecut13 16.00
ecutl4 17.00

ecutlb 18.00
ecutl6 19.00
ecutl? 20.00

ecutl8 25.00

. L. . ecut1® 30.00

4. Run the code $ abinit < Si.files > Si.log & S on 35 00
ecut21 40.00

Convergence of the energy as a function
of the planewave cutoff in ABINIT

Dump the total energy as a function of the cutoff energy into a file

grep "Total energy(eV)=" Si.out > Si.abinit.convergence.dat

and edit the corresponding file that should look like this

$ gnuplot

gnuplot> plot "Si.abinit.convergence.dat" u 1:2 w 1

gnuplot> set terminal postscript

Terminal type set to ’postscript’

Options are ’landscape noenhanced defaultplex \
leveldefault monochrome colortext \

.0 -14194449880966E+02 dashed dashlength 1.0 linewidth 1.0 butt \
.14976485447252E+02 palfuncparam 2000,0.003 \

.15411140367238E+02 "Helvetica" 14 °

.15628685176492E+02 gnuplot> set output "Si.abinit.convergence.ps"
.15720858317710E+02 gnuplot> replot
.15750171586496E+02

.15763329519177E+02 ; ' '
.15779812452764E+02
.15799418752144E+02
.15818946405721E+02
.156839166115399E+02
.15857714339095E+02
.15872186607154E+02
.156882236630660E+02
.156889235709976E+02
.156893739286028E+02
.156896300984227E+02
.156898209558594E+02
.15900080538176E+02
.15901735062792E+02
.15902018005472E+02

Cutoff energy (Ha) Total energy (eV)

"Si.abinit.convergénce.dat" u 1|:2 —_—

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Convergence of the energy as a function
of the basis set size in SIESTA

Select:
a given system (in this example, bulk Si)
in a given structure (diamond structure)
For a given lattice constant and internal coordinates
Since we are interested in compare the performance of the basis set, it is
important to converge all the rest of approximations (Mesh Cutoff, k-point
grid, etc.) as much as possible
The parameters of the simulations (lattice constant, functional, k-point
sampling, etc. Must be the same as the ones used for the plane wave
calculation

The input files have been prepared for you in the directory:
Si/Runsiesta/ATOM/Basis-convergence

The basis sizes, of different quality (SZ, DZ, TZ, SZP, DZP, TZP, TZDP, TZTP,
TZTPF) were variationally optimized in a previous work
J. Junquera et al., Phys. Rev. B 64, 235111 (2001)

But you can try whatever basis whose convergence with respect to a plane
wave calculation you want to check

Convergence of the energy as a function
of the basis set size in SIESTA

Run sIEsSTA for all the different basis sets prepared for you

<your_path_to_siesta_executable>/siesta
<your_path_to_siesta_executable>/siesta
<your_path_to_siesta_executable>/siesta
<your_path_to_siesta_executable>/siesta
<your_path_to_siesta_executable>/siesta
<your_path_to_siesta_executable>/siesta
<your_path_to_siesta_executable>/siesta

1.5Z.fdf
i.DZ.fdf
1.TZ.fdf
1.5ZP.fdf

1.TZP.fdf
1.TZDP.fdf
1. TZTP.fdf

i.35Z.out
i.DZ.out
i.TZ.out
i.SZP.out
i.DZP.out
i.TZP.out
i.TZDP.out
i.TZTP.out

<your_path_to_siesta_executable>/siesta

>

>

>

>

1.DZP.fdf >

>

>

>
<your_path_to_siesta_executable>/siesta >

i.TZTPF.fdf .TZTPF .out

Search the Total Energy as a function of the basis size and store it in a file

$ grep FreeEng *out > Si.siesta.basis.dat

Edit the file (Si.siesta.basis.dat) and search for the equivalent plane wave
cutoff in ABINIT in the file Si.abinit.convergence.dat previously prepared

Basis size Number of orbitals per Si Total energy (eV) Equiv. PW(Ha)
SZ 4 -214.551542 4.4572457
DZ 8 -214.835617 4.8208821
SZp 9 -215.627384 6.9954995
TZ 12 -214.977739 5.0009001
DZP 13 -215.819105 13.0045

TZP 17 -215.851210 14.649865
TZDP 22 -215.860688 15.20432
TZTP 27 -215.864488 15.467147
TZTPF 34 -215.899542 28.5220562

H HF HHFEHHEHHH

Test of the convergence of a numerical atomic
orbital basis set with respect to the asymptotic limit
of a converged basis of plane waves

You can plot again the energy versus plane wave cutoff, taking
the converged energy as a reference, and put on top of this
figure the equivalence with the NAO basis set

(a)

S7Z (4)
DZ (3) DZP (13)
242 iz a7
TZDP (22
2P ©) I TZTPF (34)

~
>
O
|
>
&N
—
O
-
O
p—
<
N—
o
—

Comparing the pseudopotential in SIESTA and ABINIT

To be totally sure that we have run SIESTA and ABINIT with the same
peudopotential operator, i.e. with the same decomposition in local part and
Kleinman-Bylander projectors:

1. Edit one of the output files in SIESTA and search for the following lines:

Reading KB projs from Si psml data

PSML: Kleinman-Bylander projectors:
1= 0 rc= 1.936440 Ekb= 4.661340
=1 rc= 1.936440 Ekb= 1.494238
rc= 1.936440 Ekb= -2.809035
rc= 1.936440 Ekb= -0.959387

2. Edit the log or the output file in ABINIT and search for the following lines:

psxml2ab: ps_Number_of_Projectors not relativistic The Kleinman-Bylander

psxml2ab: ps_Number_of_Projectors scalar relativistic .
psxml2ab: ps._Projector L 0 energies should be the same

psxml2ab: ps_Projector_Ekb 0.2330670221E+01 uptO numerical roundoff
psxml2ab: ps_Projector_L 1

psxml2ab: ps_Projector_Ekb 0.7471191667E+00 errors

psxml2ab: ps_Projector_L 2

psxml2ab: ps_Projector_Ekb -0.1404517392E+01 Note: In SIESTA they are

psxml2ab: ps_Projector_L 3 . . -
psxml2ab: ps_Projector_Ekb -0.4796933758E+00 written in Ry and in

psxml2ab: ps_Number_of_Projectors SOC 0 ABINIT they are in Ha.

Compute the equation-of-state
(energy versus volume profiles)
for elemental crystals:

a test that has been proposed as a benchmark for

the comparison of different codes
(related with the delta-test)

Running the energy versus lattice
constant curve in ABINIT

1. Same input as before but...

#input for bulk Si in the diamond structure.

ecut 13.005 e ac ... setting the plane wave cutoff to the
ndtset 10 equivalent one to a DZP basis set (we
Angstron want to compare the results at this level

Angstrom

Angstron of basis set quality)

Angstrom

Angstrom ... and changing the lattice constant

hneateon embracing the minimum
Angstrom
Angstrom
Angstrom

acelll 5.30
acell2 5.32
acell3 5.34
acelld 5.36
acellb 5.38
acell6 5.40
acell7 5.42
acell8 5.44
acell9 5.46
acelll0 5.48

oo oo oo ool
SO D D DWW W W W
0 OO P NO0DPNO

2. Change in the .files the name of the input file

Si.input.latcon
Si.out

Sii

Sio

tix

Si.psml

Running the energy versus lattice
constant curve in ABINIT

Dump the total energy as a function of the lattice constant in a file
grep Total Si.abinit.latcon.out > Si.abinit.latcon.dat

and edit the corresponding file that should look like this

Lattice constant (Ang) Total energy (eV)
5.30 .15791847642832E+02
.32 .156803559782380E+02
.34 .156811827098470E+02
.36 .15816907060262E+02
.38 .15819046038271E+02
.40 .156818275434177E+02
.42 .156814668717931E+02
.44 .15808352394512E+02
.46 .15799487882416E+02
.48 .15788013554804E+02

5
5
5
5
5
5
5
5
5

Running the energy versus lattice
constant curve in SIESTA

Run siesta for the equivalent quality of the basis set (DZP in this case)
and for the same lattice constants.
The input files have been prepared for you in the directory
Si/Runsiesta/ATOM/Latcon

Dump the total energy as a function of the lattice constant in a file

$ grep FreeEng *out > Si.siesta.latcon.dat

and edit the corresponding file that should look like this

#

Lattice Constant (Ang) Free Energy (eV)

SIESTA (DZP)

-215.790374

-215.802367

-215.811092

-215.816652 . .

o015 819105 These data have been obtained with a
-215.818383 double-zeta plus polarization basis set,

-215.814594 . . - .
915 808031 optimized at the theoretical lattice

-215.798719 constant with a pressure of 0.05 GPa
-215.786737

oo o101 OO OO OO
S D DD WWwwWwwWw W
00O P NOWO®PNO

Comparing the energy versus lattice constant in
SIESTA and ABINIT: bulk Si (covalent semiconductor)

gnuplot> plot "Si.abinit.latcon.dat" u 1:2 w 1,
"../../Runsiesta/ATOM/Latcon/Si.siesta.latcon.dat" u 1 :2 w 1
gnuplot> set terminal postscript color

Terminal type is now ’postscript’
Options are ’landscape enhanced defaultplex \
leveldefault color colortext \
dashlength 1.0 linewidth 1.0 pointscale 1.0 butt noclip \
nobackground \
palfuncparam 2000,0.003 \
"Helvetica" 14 fontscale 1.0 °’
gnuplot> set output "Si.compar.latcon.ps"
gnuplot> replot

— Siesta (DZP)
—— Abinit (13.005 Ha)

Free Energy (eV)

5.35 5.40
Lattice constant (Ang)

Comparing the pseudopotential in SIESTA and ABINIT
in a metallic system: bulk Al (sp metal)

To be totally sure that we have run SIESTA and ABINIT with the same
peudopotential operator, i.e. with the same decomposition in local part and
Kleinman-Bylander projectors:

In ABINIT: In SIESTA:
Search for the Kleinman-Bylander Search for the Kleinman-Bylander
energies in the log or out file energies in the output file

- psxml2ab: ps_Number_of_Projectors not relativistic 4
- psxml2ab: ps_Number_of_Projectors scalar relativistic 0
- psxml2ab: ps_Projector_L 0

- psxml2ab: ps_Projector_Ekb 0.1556932920E+01 PSML: Kleinman-Bylander projectors:

~ Reading KB projs from Al psml data
- psxml2ab: ps_Projector L 1 1= 0 rc= 2.333733 Ekb= 3.113866

- psxml2ab: ps_Projector_Ekb 0.4394082275E+00
- psxml2ab: ps_Projector_L 2 =1 rc= 2.333733 Ekb= 0.878816

- psxml2ab: ps_Projector_Ekb -0.8914633661E+00 rc= 2.333733 Ekb= -1.782927

- psxml2ab: ps_Projector L 3 rc= 2.333733 Ekb= -0.616575
- psxml2ab: ps_Projector_Ekb -0.3082875005E+00

The Ekb should be exactly the same.
Remember than in ABINIT, they are writen in Ha, while in SIESTA are dumped in Ry

Comparing the pseudopotential in SIESTA and ABINIT
in a metallic system: bulk Al (sp metal)

For the case of metallic system, besides the k-point sampling we have to pay
particular attention to the occupation option

ABINIT

Default: Fermi-Dirac occopt 3 # Occupation Option

Fermi-Dirac smearing (finite-temperature metal)
ElectronicTemperature 0.02 Ry

tsmear 0.01 # Temperature of smearing (in Ha)

Also, as explained in the Tutorial
“Convergence of electronic and structural properties of a metal with respect to
the k-point sampling: bulk Al”
we should look at the Free Energy and not to the Kohn-Sham energy

grep FreeEng *.out > Al.siesta.latcon.dat grep Total Al.out > Al.abinit.latcon.dat

Running the energy versus cutoff energy in ABINIT:
bulk Al (a sp metal)

Lattice constant 3.97 A

T T
"Al.abinit.convergence.dat"u 1:2 ——

Comparing the energy versus lattice constant in
SIESTA and ABINIT: bulk Al (sp metal)

Basis set of Siesta: DZP optimized with a pressure of 0.001 GPa at the theoretical
lattice constant of 3.97 A)
Plane wave cutoff in Abinit: 8.97 Ha

— Siesta (DZP)
—— Abinit (8.97 Ha)

Free Energy (eV)

-57.18 1 | 1 | 1 | 1 | 1
3.85 3.90 3.95 4.00 4.05 4.10

Lattice constant (Ang)

Comparing the pseudopotential in SIESTA and ABINIT:
bulk Fe (a magnetic transition metal)

For the case of metallic system, besides the k-point sampling we have to pay
particular attention to the occupation option.
Now, besides:
The system is spin polarized
We use a GGA functional
We include non-linear partial core corrections in the pseudo

SIESTA ABINIT

XC.functional nsppol 2 # Number of spin polarizations
XC.authors spinat 0.0 0.0 1.0 # Spin for atoms

SpinPolarized ixc 11 # Integer for exchange-correlation choice

Running the energy versus cutoff energy in ABINIT:
bulk Fe (a magnetic transition metal)

Lattice constant 2.87 A

—~
>
)
—~
O
&N
—
O
=
a8
O
O
—
o

DZP

40 50
Cutoff energy (Ha)

Comparing the energy versus lattice constant in
SIESTA and ABINIT: bulk Fe(magnetic transition metal)

Basis set of Siesta: DZP optimized without pressure at the experimental lattice
constant of 2.87 A

Plane wave cutoff in Abinit: 34.82 Ha

— Siesta (DZP)
—— Abinit (34.82 Ha)

Free Energy (eV)

1 I 1 I 1 I 1 I 1
2.80 2.85 2.90 295

Lattice constant (Ang)

Funding

SPANISH INITIATIVE FOR ELECTRONIC SIMULATIONS WITH THOUSANDS OF ATOMS:
CODIGO ABIERTO CON GARANTIAY SOPORTE PROFESIONAL: SIESTA-PRO
Proyecto financiado por el Ministerio de Economia, Industria y Competitividad,

y cofinanciado con Fondos Estructurales de la Union Europea

Referencia: RTC-2016-5681-7

Objetivo Tematico del Programa Operativo:

"Promover el desarrollo tecnologico, la innovacion y una investigacion de calidad”

w GOBIERNO MINISTERIO
DE ESPANA DE ECONOMIA, INDUSTRIA
Y COMPETITIVIDAD

UNION EUROPEA
FONDO EUROPEOQO DE
DESARROLLO REGIONAL

"Una manera de hacer Europa”

