Convergence with respect the number of k-points: bulk BaTiO₃

Objectives

 study the convergence of the different phases of bulk BaTiO₃ with respect the number of k-points

Perovskite oxides ABO₃: prototypes of ferroelectric materiales

BaTiO₃

First ferroelectric without hydrogen bonds First ferroelectric with a paraelectric phase First ferroelectric with more than one ferroelectric phase Very simple (5 atoms per unit cell) ⇒ lot of theoretical models

Cation A O octahedra Cation B

Phase transitions of BaTiO₃ as a function of the temperature

Phase transitions from cubic to tetragonal, pattern of cooperative polar atomic displacements

Sign of the quadratic coefficient critical $A > 0 \Rightarrow$ parabola (paraelectric ground state) $A < 0 \Rightarrow$ double well (FE ground state)

Continuum evolution of ξ

Assuming only polarization along z

$$U(\xi) = A\xi_{z}^{2} + B\xi_{z}^{4} + C\xi_{z}^{6} + D\xi_{z}^{8} + \cdots$$

Bulk BaTiO₃ is a band insulator: Expt. gap 3.2 eV

LDA (DFT) band structure

High-symmetry lines in the 1BZ

Rather ionic material: well-separated sets of bands (see the exercise on band-structure MgO) Each band:

-Located in the same energy regions than the different orbitals of the isolated atoms

-Marked dominant character \Rightarrow labeled by the name of the main atomic orbital

Some covalent features

Ph. Ghosez et al., Phys. Rev. B, 58, 6224 (1998)

Ph. Ghosez et al., Ferroelectrics, 220, 1 (1999)

Structural relaxation of the cubic bulk BaTiO₃ phase

To keep the symmetry during the relaxation, we have to impose some constraints. Write the following lines in the constr.f file (in Src directory)

```
! Symmetrize the stress tensor for a cubic structure
     stressav = (stress(1,1) + stress(2,2) + stress(3,3)) / 3.0d0
     stress(1,1) = stressav
     stress(1,2) = 0.0d0
     stress(1.3) = 0.0d0
     stress(2,1) = 0.0d0
     stress(2,2) = stressav
     stress(2,3) = 0.0d0
     stress(3,1) = 0.0d0
     stress(3,2) = 0.0d0
     stress(3,3) = stressav
! Symmetrize the forces for a cubic structure
     fa(1,:) = 0.0d0
     fa(2,:) = 0.0d0
     fa(3,:) = 0.0d0
```

Recompile the code

Structural relaxation of the cubic bulk BaTiO₃ phase

Starting from a cubic symmetry...

LatticeConstant 4.00	Ang #	Experimental	lattice	constant	of	cubic	bulk	BaTiO3
%block LatticeVectors		-						
1.00 0.00 0.00								
0.00 1.00 0.00								
0.00 0.00 1.00								
%endblock LatticeVectors								
AtomicCoordinatesFormat	Fractio	nal						
%block AtomicCoordinates/	IndAtomic	Species						
0.0 0.0 0.0	1	-						
0.5 0.5 0.5	2							
0.5 0.5 0.0	3							
0.5 0.0 0.5	3							
0.0 0.5 0.5	3							
%endblock AtomicCoordinatesAndAtomicSpecies								

Structural relaxation of the cubic bulk BaTiO₃ phase

...Run the Conjugate Grandient Minimization with the previously imposed constraints

Molecular dynamics and relaxations # # We are going to perform a MD.TypeOfRun CG Conjugate Gradient (CG) minimization # Is the lattice relaxed together with MD.VariableCell .true. the atomic coordinates? MD.NumCGsteps 50 # Number of CG steps for coordinate optimization MD.MaxForceTol 0.01 eV/Ang # Tolerance in the maximum # atomic force MD.MaxStressTol 0.0001 eV/Ang**3 # Tolerance in the maximum stress in a MD.VariableCell # Conjugate Gradient optimization %block GeometryConstraints routine constr %endblock GeometryConstraints

In this example, we have performed those minimizations for you. They have been performed at different k-points samplings.

siesta < BaTiO3.cubic.222.fdf > BaTiO3.cubic.222.out

Structural relaxation of the bulk tetragonal BaTiO₃ phase

To keep the symmetry during the relaxation, we have to impose some constraints. Write the following lines in the constr.f file (in the Src directory)

```
! Symmetrize the stress tensor for a tetragonal structure
     stressav = (stress(1,1) + stress(2,2)) / 2.0d0
     stress(1,1) = stressav
     stress(1,2) = 0.0d0
     stress(1,3) = 0.0d0
     stress(2,1) = 0.0d0
     stress(2,2) = stressav
     stress(2,3) = 0.0d0
     stress(3,1) = 0.0d0
     stress(3,2) = 0.0d0
! Symmetrize the forces for a tetragonal structure
     fa(1,:) = 0.0d0
     fa(2,:) = 0.0d0
     fav = (fa(3,4) + fa(3,5)) / 2.0d0
     fa(3,4) = fav
     fa(3,5) = fav
```

Recompile the code

Structural relaxation of the bulk tetragonal BaTiO₃ phase

Run the Conjugate Grandient Minimization starting from a tetragonal structural, that might come from a sligthly distorted cubic phase.

Use the same fdf entries as before for the CG minimization

LatticeConstant 3.942581 Ang %block LatticeVectors 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.010 %endblock LatticeVectors AtomicCoordinatesFormat Fractional %block AtomicCoordinatesAndAtomicSpecies 0.0 0.0 0.000 1 0.5 0.5 0.512 2 0.5 0.5 -0.015 3 З 0.5 0.0 0.490 3 0.0 0.5 0.490 %endblock AtomicCoordinatesAndAtomicSpecies

In this example, we have performed those minimizations for you. They have been performed at different k-points samplings

siesta < BaTiO3.tetra.222.fdf > BaTiO3.tetra.222.out

Despite the fact of being a band insulator, a good sampling
in k is required to reproduce the right order of the phases $2 \times 2 \times 2$ Monkhorst-Pack mesh $4 \times 4 \times 4$ Monkhorst-Pack mesh

Cubic:	-3597.825482 eV	Cubic:	-3597.416802 eV
Tetragonal:	-3597.825483 eV	Tetragonal:	-3597.420217 eV
$\Delta \left(E_{ ext{tetra}} - E_{ ext{cubic}} ight)$:	0.00 meV	$\Delta \left(E_{ ext{tetra}} - E_{ ext{cubic}} ight)$:	-3.41 meV

 $6 \times 6 \times 6$ Monkhorst-Pack mesh

8 × 8 × 8 Monkhorst-Pack mesh

Cubic:	-3597.400231 eV	Cubic:	-3597.399473 eV
Tetragonal:	-3597.410000 eV	Tetragonal:	-3597.410330 eV
$\Delta \left(E_{ m tetra} - E_{ m cubic} ight)$:	-9.77 meV	$\Delta \left(E_{ ext{tetra}} - E_{ ext{cubic}} ight)$:	-10.86 meV

At least $6 \times 6 \times 6$ Monkhorst-Pack mesh to achieve good convergence (< 1 meV) of the double-well depth energy

These numbers have been obtained with siesta-3.0-b, compiled with the g95 compiler and double precision in the grid.

Numbers might change slightly depending on the platform, compiler and compilation flags

Convergence of the structural properties with respect the sampling in reciprocal space

Phase	Atom	Position
Tetragonal	Ba	(0.0, 0.0, 0.0)
	${ m Ti}$	$(0.5, 0.5, 0.5 + \Delta_{T-Ti})$
	O_1	$(0.5, 0.5, 0.0 + \Delta_{T-O1})$
	O_2	$(0.5, 0.0, 0.5 + \Delta_{T-O2})$
	O_3	$(0.0, 0.5, 0.5 + \Delta_{T-O2})$

Monkhorst-Pack	mesh a (Å)	c (Å)	c/a	Δ_{T-Ti}	Δ_{T-O1}	Δ_{T-O2}	$\Delta (E_{\text{tetra}} - E_{\text{cubic}}) \text{ (meV)}$
$2\times 2\times 2$	3.947	3.947	1.000	0.000	0.000	0.000	0.000
$4 \times 4 \times 4$	3.942	3.974	1.008	0.012	-0.015	-0.010	-3.41
$6 \times 6 \times 6$	3.938	3.997	1.015	0.016	-0.022	-0.015	-9.77
$8 \times 8 \times 8$	3.939	3.991	1.013	0.015	-0.020	-0.014	-10.86
Experiment	3.986	4.026	1.010	0.015	-0.023	-0.016	

Experimental numbers from G. Shirane *et al.*, Phys. Rev. 105, 856 (1957)

Typical understimation of the volume by LDA, but nice internal coordinates

At least $6 \times 6 \times 6$ Monkhorst-Pack mesh to achieve good convergence of the structural properties