#### **Exercises on basis set generation**

### **Convergence of the basis set with size**



**Javier Junquera** 



#### Most important reference followed in this lecture

phys. stat. sol. (b) 215, 809 (1999)

Subject classification: 71.15.Mb; 71.15.Fv; 71.24.+q; S1.3; S5; S5.11

#### Linear-Scaling ab-initio Calculations for Large and Complex Systems

E. ARTACHO<sup>1</sup>) (a), D. SÁNCHEZ-PORTAL (b), P. ORDEJÓN (c), A. GARCÍA (d), and J. M. SOLER (e)

PHYSICAL REVIEW B, VOLUME 64, 235111

Numerical atomic orbitals for linear-scaling calculations

Javier Junquera,<sup>1</sup> Óscar Paz,<sup>1</sup> Daniel Sánchez-Portal,<sup>2,3</sup> and Emilio Artacho<sup>4</sup>

PHYSICAL REVIEW B 66, 205101 (2002)

Systematic generation of finite-range atomic basis sets for linear-scaling calculations

Eduardo Anglada, 1,2 José M. Soler, 1 Javier Junquera, 3 and Emilio Artacho4

## Bulk Si, a semiconductor that crystallizes in the diamond structure

Go to the directory with the exercise on the default basis set

Inspect the input file, Si.default.fdf

More information at the Siesta web page <u>http://www.icmab.es/siesta</u> and follow the link Documentations, Manual



#### For each basis set, a relaxation of the unit cell is performed

#### Variables to control the Conjugate Gradient minimization

| #<br># Molecular dynamics and relaxations<br># |     |                                        |        |  |  |  |  |  |
|------------------------------------------------|-----|----------------------------------------|--------|--|--|--|--|--|
| MD.TypeOfRun                                   | CG  | We are going to perform a              |        |  |  |  |  |  |
|                                                |     | Conjugate-Gradient minimization        |        |  |  |  |  |  |
| MD.VariableCell .true.                         |     | # Is the lattice relaxed together with |        |  |  |  |  |  |
|                                                |     | the atomic coordinates?                |        |  |  |  |  |  |
| MD.NumCGsteps 50                               |     | Number of CG minimization steps for    | r      |  |  |  |  |  |
|                                                |     | cell optimization                      |        |  |  |  |  |  |
| MD.MaxStressTol 0.0010 eV/Ang**3               |     | # Tolerance in the maximum             |        |  |  |  |  |  |
|                                                |     | stress in a MD.VariableCell CG op      | ptimi. |  |  |  |  |  |
| %block GeometryConstraints                     |     | Constraints impossed on                |        |  |  |  |  |  |
| position 1                                     | 2   | the atomic positions                   |        |  |  |  |  |  |
| stress 4                                       | 5 6 | the shear stresses                     |        |  |  |  |  |  |
| %endblock GeometryConstraints                  |     |                                        |        |  |  |  |  |  |

#### Two constraints in the minimization:

- the position of the atoms in the unit cell

- the shear stresses are nullified to fix the angles between the unit cell lattice vectors to 60°, typical of a fcc lattice Size (number of basis set per atom)

Depending on the required accuracy and available computational power



## The size of the basis size can be controlled easily by the user: PAO.Basis Size

#### Simply use the tag PAO.BasisSize. It admits four different values

- SZ Single-zeta (Single-ζ)
- **DZ** Double-zeta (Double-ζ)
- **SZP** Single-zeta plus polarization
- DZP Double-zeta plus polarization

**Default: DZP (see exercise "Default")** 

More complete basis set requires the explicit use of the block PAO.Basis

## Relax the lattice constant and compute the energy for the different basis set sizes

Run the code for bulk Si with the default basis set

siesta < Si.sz.fdf > Si.sz.out siesta < Si.dz.fdf > Si.dz.out siesta < Si.szp.fdf > Si.szp.out siesta < Si.dzp.fdf > Si.dzp.out

Single-zeta (Single-ζ, SZ) Double-zeta (Double-ζ, DZ) Single-zeta plus polarization (SZP) Double-zeta plus polarization (DZP)

The numbers in this exercise have been obtained with siesta-3.0-b, compiled with the g95 compiler and double precision in the grid.

Numbers might change slightly depending on the platform, compiler and compilation flags

## Relax the lattice constant and compute the energy for the different basis set sizes

Edit the output files and analyze the size of the basis set.

To understand the block PAO.Basis, see the exercise "Default"

| PAO.BasisSize                                                               | SZ      | <pre># Single-Zeta basis set # One radial parts for the s-shell (=&gt; 1 orbitals) # One radial parts for the p-shell (=&gt; 3 orbitals) #</pre> | PAO.BasisSize DZ                                                                            | <pre># Double-Zeta basis set # Two radial parts for the s-shell (=&gt; 2 orbitals) # Two radial parts for the p-shell (=&gt; 6 orbitals) #</pre>                 |  |  |  |
|-----------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| atom: Total number o                                                        | of Sank | ey-type orbitals: 4                                                                                                                              | atom: Total number of Sank                                                                  | ey-type orbitals: 8                                                                                                                                              |  |  |  |
| %block PAO.Basis<br>Si<br>n=3 0 1<br>5.007<br>1.000<br>n=3 1 1<br>6 271     | 2       | <pre># Define Basis set     # Species label, number of 1-shells # n, l, Nzeta # n, l, Nzeta</pre>                                                | %block PAD.Basis<br>Si 2<br>n=3 0 2<br>5.007 4.419<br>1.000 1.000<br>n=3 1 2<br>6.271 5.007 | <pre># Define Basis set</pre>                                                                                                                                    |  |  |  |
| 1.000<br>%endblock PAD.Basis                                                |         |                                                                                                                                                  | 1.000 1.000<br>%endblock PAO.Basis                                                          |                                                                                                                                                                  |  |  |  |
| PAO.BasisSize                                                               | SZP     | # Single-Zeta plus polarization basis set # One radial parts for the s-shell (=> 1 orbitals) # One radial parts for the p-shell (=> 3 orbitals)  | PAO.BasisSize DZP                                                                           | <pre># Double-Zeta plus polarization basis set # Two radial parts for the s-shell (=&gt; 2 orbitals) # Two radial parts for the p-shell (=&gt; 6 orbitals)</pre> |  |  |  |
|                                                                             |         | <pre># One radial parts for the d-shell (=&gt; 5 orbitals) # # 9 orbitals/Si atom</pre>                                                          | DEFAULT                                                                                     | <pre># One radial parts for the d-shell (=&gt; 5 orbitals) # # 13 orbitals/Si atom</pre>                                                                         |  |  |  |
| atom: Total number                                                          | of San  | key-type orbitals: 9                                                                                                                             | atom: Total number of Sankey-type orbitals: 13                                              |                                                                                                                                                                  |  |  |  |
| %block PAO.Basis<br>Si<br>n=3 0 1<br>5.007<br>1.000<br>n=3 1 1 P 1<br>6.271 | 2       | <pre># Define Basis set     # Species label, number of 1-shells     # n, l, Nzeta # n, l, Nzeta, Polarization, NzetaPol</pre>                    | %block PAO.Basis<br>Si 2<br>n=3 0 2<br>5.007 4.419<br>1.000 1.000<br>n=3 1 2 P 1<br>5.007   | <pre># Define Basis set</pre>                                                                                                                                    |  |  |  |
| 1.000<br>%endblock PAO.Basis                                                | 5       |                                                                                                                                                  | 1.000 1.000<br>%endblock PAO.Basis                                                          |                                                                                                                                                                  |  |  |  |

# Study the structural and energetic properties as a function of the size of the basis size

Inspect the output files and search for the relaxed structure and Kohn-Sham energy

| siesta: | Program | ' ຣ | energy decomposition | (eV): |
|---------|---------|-----|----------------------|-------|
| siesta: | Ebs     | =   | -75.650988           |       |
| siesta: | Eions   | =   | 380.802124           |       |
| siesta: | Ena     | =   | 115.349306           |       |
| siesta: | Ekin    | =   | 81.916758            |       |
| siesta: | Enl     | =   | 29.311909            |       |
| siesta: | DEna    | =   | 3.716705             |       |
| siesta: | DUscf   | =   | 0.267046             |       |
| siesta: | DUext   | =   | 0.00000              |       |
| siesta: | Exc     | =   | -65.238641           |       |
| siesta: | eta*DQ  | =   | 0.00000              |       |
| siesta: | Emadel  | =   | 0.00000              |       |
| siesta: | Emeta   | =   | 0.00000              |       |
| siesta: | Emolmec | =   | 0.00000              |       |
| siesta: | Ekinion | =   | 0.00000              |       |
| siesta: | Eharris | =   | -215.479042          |       |
| siesta: | Etot    | =   | -215.479041          |       |
| siesta: | FreeEng | =   | -215.479041          |       |

We are interested in this number

| Study the structural and energetic properties as a function of the size of the basis size                                                                                                                          |                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Inspect the output files and search for the relaxed structure and Kohn-Sham energy                                                                                                                                 |                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| SZ                                                                                                                                                                                                                 | DZ                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| outcoor: Relaxed atomic coordinates (fractional):         0.00000000       0.00000000         0.25000000       0.25000000         1       2         2       2                                                      | outcoor: Relaxed atomic coordinates (fractional):0.000000000.000000000.250000000.250000001222                                                                                                                                          |  |  |  |  |  |  |  |
| outcell: Unit cell vectors (Ang):<br>0.000000 2.770221 2.770221<br>2.770221 0.000000 2.770221<br>2.770221 2.770221 0.000000                                                                                        | outcell: Unit cell vectors (Ang):<br>0.000000 2.736750 2.736750<br>2.736750 0.000000 2.736750<br>2.736750 2.736750 0.000000                                                                                                            |  |  |  |  |  |  |  |
| outcell: Cell vector modules (Ang) :3.9176843.9176843.917684outcell: Cell angles (23,13,12) (deg):60.000060.000060.0000outcell: Cell volume (Ang**3):42.5180                                                       | outcell: Cell vector modules (Ang) :3.8703493.8703493.870349outcell: Cell angles (23,13,12) (deg):60.000060.000060.0000outcell: Cell volume (Ang**3):40.9954                                                                           |  |  |  |  |  |  |  |
| siesta: Etot = -213.983341                                                                                                                                                                                         | siesta: Etot = -214.545956                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| SZP                                                                                                                                                                                                                | DZP                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| outcoor: Relaxed atomic coordinates (fractional):           0.00000000         0.00000000         1         1         Si           0.25000000         0.25000000         0.25000000         1         2         Si | outcoor: Relaxed atomic coordinates (fractional):           0.00000000         0.00000000         1         1         Si           0.25000000         0.25000000         0.25000000         1         2         Si                     |  |  |  |  |  |  |  |
| outcell: Unit cell vectors (Ang):<br>0.000000 2.746686 2.746686<br>2.746686 0.000000 2.746686<br>2.746686 2.746686 0.000000                                                                                        | outcell: Unit cell vectors (Ang):<br>0.000000 2.705266 2.705266<br>2.705266 0.000000 2.705266<br>2.705266 2.705266 0.000000                                                                                                            |  |  |  |  |  |  |  |
| outcell: Cell vector modules (Ang) :3.8844003.884400outcell: Cell angles (23,13,12) (deg):60.000060.0000outcell: Cell volume (Ang**3):41.4435                                                                      | outcell: Cell vector modules (Ang) :       3.825823       3.825823       3.825823         outcell: Cell angles (23,13,12) (deg):       60.0000       60.0000       60.0000         outcell: Cell volume (Ang**3)       :       39.5968 |  |  |  |  |  |  |  |
| siesta: Etot = -214.640295                                                                                                                                                                                         | siesta: Etot = -215.479041                                                                                                                                                                                                             |  |  |  |  |  |  |  |

| Study the structural and energetic properties as a function of the size of the basis size                                                                                                                          |                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Inspect the output files and search for the relaxed structure and Kohn-Sham energy                                                                                                                                 |                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| SZ                                                                                                                                                                                                                 | DZ                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| outcoor: Relaxed atomic coordinates (fractional):         0.00000000       0.00000000         0.25000000       0.25000000         1       2         2       2                                                      | outcoor: Relaxed atomic coordinates (fractional):0.000000000.000000000.250000000.250000001222                                                                                                                                          |  |  |  |  |  |  |  |
| outcell: Unit cell vectors (Ang):<br>0.000000 2.770221 2.770221<br>2.770221 0.000000 2.770221<br>2.770221 2.770221 0.000000                                                                                        | outcell: Unit cell vectors (Ang):<br>0.000000 2.736750 2.736750<br>2.736750 0.000000 2.736750<br>2.736750 2.736750 0.000000                                                                                                            |  |  |  |  |  |  |  |
| outcell: Cell vector modules (Ang) :3.9176843.9176843.917684outcell: Cell angles (23,13,12) (deg):60.000060.000060.0000outcell: Cell volume (Ang**3):42.5180                                                       | outcell: Cell vector modules (Ang) :3.8703493.8703493.870349outcell: Cell angles (23,13,12) (deg):60.000060.000060.0000outcell: Cell volume (Ang**3):40.9954                                                                           |  |  |  |  |  |  |  |
| siesta: Etot = -213.983341                                                                                                                                                                                         | siesta: Etot = -214.545956                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| SZP                                                                                                                                                                                                                | DZP                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| outcoor: Relaxed atomic coordinates (fractional):           0.00000000         0.00000000         1         1         Si           0.25000000         0.25000000         0.25000000         1         2         Si | outcoor: Relaxed atomic coordinates (fractional):           0.00000000         0.00000000         1         1         Si           0.25000000         0.25000000         0.25000000         1         2         Si                     |  |  |  |  |  |  |  |
| outcell: Unit cell vectors (Ang):<br>0.000000 2.746686 2.746686<br>2.746686 0.000000 2.746686<br>2.746686 2.746686 0.000000                                                                                        | outcell: Unit cell vectors (Ang):<br>0.000000 2.705266 2.705266<br>2.705266 0.000000 2.705266<br>2.705266 2.705266 0.000000                                                                                                            |  |  |  |  |  |  |  |
| outcell: Cell vector modules (Ang) :3.8844003.884400outcell: Cell angles (23,13,12) (deg):60.000060.0000outcell: Cell volume (Ang**3):41.4435                                                                      | outcell: Cell vector modules (Ang) :       3.825823       3.825823       3.825823         outcell: Cell angles (23,13,12) (deg):       60.0000       60.0000       60.0000         outcell: Cell volume (Ang**3)       :       39.5968 |  |  |  |  |  |  |  |
| siesta: Etot = -214.640295                                                                                                                                                                                         | siesta: Etot = -215.479041                                                                                                                                                                                                             |  |  |  |  |  |  |  |

# Study the structural and energetic properties as a function of the size of the basis size

TABLE II. Basis comparisons for bulk Si. *a*, *B*, and  $E_c$  stand for lattice parameter (in Å), bulk modulus (in GPa), and cohesive energy (in eV), respectively. SZ, DZ, and TZ stand for single  $\zeta$ , double  $\zeta$ , and triple  $\zeta$ . P stands for polarized, DP for doubly polarized. LAPW results were taken from Ref. 41, and the experimental values from Ref. 42.

|       | SZ   | DZ   | ΤZ   | SZP  | DZP  | TZP  | TZDP | PW   | LAPW | Expt |
|-------|------|------|------|------|------|------|------|------|------|------|
| a     | 5.52 | 5.49 | 5.48 | 5.43 | 5.40 | 5.39 | 5.39 | 5.38 | 5.41 | 5.43 |
| В     | 85   | 87   | 85   | 97   | 97   | 97   | 97   | 96   | 96   | 98.8 |
| $E_c$ | 4.70 | 4.83 | 4.85 | 5.21 | 5.31 | 5.32 | 5.34 | 5.37 | 5.28 | 4.63 |
|       | 1.70 | 1.05 | 1.05 | 5.21 | 5.51 | 5.52 | 5.51 | 5.57 | 5.20 | 1.0  |

J. Junquera et al., Phys. Rev. B 64, 235111 (2001)

Results in previous table have been obtained with optimized basis set, but the tendency is the same as in our example

# Study the structural and energetic properties as a function of the size of the basis size



J. Junquera e*t al*., Phys. Rev. B 64, 235111 (2001) Nice convergence of the total energy with respect the basis set size

The problem is variational: the larger the number of orbitals in the basis set, the lower the energy

For the particular case of Si, the polarization orbitals (3d shell) are very important for convergence, more than doubling the basis.

Results in previous figures have been obtained with optimized basis set, but the tendency is the same as in our example