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Based on recent advances in first-principles theory, we develop a general model of the band offset at
metal/ferroelectric interfaces. We show that, depending on the polarization of the film, a pathological regime
might occur where the metallic carriers populate the energy bands of the insulator, making it metallic. As the
most common approximations of density functional theory are affected by a systematic underestimation of
the fundamental band gap of insulators, this scenario is likely to be an artifact of the simulation. We provide a
number of rigorous criteria, together with extensive practical examples, to systematically identify this problematic
situation in the calculated electronic and structural properties of ferroelectric systems. We discuss our findings in
the context of earlier literature studies, where the issues described in this work have often been overlooked. We
also discuss formal analogies to the physics of polarity compensation at LaAlO3/SrTiO3 interfaces, and suggest
promising avenues for future research.
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I. INTRODUCTION

Advances in oxide thin-film growth techniques over the
past 10 years have led to the fabrication of many oxide-based
metal-insulator heterostructures with a dizzying range of
functionalities. Not only are the current technological limits of
information storage density and speed being pushed forward
by the use of, e.g., nanoscale ferroelectric memories,1–6

but entirely unique concepts in device applications are also
emerging, in which the electrical and the magnetic degrees
of freedom are both present within the same active element
and strongly coupled.7,8 Examples of this trend include thin-
film capacitors,4 strongly correlated field-effect devices,9 and
magnetic/ferroelectric tunnel junctions.10–13

Density functional theory (DFT) methods, either within
the local density (LDA) or generalized gradient (GGA)
approximation, have been an invaluable tool in achieving
a fundamental understanding of this class of systems,4,14,15

particularly with recent developments that allow the appli-
cation of finite electric fields to periodic solids or layered
heterostructures.16–20 However, since this domain of research
is relatively new, it is important to identify, in addition to
the virtues, also the limitations of DFT that are specific to
metal/ferroelectric interfaces, and that when overlooked might
lead to erroneous physical conclusions.

For most practical applications, a capacitor must be in-
sulating to dc current; transmission of electrons via nonzero
conductivity and/or direct tunneling (leakage) is generally an
undesirable source of heating and power consumption. At
the quantum-mechanical level, the insulating properties of a
capacitor are guaranteed by the presence of a dielectric film
with a finite band gap at the Fermi level, where propagation of
the metallic conduction electrons is forbidden. In the language
of semiconductor physics, we can alternatively say that both
Schottky barrier heights (SBHs), respectively φn and φp for
electrons and holes, need to be positive for the device to behave
as a capacitor. (By convention we assume that, if the Fermi

level of the metal lies in the gap of the insulator, both φn and
φp are positive.)

If, on the contrary, either φp or φn is negative, injection
of holes or electrons into the dielectric becomes energetically
favorable and the device behaves instead as an Ohmic contact.
Most importantly, at such a junction there is necessarily (at
thermodynamic equilibrium) a spillout of charge from the
metal to the insulator, as the system reequilibrates the chemical
potential of the free carriers on either side. Such intrinsic
space charge induces metallicity (by intrinsic doping) in the
dielectric film, and overall profoundly alters the electronic and
structural properties of the interface.

While in principle the charge spillage might be a real
physical feature of a given system, there are several arguments
that advise caution in the interpretation of DFT calculations
where this effect is found. The use of an approximate
functional to model the exchange and correlation energy, such
as LDA or GGA, generally produces severe and systematic
errors in the values of φp and φn, which can be generally
traced back to the well-known band-gap problem.21,22 This
implies that finding a negative value of either φp or φn is
unlikely to be a robust result of a LDA or GGA calculation.
Furthermore, the total amount of spilled-out charge depends on
the DFT values of φp and φn (the more negative the SBH, the
larger the number of states of the insulator that cross the Fermi
level). This means that, in such a pathological regime, the
error in φp or φn will directly propagate to the charge density,
and potentially affect a number of fundamental ground-state
properties of the interface. In order to avoid undesirable
artifacts in the DFT results, it is therefore crucial to clearly
identify whether this scenario applies to a given interface
calculation.

Such an analysis is not entirely straightforward, as the
physics governing the band alignment in a ferroelectric capac-
itor significantly departs from the well-established concepts
of semiconductor physics. First, the imperfect screening at
the electrode interface produces a potential drop15,23 that
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Electric displacement as the fundamental variable
in electronic-structure calculations
Massimiliano Stengel1*, Nicola A. Spaldin1 and David Vanderbilt2

Finite-field calculations in periodic insulators are technically and conceptually challenging, owing to fundamental problems
in defining polarization in extended solids. Although significant progress has been made recently with the establishment of
techniques to fix the electric field E or the macroscopic polarization P in first-principles calculations, both methods lack the
ease of use and conceptual clarity of standard zero-field calculations. Here we develop a new formalism, in which the electric
displacement D, rather than E or P, is the fundamental electrical variable. Fixing D has the intuitive interpretation of imposing
open-circuit electrical boundary conditions, which is particularly useful in studying ferroelectric systems. Furthermore, the
analogy to open-circuit capacitors suggests an appealing reformulation in terms of free charges and potentials, which
dramatically simplifies the treatment of stresses and strains. Using PbTiO3 as an example, we show that our technique enables
full control over the electrical variables within the density functional formalism.

The development of the modern theory of polarization1 has
fuelled exciting progress in the theory of the ferroelectric
state. Many properties that could previously be inferred only

at a very qualitative level can now be computed with quantum
mechanical accuracy within first-principles density functional
theory. Early ab initio studies focused on bulk ferroelectric
crystals, elucidating the delicate balance between covalency and
electrostatics that gives rise to ferroelectricity. Over time, these
methods were extended to treat the effects of external parameters
such as strains or electric fields2,3. Of particular note is the
recent introduction of a method for performing calculations at
fixed macroscopic polarization P4. The ability to compute crystal
properties from first principles as a function of P provides an
intuitive link to Landau–Devonshire and related semiempirical
theories in which P serves as order parameter.

Despite its obvious appeal, however, the constrained-P method
has found limited practical application so far for several reasons.
First, fixing P does not correspond to experimentally realizable
electrical boundary conditions (Fig. 1). Second, in an inhomoge-
neous heterostructure, the local polarization can vary from one
layer to another, and its average is therefore best regarded as a
derived, not a fundamental, quantity. Finally, the procedure used
to constrain P in the electronic minimization is relatively involved,
hampering its applicability to large systems, where computational
efficiency is crucial. In the following we show that considering
D as the fundamental electrical variable overcomes these physical
limitations, and that constraining D rather than P leads to a
simpler implementation.

Formalism
We consider a periodic insulating crystal defined by three primitive
translation vectors a

i

, with⌦ the unit cell volume, andwe introduce
the new functional

U (D,v)= EKS(v)+
⌦

8⇡
[D�4⇡P(v)]2 (1)

U (D,v) depends directly on an external vector parameter D,
and indirectly on the internal (ionic and electronic) coordinates

1Materials Department, University of California, Santa Barbara, California 93106-5050, USA, 2Department of Physics and Astronomy, Rutgers University,
Piscataway, New Jersey 08854-8019, USA. *e-mail: stengel@mrl.ucsb.edu.

v through the Kohn–Sham energy EKS and the Berry-phase
polarization P (ref. 1). (For the moment we fix the lattice
vectors; strains will be discussed shortly.) The minimum of U at
fixed D is given by

@U

@v

���
D

= @EKS

@v
�⌦ (D�4⇡P) · @P

@v
= 0

Comparing with the fixed-E approach of refs 2,3 in which the
electric enthalpy F is given by

F(E,v)= EKS(v)�⌦ E ·P(v) (2)

we see that
@F

@v

���
E
= @U

@v

���
D

(3)

provided that we set E = D � 4⇡P. We thus discover that
D = E+ 4⇡P is the macroscopic electric displacement field. The
functional in equation (1) takes the form U = EKS + (⌦/8⇡)E2,
which is the correct expression for the internal energy of a periodic
crystal when a uniform external field is present (details are given
in Supplementary Information, Section S2.4). Equation (1) thus
provides a framework for finding the minimum of the internal
energy U (D) with respect to all internal degrees of freedom
at specified electric displacement D. This is the essence of our
constrained-Dmethod.

As a consequence of equation (3), the method is algorithmically
very similar to a standard finite-E-field calculation2,3. In particular,
the Hellmann–Feynman forces are computed in the same way. The
only difference is that the field is updated according to E=D�4⇡P
on every iteration of the self-consistency (or ionic-relaxation) cycle.
This implies that the implementation and use of the constrained-D
method in an existing finite-E-field code is immediate; in our case
it required themodification of only two lines of code.

The effect of constraining D, rather than E, essentially
corresponds to the imposition of longitudinal, rather than
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From basic electrostatic, the macroscopic Maxwell equation in materials 

Encompasses all bound-charged effects 
that can be referred to the properties of 
periodically repeated primitive bulk unit 

Contains all the rest: 
•  Delta-doping layers 
•  Metallic free charges 
•  Charged adsorbates 
•  Variations in local stoichiometry 
•  … 

If we assume that the interface is oriented along the      axis,  
and each material is periodic in the plane parallel to the interface 

Macroscopic Maxwell equations in materials 



Relation between the normal component of the 
displacement field at the interface of different media 

We start from the Maxwell equation in macroscopic media 

Let     be a finite volume in space,      the closed surface bounding it,       
an element of area on the surface, and      a unit normal to the surface at     

pointing outward from the enclosed volume 

Integrating the Maxwell equation over the volume 

Then, we apply the divergence theorem 

SI units  



Relation between the normal component of the 
displacement field at the interface of different media 

An infinitesimal Gaussian 
pillbox straddles the boundary 

surface between two media 

So the normal component of       on either side of the boundary surface is related 
according to  

If the top and bottom are parallel, tangent to 
the surface, and of area        , then 

The discontinuity of the normal component of        at any point is equal to  the 
surface charge density at that point 

In the limit of a very shallow pillbox, the side 
surfaces do not contribute to the integral 

If the charge density           is singular 
at the interface so as to produce an 

idealized surface charge density 

J. D. Jackson 
Classical Electrodynamics, John Wiley and sons 

Second Edition  



Adopt a vacuum/insulator/vacuum geometry 

vacuum vacuum BaTiO3 

Pseudos generated 
with the virtual 

crystal 
approximation  

“Constrained-    ” method 

Replace the O by a fictitious 
atom of fractional atomic charge  

Replace the O by a fictitious 
atom of fractional atomic charge  

Nominal net charge at the left surface = 0 Nominal net charge at the right surface = 0 

If                    the “fictitious atom” is oxygen at both surfaces      

Ba(O(1-x)Fx) Ba(O(1-x)Nx) 



Adopt a vacuum/insulator/vacuum geometry 

vacuum vacuum BaTiO3 

Pseudos generated 
with the virtual 

crystal 
approximation  

“Constrained-    ” method 

Replace the O by a fictitious 
atom of fractional atomic charge  

Replace the O by a fictitious 
atom of fractional atomic charge  

If                    the “fictitious atom” is Nitrogen at the left and Fluorine at the right surface         

Nominal net charge at the left surface = -1 Nominal net charge at the right surface = +1 

Ba(O(1-x)Fx) Ba(O(1-x)Nx) 



Adopt a vacuum/insulator/vacuum geometry 

vacuum vacuum BaTiO3 

Pseudos generated 
with the virtual 

crystal 
approximation  

“Constrained-    ” method 

Replace the O by a fictitious 
atom of fractional atomic charge  

Replace the O by a fictitious 
atom of fractional atomic charge  

For fractional values of      ,  

Nominal charge of the “fictitious atom”:  

Nominal net charge at the left surface 

Nominal charge of the “fictitious atom”:  

Nominal net charge at the right surface 

Negative Positive 

Ba(O(1-x)Fx) Ba(O(1-x)Nx) 



Adopt a vacuum/insulator/vacuum geometry 

vacuum vacuum BaTiO3 

Ba(O(1-x)Nx) Ba(O(1-x)Fx) Pseudos generated 
with the virtual 

crystal 
approximation  

Therefore, the surface charge density at each termination amounts to  

As we have seen previously  

If we particularize this for the left surface (1 = vacuum; 2 = BaTiO3) 

“Constrained-    ” method 
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I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

%block ChemicalSpeciesLabel
1 56 Ba
2 22 Ti
3 8 O
4 201 ON-0.95000
5 202 OF-0.95000

%endblock ChemicalSpeciesLabel

%block SyntheticAtoms
4
2 2 3 4
2.000000 3.950000 0.000000 0.000000

5
2 2 3 4
2.000000 4.050000 0.000000 0.000000

%endblock SyntheticAtoms

#
# Variables to run a calculation at constant displacement field, D
#

SlabDipoleCorrection .true. # SIESTA calculates the electric field
# required to compensate the dipole of
# the system at every iteration of
# the self-consistent cycle.
# The potential added to the grid
# corresponds to that of a dipole layer
# at the middle of the vacuum layer.
# For slabs, this exactly compensates
# the electric field at the vacuum
# created by the dipole moment of
# the system.

electric field is first negative as the polarization builds up,
and then vanishes when the spontaneous polarization Ps is
reached. We will make use of this kind of analysis later in
Secs. III B and III C 3.

2. Periodically repeated supercells

In supercell calculations, periodic boundary conditions
are usually imposed on the electrostatic potential. For slabs
with a nonvanishing dipole moment perpendicular to the sur-
face, this leads to electrostatic potentials that typically look
like the sketch shown in Fig. 3!a". The electrostatic potential
corresponds neither to the situation of Fig. 1!a" nor to that of
Fig. 1!b". Instead, the imposition of periodic boundary con-
ditions on the supercell geometry leads to some other par-
ticular combination of internal and external electric fields,
such that there is no discontinuity in the potential at the
supercell boundary. The same occurs even for paraelectric
slabs when terminated by nonequivalent surfaces with differ-
ent work functions.
The artificial electric fields become smaller when the

thickness of the slab or the vacuum region is increased, but it
is computationally very expensive to converge results by us-
ing larger and larger supercells. Fortunately, the error asso-
ciated with the artificial electric field can easily be eliminated
by introducing an external dipole layer in the vacuum region

of the supercell.19,20 The electrostatic potential of this dipole
layer is shown in Fig. 3!b". In order to reach a situation
corresponding to Fig. 1!a", the unwanted artificial external
electric field can be compensated by adding a certain amount
of the potential of Fig. 3!b" to that of Fig. 3!a", as is shown
in Fig. 3!c" !dipole correction19". The dipole-corrected elec-
trostatic potential is now discontinuous, but the discontinuity
lies in the vacuum region of the supercell where the wave
functions are essentially zero. Alternatively, the external di-
pole layer may be used to apply a true external electric field
Eext to the surfaces.20 In particular, the situation of Fig. 1!b"
can be reached by subtracting a certain amount of the dipole
potential of Fig. 3!b" from that of Fig. 3!a", as shown in Fig.
3!d".
The external dipole field can easily be implemented in

any plane-wave-based electronic structure code. Following
the notation of Bengtsson,19 we denote the external dipole
potential of Fig. 3!b" as vdip(z), and the electrostatic poten-
tial for the electrons calculated under periodic boundary con-
ditions #corresponding to Fig. 3!a"$ as vper(r). The new po-
tential is then

v!r"!vper!r""vdip!z ". !5"

For a slab with dipole moment m and an external electric
field Eext , the dipole potential is given by

vdip!z "!#e! 4%m
c0

#Eext" z , #
c0
2 $z$

c0
2 , !6"

where c0 is the height of the supercell. In a self-consistent
calculation, the charge density, and thereby m, change with
each step of the iteration. Therefore, m and the dipole poten-
tial vdip(z) have to be recalculated on each iteration until
self-consistency is achieved !analogous to the updating of
the Hartree and exchange-correlation potentials".
The additional external potential vdip(z) also leads to

changes in the total energies E tot and the Hellmann-Feynman
forces FI :

E tot!E tot
per"! 2%m

c0
#Eext"Am , !7"

FI!FI
per#eZI! 4%m

c0
#Eext" êz , !8"

where E tot
per and FI

per are the total energy and Hellmann-
Feynman force calculated with the periodic potential vper(r),
and ZI is the ionic charge of ion I.

III. RESULTS AND DISCUSSION

A. Zero external electric field

As a first step, we calculated the fully relaxed structure of
the various slabs in zero external electric field. For the asym-
metrically terminated eight-layer slabs, the dipole correction
was used to enforce the vanishing of the external field. In
this case, as pointed out in Sec. II C 1, all slabs adopt the
paraelectric cubic phase. The symmetrically terminated slabs
show no dipole moment !the central layer of the slabs is a

FIG. 3. Schematic picture of the planar-averaged potential v (z)
for periodically repeated slabs: !a" with periodic boundary condi-
tions, !b" potential of the dipole layer, !c" dipole-corrected slabs
with vanishing external electric field, and !d" dipole-corrected slabs
with vanishing internal electric field.

B. MEYER AND DAVID VANDERBILT PHYSICAL REVIEW B 63 205426

205426-4

That is what we are looking for.  
Zero electric field in the vacuum region 

B. Meyer and D. Vanderbilt 
Phys. Rev. B 63, 205426 (2001)  

If there is no electric field in vacuum, then  

The dipole correction in the vacuum region is 
required to ensure that              in the vacuum side 



Adopt a vacuum/insulator/vacuum geometry 

vacuum vacuum BaTiO3 

Ba(O(1-x)Nx) Ba(O(1-x)Fx) Pseudos generated 
with the virtual 

crystal 
approximation  

Therefore, the surface charge density at each termination amounts to  

“Constrained-    ” method 



Adopt a vacuum/insulator/vacuum geometry 

vacuum vacuum BaTiO3 

Ba(O(1-x)Nx) Ba(O(1-x)Fx) Pseudos generated 
with the virtual 

crystal 
approximation  

“Constrained-    ” method 

We can monitor the value of the displacement field with an external parameter 
In many ferroelectric materials, we can assume that                , with errors of 1%  

Largest electric field that can be applied without dielectric breakdown 



Adopt a vacuum/insulator/metal/vacuum geometry 
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“Constrained-    ” method in capacitors 



Comparison of the “constrained-σ” method with 
the existing methods based on applied fields 

Useful alternative to the already existing “constrained-D” method 
M. Stengel, N. A. Spaldin and D. Vanderbilt, Nature Physics 5, 304 (2009)  

Advantages: 
 
No need for a specialized code 
Practical for interfaces (esp. metal/insulator) 
Can constrain D to two different values at the opposite boundaries of the slab  

Disadvantages: 
Cumbersome for bulk calculations 

D

z

σ1
σ

free

2

STO

σ
−σ

2

1
σ

STO

LAO

LAO

M. Stengel, Phys. Rev. Lett. 106, 136803 (2011) 



How to apply the constrained-     method in SIESTA 

(easily transferable to any other code) 

1. Generate pseudopotential and basis set for alchemical atoms 

2. Check that the free surface remains locally insulating 

3. Relax the structure and check (at least one time) how the 
displacement vector within the slab is the same as the one 
enforced by the external charge  



Generate pseudopotentials for alchemy atoms 

Follow the instructions given in the lecture 

How to generate a mixed pseudopotential.  
The Virtual Crystal Approximation in SIESTA  

You can download it from: 
http://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Pseudos/Pseudos.html 



For each pseudoatom, a new species 
has to be defined 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

%block ChemicalSpeciesLabel
1 56 Ba
2 22 Ti
3 8 O
4 201 ON-0.95000
5 202 OF-0.95000

%endblock ChemicalSpeciesLabel

%block SyntheticAtoms
4
2 2 3 4
2.000000 3.950000 0.000000 0.000000

5
2 2 3 4
2.000000 4.050000 0.000000 0.000000

%endblock SyntheticAtoms

#
# Variables to run a calculation at constant displacement field, D
#

SlabDipoleCorrection .true. # SIESTA calculates the electric field
# required to compensate the dipole of
# the system at every iteration of
# the self-consistent cycle.
# The potential added to the grid
# corresponds to that of a dipole layer
# at the middle of the vacuum layer.
# For slabs, this exactly compensates
# the electric field at the vacuum
# created by the dipole moment of
# the system.

Each pseudoatom has to be 
included as a new Chemical Specie.  

The chemical specie number 
should start at 201 and then 

numbered consecutively 

The name of the chemical specie of 
the pseudoatom should be that 

provided by the VCA util 

Then, a new block is required for the pseudoatoms.  
It should contain the information contained in the name.synth file 

provided by the VCS util.  
 

Remember to change the integer in the first line to point to the 
right specie in the ChemicalSpeciesLabel block 



Basis set for the pseudoatoms 

3

ON-0.95000 3 -0.28
n=2 0 2 E 40.58 3.95
4.95272270428712 3.60331408800389
1.00000000000000 1.00000000000000

n=2 1 2 E 36.78 4.35
4.99990228025066 3.89745395068600
1.00000000000000 1.00000000000000

n=3 2 1 E 21.69 0.93
2.73276990670788
1.00000000000000

OF-0.95000 3 -0.28
n=2 0 2 E 40.58 3.95
4.95272270428712 3.60331408800389
1.00000000000000 1.00000000000000

n=2 1 2 E 36.78 4.35
4.99990228025066 3.89745395068600
1.00000000000000 1.00000000000000

n=3 2 1 E 21.69 0.93
2.73276990670788
1.00000000000000

occopt 3 # Occupation Option
# Fermi-Dirac smearing (finite-temperature metal)

tsmear 0.01 # Temperature of smearing (in Ha)

Since the pseudoatoms are close 
to O, we chose as the basis set for 
the pseudoatoms the same basis 

as for O.  

The blocks have to be included in 
the PAO.Basis block, but changing 

the line to point to the 
corresponding chemical specie 



The additional charge density is introduced by  
replacing oxygens at the surface by fictitious atoms  

3

%block AtomicCoordinatesAndAtomicSpecies
0.000000000 0.000000000 31.263511472 1
3.660400960 3.660400960 31.183163575 4
3.660400960 3.660400960 34.823972352 2
3.660400960 0.000000000 34.861985781 3
0.000000000 3.660400960 34.861985781 3
0.000000000 0.000000000 38.716237575 1
3.660400960 3.660400960 38.692193436 3
3.660400960 3.660400960 42.455760764 2
3.660400960 0.000000000 42.457692504 3
0.000000000 3.660400960 42.457692504 3
0.000000000 0.000000000 46.234251560 1
3.660400960 3.660400960 46.233589773 3
3.660400960 3.660400960 50.000000000 2
3.660400960 0.000000000 50.000000000 3
0.000000000 3.660400960 50.000000000 3
0.000000000 0.000000000 53.765748440 1
3.660400960 3.660400960 53.766410227 3
3.660400960 3.660400960 57.544239236 2
3.660400960 0.000000000 57.542307496 3
0.000000000 3.660400960 57.542307496 3
0.000000000 0.000000000 61.283762425 1
3.660400960 3.660400960 61.307806564 3
3.660400960 3.660400960 65.176027648 2
3.660400960 0.000000000 65.138014219 3
0.000000000 3.660400960 65.138014219 3
0.000000000 0.000000000 68.736488528 1
3.660400960 3.660400960 68.816836425 5

%endblock AtomicCoordinatesAndAtomicSpecies

occopt 3 # Occupation Option
# Fermi-Dirac smearing (finite-temperature metal)

tsmear 0.01 # Temperature of smearing (in Ha)

An atom of fractional charge 5.95 

An atom of fractional charge 6.05 

Oxygen atoms at surfaces 
are replaced by  

This layer will have a formal 
charge of -0.05 

This layer will have a formal 
charge of +0.05 



Check that the free surface remains 
locally insulating  

See below the lecture 

How to compute the projected density of states (PDOS) 

 0

 0.5

 1

 1.5

 2

 2.5

-10 -8 -6 -4 -2  0

"Ba-1.PDOS.dat" u 1:2
"O-1.PDOS.dat" u 1:2
"Ti-2.PDOS.dat" u 1:2

"O-2.1.PDOS.dat" u 1:2
"Ba-3.PDOS.dat" u 1:2
"O-3.PDOS.dat" u 1:2

No states at the 
Fermi energy: 

insulating surface 

EF 



Check that the displacement vector within the slab is 
the same as the one enforced by the external charge 

vacuum vacuum BaTiO3 

Pseudos generated 
with the virtual 

crystal 
approximation  

In our example, x = 0.05, and the in-plane lattice constant is the theoretical 
one of an hypothetical SrTiO3 substrate (                       ) 

Ba(O(1-x)Nx) Ba(O(1-x)Fx) 



We compute the macroscopic internal electric field within BaTiO3 slab 
(see the tutorial “how to compute the internal electric field” below) 

Ba
O

Ti
O 2

Ba
O

Ti
O 2

Ba
O

Ti
O 2

Ba
O

Ti
O 2

Ba
O

Ti
O 2

Ba
O

-10

-5

0

el
ec

tro
sta

tic
 p

ot
en

tia
l (

eV
)

Check that the displacement vector within the slab is 
the same as the one enforced by the external charge 



We compute the local polarization within BaTiO3 slab  
(see the tutorial “how to compute the local polarization” below) 
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In SIESTA,   

Taking a value around the center of the slab 

Check that the displacement vector within the slab is 
the same as the one enforced by the external charge 

2

0.1 Energy functional for a dielectric inside an

electric field.

Cite [Wortmann and Blügel(2011), Butler et al.(2001)Butler, Zhang, Schulthess, and MacLaren].

# z(Ang) Px(C/m^2) Py(C/m^2) Pz(C/m^2)
18.376660873 -0.000000001 -0.000000001 -0.105472570
20.457428928 -0.000000001 -0.000000001 -0.088640898
22.418271761 -0.000000001 -0.000000001 -0.066930676
24.445287373 -0.000000001 -0.000000001 -0.064462693
26.424394483 -0.000000001 -0.000000001 -0.062514460
28.440715634 -0.000000001 -0.000000001 -0.058916991
30.432055406 -0.000000001 -0.000000001 -0.057296090
32.424608718 -0.000000001 -0.000000001 -0.035671478
34.469210930 -0.000000001 -0.000000001 -0.000880223



Check that the displacement vector within the slab is 
the same as the one enforced by the external charge 

Compare the value enforced by the external charge  

With the value obtained from the macroscopic field and the local polarization 



Javier Junquera 

How to compute the  

projected density of states (PDOS) 
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To check that the interface is insulating,                    
compute the layer by layer projected density of states 2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

%block ProjectedDensityOfStates
-70.00 5.00 0.150 3000 eV

%endblock ProjectedDensityOfStates

%PDOS.kgrid_Monkhorst_Pack
60 0 0 0.5
0 60 0 0.5
0 0 2 0.5

%end PDOS.kgrid_Monkhorst_Pack

%block ChemicalSpeciesLabel
1 56 Ba
2 25 Mn
3 8 O

%endblock ChemicalSpeciesLabel

LatticeConstant 1.00 Ang
%block LatticeParameters

5.572635 5.572635 4.695535 90.0000 90.0000 120.0000
%endblock LatticeParameters

AtomicCoordinatesFormat Fractional
%block AtomicCoordinatesAndAtomicSpecies

3.3333333333E-01 6.6666666667E-01 7.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2
1.5307862000E-01 3.0615724000E-01 2.5000000000E-01 3
6.6666666667E-01 3.3333333333E-01 2.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01 2
8.4692138000E-01 1.5307862000E-01 7.5000000000E-01 3
3.0615724000E-01 1.5307862000E-01 7.5000000000E-01 3
6.9384276000E-01 8.4692138000E-01 2.5000000000E-01 3
1.5307862000E-01 8.4692138000E-01 2.5000000000E-01 3
8.4692138000E-01 6.9384276000E-01 7.5000000000E-01 3

%endblock AtomicCoordinatesAndAtomicSpecies

A separate set of k-points, usually on a finer grid 
than the one used to achieve self-consistency. 

Same format as the Monkhorst-Pack grid. 



How to compute the DOS and PDOS                                                                                   

%block ProjectedDensityOfStates 
      -70.0  5.0  0.150 3000 eV 
%endblock ProjectedDensityOfStates 

-70.0  5.0 :  Energy window where the DOS and PDOS will be computed 
  (relative to the program’s  zero, i.e. the same as the 
  eigenvalues printed by the program) 



The eigenvalues are broadening by a gaussian to 
smooth the shape of the DOS and PDOS 

σ  related 
with the 
FWHM 



How to compute the DOS and PDOS                                                                                   

%block ProjectedDensityOfStates 
      -70.0  5.0  0.150 3000 eV 
%endblock ProjectedDensityOfStates 

0.150 : Peak width of the gaussian used to broad the eigenvalues (energy) 

  It should be twice as large as the fictitious electronic  
  temperature used during self-consistency 

  (see Appendix B of M. Stengel et al. Phys. Rev. B 83, 235112 (2011) 

-70.0  5.0 :  Energy window where the DOS and PDOS will be computed 
  (relative to the program’s  zero, i.e. the same as the 
  eigenvalues printed by the program) 



How to compute the DOS and PDOS                                                                                   

%block ProjectedDensityOfStates 
      -70.0  5.0  0.150 3000 eV 
%endblock ProjectedDensityOfStates 

3000 : Number of points in the histogram 

-70.0  5.0 :  Energy window where the DOS and PDOS will be computed 
  (relative to the program’s  zero, i.e. the same as the 
  eigenvalues printed by the program) 

0.150 : Peak width of the gaussian used to broad the eigenvalues (energy) 

  It should be twice as large as the fictitious electronic  
  temperature used during self-consistency 

  (see Appendix B of M. Stengel et al. Phys. Rev. B 83, 235112 (2011) 



How to compute the DOS and PDOS                                                                                   

%block ProjectedDensityOfStates 
      -70.0  5.0  0.150 3000 eV 
%endblock ProjectedDensityOfStates 

3000 : Number of points in the histogram 

eV : Units in which the previous energies are introduced 

-70.0  5.0 :  Energy window where the DOS and PDOS will be computed 
  (relative to the program’s  zero, i.e. the same as the 
  eigenvalues printed by the program) 

0.150 : Peak width of the gaussian used to broad the eigenvalues (energy) 

  It should be twice as large as the fictitious electronic  
  temperature used during self-consistency 

  (see Appendix B of M. Stengel et al. Phys. Rev. B 83, 235112 (2011) 



Output for the Density Of States                                                                                  
SystemLabel.DOS 

Format 
Energy (eV) DOS Spin Up (eV-1) DOS Spin Down (eV-1) 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

-69.99993 0.00000 0.00000
-69.97492 0.00000 0.00000
-69.94991 0.00000 0.00000

. . .

. . .

. . .

%block ChemicalSpeciesLabel
1 56 Ba
2 25 Mn
3 8 O

%endblock ChemicalSpeciesLabel

LatticeConstant 1.00 Ang
%block LatticeParameters

5.572635 5.572635 4.695535 90.0000 90.0000 120.0000
%endblock LatticeParameters

AtomicCoordinatesFormat Fractional
%block AtomicCoordinatesAndAtomicSpecies

3.3333333333E-01 6.6666666667E-01 7.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2
1.5307862000E-01 3.0615724000E-01 2.5000000000E-01 3
6.6666666667E-01 3.3333333333E-01 2.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01 2
8.4692138000E-01 1.5307862000E-01 7.5000000000E-01 3
3.0615724000E-01 1.5307862000E-01 7.5000000000E-01 3
6.9384276000E-01 8.4692138000E-01 2.5000000000E-01 3
1.5307862000E-01 8.4692138000E-01 2.5000000000E-01 3
8.4692138000E-01 6.9384276000E-01 7.5000000000E-01 3

%endblock AtomicCoordinatesAndAtomicSpecies



Output for the Projected Density Of States                                                                         
SystemLabel.PDOS 

Written in XML 

One element <orbital> for          
every atomic orbital in the basis 
set 

Energy Window 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

<pdos>
<nspin>1</nspin>
<norbitals> 387</norbitals>
<energy_values units="eV">

-69.99993
-69.97492
-69.94991

.

.

.
</energy_values>
<orbital
index=" 1"
atom_index=" 1"
species="Ba"
position=" 0.000000 0.000000 31.156083"
n=" 5"
l=" 0"
m=" 0"
z=" 1"

>
<data>

0.00000
0.00000
0.00000
.
.
.

</data>
</orbital>
</pdos>

%block ChemicalSpeciesLabel
1 56 Ba
2 25 Mn
3 8 O

%endblock ChemicalSpeciesLabel

LatticeConstant 1.00 Ang
%block LatticeParameters

5.572635 5.572635 4.695535 90.0000 90.0000 120.0000
%endblock LatticeParameters

AtomicCoordinatesFormat Fractional
%block AtomicCoordinatesAndAtomicSpecies

3.3333333333E-01 6.6666666667E-01 7.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2
1.5307862000E-01 3.0615724000E-01 2.5000000000E-01 3
6.6666666667E-01 3.3333333333E-01 2.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01 2
8.4692138000E-01 1.5307862000E-01 7.5000000000E-01 3
3.0615724000E-01 1.5307862000E-01 7.5000000000E-01 3
6.9384276000E-01 8.4692138000E-01 2.5000000000E-01 3
1.5307862000E-01 8.4692138000E-01 2.5000000000E-01 3
8.4692138000E-01 6.9384276000E-01 7.5000000000E-01 3



How to digest the SystemLabel.PDOS file                    

fmpdos (by Andrei Postnikov) 

Go to the directory Util/Contrib/Apostnikov, or download from  

 http://www.home.uni-osnabrueck.de/apostnik/download.html 

Compile the code (in the Util directory, simply type $ make)  

Execute fmpdos and follow the instructions at run-time 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

$ <your_siesta_directory_path>/Util/Contrib/APostnikov/fmpdos
Input file name (PDOS):

Surface.PDOS
Output file name :

Ba-1.PDOS.dat
Extract data for atom index (enter atom NUMBER, or 0 to select all),
or for all atoms of given species (enter its chemical LABEL):

1
Extract data for n= ... (0 for all n ):

0

%block ChemicalSpeciesLabel
1 56 Ba
2 25 Mn
3 8 O

%endblock ChemicalSpeciesLabel

LatticeConstant 1.00 Ang
%block LatticeParameters

5.572635 5.572635 4.695535 90.0000 90.0000 120.0000
%endblock LatticeParameters

AtomicCoordinatesFormat Fractional
%block AtomicCoordinatesAndAtomicSpecies

3.3333333333E-01 6.6666666667E-01 7.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 2
1.5307862000E-01 3.0615724000E-01 2.5000000000E-01 3
6.6666666667E-01 3.3333333333E-01 2.5000000000E-01 1
0.0000000000E+00 0.0000000000E+00 5.0000000000E-01 2
8.4692138000E-01 1.5307862000E-01 7.5000000000E-01 3
3.0615724000E-01 1.5307862000E-01 7.5000000000E-01 3
6.9384276000E-01 8.4692138000E-01 2.5000000000E-01 3
1.5307862000E-01 8.4692138000E-01 2.5000000000E-01 3
8.4692138000E-01 6.9384276000E-01 7.5000000000E-01 3

%endblock AtomicCoordinatesAndAtomicSpecies

Repeat this for all the atoms you might be interested in, spetially 
those at the surface layers 



How to digest the SystemLabel.PDOS file                    
Plot the layer by layer Projected Density of States 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

scf: iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV)
scf: 1 -19120.0592 -19120.0592 -19120.0592 0.00001 -4.7719

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Plot an interval of energies around the Fermi 
energy, that can be found in the following 

lines of the output file 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

scf: iscf Eharris(eV) E_KS(eV) FreeEng(eV) dDmax Ef(eV)
scf: 1 -19120.0592 -19120.0592 -19120.0592 0.00001 -4.7719

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Plot the PDOS for the atoms of 
the three first layers starting 

from the bottom 
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For the bottom interface 
 (repeat the same for the top interface) 



Normalization of the DOS and PDOS                                                                                   

Number of bands 
per k-point 

Number of atomic 
orbitals in the unit cell 

Number of electrons 
in the unit cell 

Occupation factor at energy E 



Javier Junquera 

How to compute the macroscopic 
electric field within the slab 
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First step: average in the plane 
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BaTiO3 vacuum vacuum 



Second step: nanosmooth the planar 
average on the z-direction 

 

BaTiO3 vacuum vacuum 
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Atomic scale fluctuations are washed out by filtering the 
magnitudes via convolution with smooth functions 



How to compile MACROAVE…  

Automaticallu uses the same arch.make file as for the compilation 
of SIESTA 

…and where to find the User’s Guide and some Examples  



How to run MACROAVE  

  SIESTA 
SaveRho   .true. 
SaveTotalCharge   .true. 
SaveIonicCharge   .true. 
SaveDeltaRho   .true. 
SaveElectrostaticPotential  .true. 
SaveTotalPotential  .true. 

Output of SIESTA required by MACROAVE 
SystemLabel.RHO 
SystemLabel.TOCH 
SystemLabel.IOCH 
SystemLabel.DRHO 
SystemLabel.VH 
SystemLabel.VT  

Depending on what you want 
to nanosmooth 

          MACROAVE 
Prepare the input file macroave.in 
$ ~/siesta/Util/Macroave/Src/macroave.x 

You do not need to rerun SIESTA to run 
MACROAVE as many times as you want 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Input of MACROAVE: macroave.in 

The same code with the same input runs with information provided by 

SIESTA ABINIT or 

(indeed it should be quite straight forward to generalize to any other code) 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Potential:   SystemLabel.VH 

Charge:    SystemLabel.RHO 

TotalCharge:   SystemLabel.TOCH 

Name of the magnitude that will be nanosmoothed 

Input of MACROAVE: macroave.in 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

SystemLabel 

Input of MACROAVE: macroave.in 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Number of square filter functions used for nanosmoothing 

1    Surfaces 

2    Interfaces and superlattices 

Input of MACROAVE: macroave.in 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Length of the different square filter functions (in Bohrs) 

Input of MACROAVE: macroave.in 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Total number of electrons  
(used only to renormalize if we nanosmooth the electronic charge) 

Input of MACROAVE: macroave.in 



2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

Cite1,2.

Siesta # Which code have you used to get the input data?
Potential # Which is the input microscopic data?
Surface # Name of the file where the input data is stored
1 # Number of convolutions required to calculate the macro. ave.
7.557853043 # First length for the filter function in macroscopic average
7.47614934 # Second length for the filter function in macroscopic average
216 # Total charge
spline # Type of interpolation

$ gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: Darwin 11.4.2

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to <http://sourceforge.net/projects/gnuplot>

Terminal type set to ’aqua’
gnuplot> plot "Ba-1.PDOS.dat" u 1:2 w l, "O-1.PDOS.dat" u 1:2 w l,
"Ti-2.PDOS.dat" u 1:2 w l, "O-2.1.PDOS.dat" u 1:2 w l,
"Ba-3.PDOS.dat" u 1:2 w l, "O-3.PDOS.dat" u 1:2 w l
gnuplot> set xrange [-10:0]
gnuplot> replot

Type of interpolation from the SIESTA mesh to a FFT mesh 

Spline Linear or 

Input of MACROAVE: macroave.in 



Output of MACROAVE     

Planar average Nanosmoothed  

SystemLabel.MAV 

Format 

SystemLabel.PAV 

Units 
Coordinates: Bohr               Potential: eV  Charge density: electrons/Bohr3 



To compute the electric field, plot the nanosmoothed pot. 
and perform a linear regression at the center of the slab  
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In our example, for  

Note how the electric 
field in vacuum is zero, 

as impoosed by the 
slab dipole correction  



To learn more on nanosmoothing and how to   
compute work functions and band offsets with SIESTA 



Javier Junquera 

How to compute the           
layer by layer polarization 



How to compute the local value of the 
“effective polarization” 

Bulk Born effective charges 
associated with atom  

Position of atom      along   Surface cell area 

Ubiquous formula to compute the dipole density of layer   : 

Note that: 
 - we sum only over all the atoms that belong to that particular layer 
 - we assume a one-dimensional problem (the atoms are allowed to 
 move only along the      direction, so we do not need to consider
 off- diagonal terms in the Born effective charges. 



How to compute the local value of the 
“effective polarization” 

Ubiquous formula to compute the dipole density of layer   : 

This formula is typically ill-defined 

Since the acoustic sum rule is usually not satisfied by individual layers   

Then the formula is origin dependent 

To circumvent this problem:  
perform an average with the neigboring layers (so the acoustic sum rule is 
satisfied when summing the weighted effective charges in all these layers) 

For instance, in perovskites  
[valid for II-IV (PbTiO3 or BaTiO3), I-V (KNbO3), and III-III (LaAlO3)] 



Ubiquous formula to compute the dipole density of layer   : 

The approximate local polarization immediately follows 

Here we assume that every 
individual layer occupies only 

half the cell   

Average out-of-plane lattice parameter 

Exact estimate: 
-  In the linear limit (the dipole density is only linear in the positions) 

     
This assumes small polar distortions 

 
- Under short-circuit electrical boundary conditions (assuming that 
the electric field vanishes throughout the structural transformations). 
Remember that the Born effective charges assume zero electric-field  

How to compute the local value of the 
“effective polarization” 



The approximate local polarization immediately follows 

Exact estimate: 
-  In the linear limit (the dipole density is only linear in the positions) 

     
This assumes small polar distortions 

 
Polar distortions in ferroelectric capacitors are generally large    

(close to the spontaneous polarization of the ferroelectric insulator) 
 

- Under short-circuit electrical boundary conditions (assuming that 
the electric field vanishes throughout the structural transformations). 
Remember that the Born effective charges assume zero electric-field  

There is generally an imperfect screening regime, with a 
macroscopic “depolarizing field” 

How to compute the local value of the 
“effective polarization” 



A corrected formula for the local polarization 

Electronic susceptibility 

Ionic susceptibility 
BAND ALIGNMENT AT METAL/FERROELECTRIC . . . PHYSICAL REVIEW B 83, 235112 (2011)

No. CSD2007-00041 (M.S.); by the European Union through
the project EC-FP7, Grant No. NMP3-SL-2009-228989 “Ox-
IDes” (J.J. and M.S.); and by the US National Science Founda-
tion, Grant No. DMR-0940420 (N.A.S.). J.J., P.A.P., and M.S.
thankfully acknowledge the computer resources, technical
expertise, and assistance provided by the Red Española de
Supercomputación. Calculations were also performed at the
ATC group of the University of Cantabria, and at CESGA.

APPENDIX A: LOCAL POLARIZATION VIA BORN
EFFECTIVE CHARGES

In this Appendix we discuss the approach, used in several
parts in this paper and ubiquitously in the recent literature,
of associating the local value of the “effective” polarization
(i.e., the induced P with respect to the reference centrosym-
metric configuration60) in capacitor heterostructures with an
approximate formula, based on the Born effective charges Z∗.
In particular, we provide formal justification for an improved
formula, still based on the Z∗, that we introduced in this work,
and we already mentioned in Sec. III B 3.

Recall the definition of the approximate effective polariza-
tion in terms of the Born effective charges in a bulk solid,

P Z = e

!

∑

α

Z∗
αRαz. (A1)

It is easy to verify that the layer-resolved expression P Z
j of

Eq. (32) reduces to P Z in the case of a periodic crystal, where
P Z

j is a constant function of the layer index j . P Z does not
reduce to the “correct” polarization P (D) at any value of D,
as it does not take into account the additional polarization of
the electronic cloud due to the internal field E(D) (recall that
the Born effective charges are defined under the condition of
zero macroscopic electric field.76)

Taking the Taylor expansion of the polarization as a function
of D (we assume for simplicity that D, P , and P Z all vanish
in the reference centrosymmetric structure), we can write

P Z(D) = dP Z

dD
D + · · · = dP Z

dE
dE
dD

D + · · · . (A2)

For small values of D, we can truncate the previous
expansion at the linear order term. Now, by definition

dP Z

dE
= ε0χion, (A3)

where χion is the lattice-mediated susceptibility, and

dE
dD

= (ε0εtot)−1, (A4)

where εtot is the total dielectric constant of the insulator
(relative to the vacuum permittivity ε0). Substituting Eqs. (A3)
and (A4) into Eq. (A2),

P Z(D) ∼ D
χion

εtot
. (A5)

The same kind of arguments applied to the total polarization
yield

P (D) ∼ D
χtot

εtot
, (A6)

TABLE III. Values of the susceptibilities χ and scaling factors
χtot/χion for the ferroelectric materials considered in this work.

εtot ε∞ χtot/χion

BaTiO3 −48.87 6.48 0.90
PbTiO3 −96.54 8.33 0.93
KNbO3 −34.92 6.27 0.87

where χtot is the sum of the lattice-mediated susceptibility
χion and the purely electronic (frozen-ion) susceptibility χ∞.
Note that χion is not bound to be positive. In a ferroelectric
material, for example, the centrosymmetric reference structure
is unstable and therefore yields a negative χion (and hence εtot),
as discussed in Ref. 32. The present derivation is general and
encompasses those cases.

From the above considerations it immediately follows that
an estimate of the total polarization, which is exact in the linear
limit, can be given as

P (D) ∼ χtot

χion
P Z(D). (A7)

This is essentially Eq. (33). In practice, χion and χ∞ are
calculated in the reference phase according to the standard
definitions,77

χion = εtot − ε∞ = e2

M0!

∑

m

(Z̃∗
m)2

ω2
m

, (A8)

where M0 is a unit mass, Z̃∗
m are the normal mode charges, and

ω2
m are the eigenvalues of the dynamical matrix, and

χ∞ = (ε∞ − 1), ε−1
∞ = ε0

dE
dD

∣∣∣
fixed ions

. (A9)

The values of these physical constants that are relevant for the
results presented in this paper are reported in Table III.

We proceed in the following to test this approximation on
two representative bulk ferroelectric materials, PbTiO3 and
BaTiO3. We take the relevant data (linear susceptibilities,
Born charges, and relaxed structures as a function of D) from
the calculations of Refs. 32 and 20. Note that the BaTiO3
calculation was performed at a fixed value of the in-plane
lattice parameter (indicated as “film” in the figure) while
in the PbTiO3 calculation both a and c parameters were
relaxed for each value of D. The results are presented in
Fig. 21. In both cases, the “bare” value P Z is systematically
overestimated compared to the Berry-phase polarization. With
the correction described above, i.e., by rescaling all values
by the factor χtot/χion, the approximate value of P accurately
matches the Berry-phase one. The accuracy is surprisingly
good in BaTiO3, where the maximum deviation is of the order
of 1%. In PbTiO3, for large values of d, the rescaled-Z∗

value of P presents significant deviations. Note that these
deviations mostly concern values of d that are larger than that
of the ferroelectric ground state (d ∼ 0.74), and therefore are
not of concern in this paper. We ascribe these deviations to
the field-induced structural transition that was described in
Ref. 32.

In conclusion, this simple rescaling factor appears to be
an effective way to obtain a relatively accurate value of the
local P in heterostructure calculations, based only on the

235112-23

See Appendix A in  
M. Stengel et al. Phys. Rev. B 83, 235112 (2011)  

How to compute the local value of the 
“effective polarization” 



“Effective” layer-by-layer polarization 
in the BaTiO3 slab 
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The acoustic sum rule is verified 



Supporting slides 



Relation between the normal component of the 
displacement field at the interface of different media 

We start from the Maxwell equation in macroscopic media 

Let     be a finite volume in space,      the closed surface bounding it,       
an element of area on the surface, and      a unit normal to the surface at     

pointing outward from the enclosed volume 

Integrating the Maxwell equation over the volume 

Then, we apply the divergence theorem 

SI units  atomic units  



Relation between the normal component of the 
displacement field at the interface of different media 

An infinitesimal Gaussian 
pillbox straddles the boundary 

surface between two media 

So the normal component of       on either side of the boundary surface is related 
according to  

If the top and bottom are parallel, tangent to 
the surface, and of area        , then 

The normal component of        at any point is equal to  the surface charge density 
at that point 

In the limit of a very shallow pillbox, the side 
surfaces do not contribute to the integral 

If the charge density           is singular 
at the interface so as to produce an 

idealized surface charge density 



“Constrained-σ” method 

Adopt a vacuum/insulator/metal/vacuum geometry 
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Vacuum Vacuum
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D=-0.4 e/S

Bulk PTO

Bulk SRO

Induce a layer of bound 
charges at its free surface 

(      per surface unit cell     ) 

If the surface region remains 
locally insulating 
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