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Definición de dinámica y cinemática 

Cinemática:  
Estudio del movimiento, usando los 
conceptos de espacio y tiempo, sin tener 
en cuenta las causas que lo producen. 

Dinámica:  
Estudio del movimiento de un objeto, y de las 
relaciones de este movimiento con conceptos 
físicos tales como la fuerza y la masa. 



Definición de vector posición y desplazamiento 

Desplazamiento es el cambio del vector de posición de un objeto.  

Posición de una partícula se describe con un vector posición   , 
que dibujamos desde el origen de un sistema de referencia hasta 
la ubicación de la partícula. 

El desplazamiento es una magnitud relativa: depende del sistema de referencia escogido 



Definición de traslación, rotación y vibración 

Traslación: las posiciones de todas las partículas del 
cuerpo se desplazan una misma cantidad. 

Vibración: oscilación en torno a una 
posición de equilibrio 

Rotación: el movimiento de cambio de orientación de 
un sólido extenso de forma que, dado un punto 
cualquiera del mismo, este permanece a una 
distancia constante de un punto fijo.   



Definición de velocidad y celeridad 

Velocidad: cambio de la posición de un objeto por unidad de tiempo  

Magnitud vectorial (tiene módulo, una dirección y sentido) 

Celeridad: módulo del vector velocidad en un instante concreto  

(módulo de la velocidad instantánea). 

(al ser un módulo, su valor es siempre positivo). 



Definición de celeridad media 

Para una partícula que recorre una distancia d en un intervalo de tiempo       , 
su celeridad media se define como  

La celeridad media no es un vector, no lleva asociada una dirección. 
Unidades: (espacio/tiempo) 



Definición de velocidad media de una partícula (una dimensión) 

Movimiento de una partícula queda totalmente especificado si 
conocemos su posición en el espacio en todo instante 

Gráfica de posición-tiempo 
o gráfica de posición como 
función del tiempo 



Definición de velocidad media de una partícula (una dimensión) 

En el intervalo de tiempo  El desplazamiento de la 
partícula se describe como  

Velocidad media 

Gráfica de posición-tiempo 
o gráfica de posición como 
función del tiempo 



Propiedades de la velocidad media de una partícula (1D) 

Velocidad media 

Es independiente del recorrido que siga la partícula entre los dos puntos                      
(es proporcional al desplazamiento que sólo depende de las posiciones inicial y final) 

El módulo de la velocidad media no es la celeridad media  



Interpetración gráfica de la velocidad media de una partícula  

La velocidad media de la partícula durante el intervalo de tiempo que 
va desde ti hasta tf es igual a la pendiente de la línea recta que une los 

puntos incial y final en la gráfica posición-tiempo 

Velocidad media 

Gráfica de posición-tiempo 
o gráfica de posición como 
función del tiempo 



Interpetración gráfica de la velocidad media de una partícula  

Dividimos el intervalo de tiempo en pequeños incrementos de duración   

Asumimos que la velocidad es constante durante cada uno de esos pequeños incrementos  

Desplazamiento en cada uno de esos pequeños incrementos  

Desplazamiento total 
Área de uno de 
los rectángulos 
estrechos 

Gráfica velocidad en 
función del tiempo 



Interpetración gráfica de la velocidad media de una partícula  

El desplazamiento de una partícula durante el intervalo de tiempo que 
va desde ti hasta tf es igual al área situada bajo la curva entre los 

puntos inicial y final en la gráfica velocidad-tiempo 

Desplazamiento total 

Tomando límites 

Gráfica velocidad en 
función del tiempo 



Interpetración gráfica de la velocidad media de una partícula  

El área total A+B es el espacio total recorrido por la partícula 
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Si existen valores negativos de la velocidad en 
algún intervalo, para calcular el desplazamiento 
tenemos que tomar el área por debajo del eje de 

las x como negativa  

Física General 
S. Burbano, E. Burbano, y C. Gracia 

Editorial Tébar 



Transición de velocidad media a velocidad instantánea  

Velocidad media calculada en el 
intervalo que va desde A hasta B 

Velocidad media calculada en el 
intervalo que va desde A hasta F 

¿Cuál de estas dos líneas representa mejor la 
velocidad instantánea en el puno A? 



Transición de velocidad media a velocidad  (una dimensión) 

Velocidad media calculada en el 
intervalo que va desde A hasta B 

Velocidad media calculada en el 
intervalo que va desde A hasta F 

Pendiente negativa  => Velocidad media negativa 
(contrario al sentido de la velocidad en el punto A, 

en el que el coche se mueve hacia la derecha) 

Pendiente positiva                       
(al menos el signo está bien) 



Velocidad instantánea de una partícula (una dimensión)  

¿Cómo cambia la velocidad media del coche a medida que el punto B se aproxima al A? 

La línea azul se aproxima a la línea verde (tangente a la curva en el punto A) 

La pendiente de esta línea tangente representa la velocidad del coche justo en el momento en el 
cuál comenzamos a tomar los datos (punto A). 

S E C T I O N  2 . 2   •   Instantaneous Velocity and Speed 29
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represents the velocity of the car at the moment we started taking data, at point !.
What we have done is determine the instantaneous velocity at that moment. In other
words, the instantaneous velocity vx equals the limiting value of the ratio !x!!t
as !t approaches zero:1

(2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written dx/dt:

(2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3,
vx is positive—the car is moving toward larger values of x. After point &, vx is nega-
tive because the slope is negative—the car is moving toward smaller values of x. At
point &, the slope and the instantaneous velocity are zero—the car is momentarily at
rest.

From here on, we use the word velocity to designate instantaneous velocity. When it
is average velocity we are interested in, we shall always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction
associated with it and hence carries no algebraic sign. For example, if one particle
has an instantaneous velocity of " 25 m/s along a given line and another particle
has an instantaneous velocity of # 25 m/s along the same line, both have a speed2

of 25 m/s.

vx !  lim
$t :  0

$x
$t

%
dx
dt

vx ! lim
$t : 0

$x
$t

Active Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An
enlargement of the upper-left-hand corner of the graph shows how the blue line
between positions ! and & approaches the green tangent line as point & is moved
closer to point !.

At the Active Figures link at http://www.pse6.com, you can move point &
as suggested in (b) and observe the blue line approaching the green tangent
line.

Instantaneous velocity

1 Note that the displacement $x also approaches zero as $t approaches zero, so that the ratio
looks like 0/0. As $x and $t become smaller and smaller, the ratio $x/$t approaches a value
equal to the slope of the line tangent to the x-versus-t curve.
2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous
speed.

! PITFALL PREVENTION
2.3 Instantaneous Speed

and Instantaneous
Velocity

In Pitfall Prevention 2.1, we ar-
gued that the magnitude of the
average velocity is not the average
speed. Notice the difference
when discussing instantaneous
values. The magnitude of the in-
stantaneous velocity is the instan-
taneous speed. In an infinitesimal
time interval, the magnitude of
the displacement is equal to the
distance traveled by the particle.



Velocidad instantánea de una partícula en una dimensión 

La velocidad instantánea puede ser positiva, negativa o cero 
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(2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written dx/dt:

(2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3,
vx is positive—the car is moving toward larger values of x. After point &, vx is nega-
tive because the slope is negative—the car is moving toward smaller values of x. At
point &, the slope and the instantaneous velocity are zero—the car is momentarily at
rest.

From here on, we use the word velocity to designate instantaneous velocity. When it
is average velocity we are interested in, we shall always use the adjective average.

The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction
associated with it and hence carries no algebraic sign. For example, if one particle
has an instantaneous velocity of " 25 m/s along a given line and another particle
has an instantaneous velocity of # 25 m/s along the same line, both have a speed2

of 25 m/s.

vx !  lim
$t :  0

$x
$t

%
dx
dt

vx ! lim
$t : 0

$x
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Active Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An
enlargement of the upper-left-hand corner of the graph shows how the blue line
between positions ! and & approaches the green tangent line as point & is moved
closer to point !.

At the Active Figures link at http://www.pse6.com, you can move point &
as suggested in (b) and observe the blue line approaching the green tangent
line.

Instantaneous velocity

1 Note that the displacement $x also approaches zero as $t approaches zero, so that the ratio
looks like 0/0. As $x and $t become smaller and smaller, the ratio $x/$t approaches a value
equal to the slope of the line tangent to the x-versus-t curve.
2 As with velocity, we drop the adjective for instantaneous speed: “Speed” means instantaneous
speed.

! PITFALL PREVENTION
2.3 Instantaneous Speed

and Instantaneous
Velocity

In Pitfall Prevention 2.1, we ar-
gued that the magnitude of the
average velocity is not the average
speed. Notice the difference
when discussing instantaneous
values. The magnitude of the in-
stantaneous velocity is the instan-
taneous speed. In an infinitesimal
time interval, the magnitude of
the displacement is equal to the
distance traveled by the particle.

Velocidad instantánea de una partícula (una dimensión)  



La celeridad instantánea de una partícula se define como 
el módulo del vector velocidad instantánea 

La celeridad instantánea siempre es positiva 

La celeridad instantánea no tiene dirección asociada y, por lo tanto, no tiene signo algebraico 

Velocidad instantánea de una partícula (una dimensión)  



Modelo analítico para el movimiento rectilíneo y uniforme 

Si la velocidad de la partícula es constante, su velocidad instantánea en cualquier momento 
de un determinado intervalo de tiempo es igual a la velocidad media en dicho intervalo 

Si ahora tomamos la definición de velocidad media 

Si                       y 



Representación gráfica para el movimiento 
rectilíneo y uniforme 

Si                       y 



Definición de aceleración 

Cuando la velocidad de una partícula varía con el tiempo, se dice que 
está sometida a una aceleración. 

La velocidad es una magnitud vectorial, que 
tiene un módulo, una dirección y un sentido 

Por lo tanto, el cambio en la velocidad, puede ser un cambio en: 

1. En el módulo (ejemplo, al pisar el acelerador o el freno) 

2. En la dirección o el sentido (ejemplo, al girar el volante) 



Definición de aceleración media en 1D 

Supongamos una partícula que se mueve a lo largo del eje x varía su velocidad 

Instante Velocidad 

Aceleración media 

El módulo de la aceleración tiene dimensiones de longitud/tiempo2 



Definición de aceleración instantánea en 1D 

En algunas situaciones, la aceleración media puede ser diferente 
para diferentes intervalos de tiempo.  

Entonces es conveniente definir la  aceleración instantánea. 

Pendiente de la gráfica velocidad con respecto del tiempo 

También puede definirse como la derivada segunda del 
espacio con respecto al tiempo 



Modelo analítico para el movimiento rectilíneo, 
uniformemente acelerado 

Si la aceleración de la partícula es constante, su aceleración instantánea en cualquier momento 
de un determinado intervalo de tiempo es igual a la aceleración media en dicho intervalo 

Si ahora tomamos la definición de aceleración media 

Si                       y 



Representación gráfica para el movimiento 
rectilíneo y uniformememente acelerado 

2.5 One-Dimensional Motion with Constant 
Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult to
analyze. However, a very common and simple type of one-dimensional motion is that in
which the acceleration is constant. When this is the case, the average acceleration over
any time interval is numerically equal to the instantaneous acceleration ax at any instant
within the interval, and the velocity changes at the same rate throughout the motion.

If we replace by ax in Equation 2.6 and take ti ! 0 and tf to be any later time t, we
find that

or

(2.9)

This powerful expression enables us to determine an object’s velocity at any time t if we
know the object’s initial velocity vxi and its (constant) acceleration ax. A velocity–time
graph for this constant-acceleration motion is shown in Figure 2.10b. The graph is a
straight line, the (constant) slope of which is the acceleration ax; this is consistent with
the fact that ax ! dvx/dt is a constant. Note that the slope is positive; this indicates a
positive acceleration. If the acceleration were negative, then the slope of the line in
Figure 2.10b would be negative.

When the acceleration is constant, the graph of acceleration versus time (Fig.
2.10c) is a straight line having a slope of zero.

Because velocity at constant acceleration varies linearly in time according to Equa-
tion 2.9, we can express the average velocity in any time interval as the arithmetic
mean of the initial velocity vxi and the final velocity vxf :

(2.10)

Note that this expression for average velocity applies only in situations in which the
acceleration is constant.

We can now use Equations 2.1, 2.2, and 2.10 to obtain the position of an object as a
function of time. Recalling that "x in Equation 2.2 represents xf # xi, and recognizing
that "t ! tf # ti ! t # 0 ! t, we find

(2.11)

This equation provides the final position of the particle at time t in terms of the initial
and final velocities.

We can obtain another useful expression for the position of a particle moving with
constant acceleration by substituting Equation 2.9 into Equation 2.11:

(2.12)

This equation provides the final position of the particle at time t in terms of the initial
velocity and the acceleration.

The position–time graph for motion at constant (positive) acceleration shown
in Figure 2.10a is obtained from Equation 2.12. Note that the curve is a parabola.

xf ! xi $ vxi t $ 1
2 axt 2 (for constant ax)

xf ! xi $ 1
2 [vxi $ (vxi $ axt)]t

x f ! xi $ 1
2  (vxi $ vxf)t  (for constant ax)

xf # xi ! vt ! 1
2 (vxi $ vxf)t

 vx !
vxi $ vxf

2
  (for constant ax)

vxf ! vxi $ axt  (for constant ax)

ax !
vxf # vxi

t # 0

ax

ax

(b)

vx

vxi

0

vxf

t
vxi

axt

t

Slope  =  ax

(a)

x

0 t

xi

Slope = vxi

t

(c)

ax

0
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t

Slope  =  0

Slope = vxf

Active Figure 2.10 A particle
moving along the x axis with con-
stant acceleration ax; (a) the posi-
tion–time graph, (b) the
velocity–time graph, and (c) the
acceleration–time graph.

36 C H A P T E R  2   •   Motion in One Dimension

Position as a function of
velocity and time

Position as a function of time

At the Active Figures link
at http://www.pse6.com, you
can adjust the constant
acceleration and observe the
effect on the position and
velocity graphs.



Interpetración gráfica de la velocidad media de una partícula  

El desplazamiento de una partícula durante el intervalo de tiempo que 
va desde ti hasta tf es igual al área situada bajo la curva entre los 

puntos inicial y final en la gráfica velocidad-tiempo 

Desplazamiento total 

Tomando límites 

Gráfica velocidad en 
función del tiempo 



Desplazamiento como función del tiempo en el 
movimiento rectilíneo uniformemente acelerado  

El desplazamiento de una partícula durante el intervalo de tiempo que 
va desde ti hasta tf es igual al área situada bajo la curva entre los 

puntos inicial y final en la gráfica velocidad-tiempo 



Velocidad media en el movimiento 
rectilíneo uniformemente acelerado  

Como 

Velocidad media de una partícula con aceleración constante 



Posición como función del tiempo en el    
movimiento rectilíneo uniformemente acelerado  

Si                       y 



Posición como función del tiempo en el    
movimiento rectilíneo uniformemente acelerado  

Si                       y 

Sustituyendo el valor de la velocidad final como función de la aceleración y del tiempo 



Posición como función del tiempo en el    
movimiento rectilíneo uniformemente acelerado  

Despejando el valor del tiempo 



Como conocer la aceleración cuando la velocidad 
depende de la posición  



Resumen del movimiento rectilíneo uniformemente acelerado  

Example 2.6 Entering the Traffic Flow

Granted, we made many approximations along the way, but
this type of mental effort can be surprisingly useful and
often yields results that are not too different from
those derived from careful measurements. Do not be
afraid to attempt making educated guesses and doing some
fairly drastic number rounding to simplify estimations.
Physicists engage in this type of thought analysis all the time.

(B) How far did you go during the first half of the time in-
terval during which you accelerated?

Solution Let us assume that the acceleration is constant,
with the value calculated in part (A). Because the motion
takes place in a straight line and the velocity is always in the
same direction, the distance traveled from the starting point
is equal to the final position of the car. We can calculate the
final position at 5 s from Equation 2.12:

This result indicates that if you had not accelerated, your
initial velocity of 10 m/s would have resulted in a 50-m
movement up the ramp during the first 5 s. The addi-
tional 25 m is the result of your increasing velocity during
that interval.

75 m!

! 0 " (10 m/s)(5 s) " 1
2 (2 m/s2)(5 s)2 ! 50 m " 25 m

xf ! xi " vxit " 1
2 axt2

(A) Estimate your average acceleration as you drive up the
entrance ramp to an interstate highway.

Solution This problem involves more than our usual
amount of estimating! We are trying to come up with a value
of ax , but that value is hard to guess directly. The other vari-
ables involved in kinematics are position, velocity, and time.
Velocity is probably the easiest one to approximate. Let us
assume a final velocity of 100 km/h, so that you can merge
with traffic. We multiply this value by (1 000 m/1 km) to
convert kilometers to meters and then multiply by
(1 h/3 600 s) to convert hours to seconds. These two calcu-
lations together are roughly equivalent to dividing by 3.
In fact, let us just say that the final velocity is vxf ! 30 m/s.
(Remember, this type of approximation and the dropping
of digits when performing estimations is okay. If you were
starting with U.S. customary units, you could approximate
1 mi/h as roughly 0.5 m/s and continue from there.)

Now we assume that you started up the ramp at about one
third your final velocity, so that vxi ! 10 m/s. Finally, we as-
sume that it takes about 10 s to accelerate from vxi to vxf , bas-
ing this guess on our previous experience in automobiles. We
can then find the average acceleration, using Equation 2.6:

2 m/s2!

ax !
vxf # vxi

t
!

30 m/s # 10 m/s
10 s

Equation Information Given by Equation

Velocity as a function of time
Position as a function of velocity and time
Position as a function of time
Velocity as a function of position

Note: Motion is along the x axis.

vxf
2 ! vxi

2 " 2ax(xf #xi)
xf ! xi " vxit " 1

2axt 2
xf ! xi " 1

2(vxi " vxf)t
vxf ! vxi " axt

Kinematic Equations for Motion of a Particle Under Constant Acceleration

Table 2.2

acceleration, together with some simple algebraic manipulations and the requirement
that the acceleration be constant.

The four kinematic equations used most often are listed in Table 2.2 for conve-
nience. The choice of which equation you use in a given situation depends on what
you know beforehand. Sometimes it is necessary to use two of these equations to solve
for two unknowns. For example, suppose initial velocity vxi and acceleration ax are
given. You can then find (1) the velocity at time t, using vxf ! vxi " axt and (2) the po-
sition at time t, using . You should recognize that the quantities
that vary during the motion are position, velocity, and time.

You will gain a great deal of experience in the use of these equations by solving a
number of exercises and problems. Many times you will discover that more than one
method can be used to obtain a solution. Remember that these equations of kinemat-
ics cannot be used in a situation in which the acceleration varies with time. They can be
used only when the acceleration is constant.

xf ! xi " vxit " 1
2axt2
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Movimiento rectilíneo uniformemente acelerado: 
integrando las ecuaciones del movimiento 

Si en             ,                     entonces  
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Caída libre de objetos  

Un objeto en caída libre es un objeto que se mueve únicamente bajo la influencia de la gravedad, 
independientemente de su estado de movimiento inicial. 

En los problemas vamos a suponer que: 

1.  La resistencia del aire puede ser ignorada. 

2.  La aceleración de caída libre es constante, 

  módulo sobre la superficie de la Tierra g = 9.80 m/s2 

  dirigida hacia el centro de la Tierra (hacia abajo). 

Curiosidades:  

módulo sobre la superficie de la Luna g = 1.67 m/s2 

módulo sobre la superficie del Sol g = 274 m/s2 



Movimiento en tres dimensiones.     
Vectores posición y desplazamiento 

Objetivo: conocer la posición de una partícula como función del tiempo 

Vector posición: es el vector que describe la posición de una partícula. 
Se dibuja desde el origen de un sistema de referencia hasta la ubicación 
de la partícula. 

El desplazamiento de una partícula es la diferencia entre su posición final  y su posición inicial  

In this chapter we explore the kinematics of a particle moving in two dimensions. Know-
ing the basics of two-dimensional motion will allow us to examine—in future chapters—a
wide variety of motions, ranging from the motion of satellites in orbit to the motion of
electrons in a uniform electric field. We begin by studying in greater detail the vector
nature of position, velocity, and acceleration. As in the case of one-dimensional motion,
we derive the kinematic equations for two-dimensional motion from the fundamental
definitions of these three quantities. We then treat projectile motion and uniform circular
motion as special cases of motion in two dimensions. We also discuss the concept of
relative motion, which shows why observers in different frames of reference may measure
different positions, velocities, and accelerations for a given particle.

4.1 The Position, Velocity, and 
Acceleration Vectors

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend this
idea to motion in the xy plane. We begin by describing the position of a particle by its
position vector r, drawn from the origin of some coordinate system to the particle lo-
cated in the xy plane, as in Figure 4.1. At time ti the particle is at point !, described by
position vector ri. At some later time tf it is at point ", described by position vector rf .
The path from ! to " is not necessarily a straight line. As the particle moves from !
to " in the time interval !t " tf # ti, its position vector changes from ri to rf . As we
learned in Chapter 2, displacement is a vector, and the displacement of the particle is
the difference between its final position and its initial position. We now define the dis-
placement vector !r for the particle of Figure 4.1 as being the difference between its
final position vector and its initial position vector:

(4.1)

The direction of !r is indicated in Figure 4.1. As we see from the figure, the magnitude of
!r is less than the distance traveled along the curved path followed by the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the ratio
of a displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. In two-dimensional (or three-dimensional)
kinematics, everything is the same as in one-dimensional kinematics except that we
must now use full vector notation rather than positive and negative signs to indicate
the direction of motion.

We define the average velocity of a particle during the time interval !t as the dis-
placement of the particle divided by the time interval:

(4.2)v ! 
!r
!t

!r !  rf # ri

Path of
particle

x

y

! ti

ri

∆r
" t f

rf

O

Figure 4.1 A particle moving in
the xy plane is located with the posi-
tion vector r drawn from the origin
to the particle. The displacement of
the particle as it moves from ! to
" in the time interval !t " tf # ti is
equal to the vector !r " rf # ri.

Displacement vector

Average velocity

78



Movimiento en tres dimensiones.     
Vectores posición y desplazamiento 

Objetivo: conocer la posición de una partícula como función del tiempo 
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placement vector !r for the particle of Figure 4.1 as being the difference between its
final position vector and its initial position vector:
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The direction of !r is indicated in Figure 4.1. As we see from the figure, the magnitude of
!r is less than the distance traveled along the curved path followed by the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the ratio
of a displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. In two-dimensional (or three-dimensional)
kinematics, everything is the same as in one-dimensional kinematics except that we
must now use full vector notation rather than positive and negative signs to indicate
the direction of motion.
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Figure 4.1 A particle moving in
the xy plane is located with the posi-
tion vector r drawn from the origin
to the particle. The displacement of
the particle as it moves from ! to
" in the time interval !t " tf # ti is
equal to the vector !r " rf # ri.

Displacement vector
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Notad como la magnitud del desplazamiento es inferior a la distancia recorrida por la partícula 
en su trayectoria  



Movimiento en tres dimensiones.     
Vector velocidad media  

Objetivo: conocer la posición de una partícula como función del tiempo 

Vector velocidad media de la partícula durante el intervalo de tiempo: 
se define como el cociente entre el vector desplazamiento y el intervalo 
de tiempo 

La velocidad media es una magnitud vectorial, con la misma dirección que el desplazamiento. 

Es independiente de la trayectoria entre los puntos inicial y final. 

In this chapter we explore the kinematics of a particle moving in two dimensions. Know-
ing the basics of two-dimensional motion will allow us to examine—in future chapters—a
wide variety of motions, ranging from the motion of satellites in orbit to the motion of
electrons in a uniform electric field. We begin by studying in greater detail the vector
nature of position, velocity, and acceleration. As in the case of one-dimensional motion,
we derive the kinematic equations for two-dimensional motion from the fundamental
definitions of these three quantities. We then treat projectile motion and uniform circular
motion as special cases of motion in two dimensions. We also discuss the concept of
relative motion, which shows why observers in different frames of reference may measure
different positions, velocities, and accelerations for a given particle.
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Acceleration Vectors

In Chapter 2 we found that the motion of a particle moving along a straight line is
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position vector ri. At some later time tf it is at point ", described by position vector rf .
The path from ! to " is not necessarily a straight line. As the particle moves from !
to " in the time interval !t " tf # ti, its position vector changes from ri to rf . As we
learned in Chapter 2, displacement is a vector, and the displacement of the particle is
the difference between its final position and its initial position. We now define the dis-
placement vector !r for the particle of Figure 4.1 as being the difference between its
final position vector and its initial position vector:

(4.1)

The direction of !r is indicated in Figure 4.1. As we see from the figure, the magnitude of
!r is less than the distance traveled along the curved path followed by the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the ratio
of a displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. In two-dimensional (or three-dimensional)
kinematics, everything is the same as in one-dimensional kinematics except that we
must now use full vector notation rather than positive and negative signs to indicate
the direction of motion.

We define the average velocity of a particle during the time interval !t as the dis-
placement of the particle divided by the time interval:
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Figure 4.1 A particle moving in
the xy plane is located with the posi-
tion vector r drawn from the origin
to the particle. The displacement of
the particle as it moves from ! to
" in the time interval !t " tf # ti is
equal to the vector !r " rf # ri.
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Movimiento en tres dimensiones.     
Vector velocidad media  

Objetivo: conocer la posición de una partícula como función del tiempo 

El vector velocidad media es independediente de la trayectoria 
entre los puntos inicial y final (es proporcional al 
desplazamiento, que sólo depende de los puntos inicial y final) 
 

In this chapter we explore the kinematics of a particle moving in two dimensions. Know-
ing the basics of two-dimensional motion will allow us to examine—in future chapters—a
wide variety of motions, ranging from the motion of satellites in orbit to the motion of
electrons in a uniform electric field. We begin by studying in greater detail the vector
nature of position, velocity, and acceleration. As in the case of one-dimensional motion,
we derive the kinematic equations for two-dimensional motion from the fundamental
definitions of these three quantities. We then treat projectile motion and uniform circular
motion as special cases of motion in two dimensions. We also discuss the concept of
relative motion, which shows why observers in different frames of reference may measure
different positions, velocities, and accelerations for a given particle.

4.1 The Position, Velocity, and 
Acceleration Vectors

In Chapter 2 we found that the motion of a particle moving along a straight line is
completely known if its position is known as a function of time. Now let us extend this
idea to motion in the xy plane. We begin by describing the position of a particle by its
position vector r, drawn from the origin of some coordinate system to the particle lo-
cated in the xy plane, as in Figure 4.1. At time ti the particle is at point !, described by
position vector ri. At some later time tf it is at point ", described by position vector rf .
The path from ! to " is not necessarily a straight line. As the particle moves from !
to " in the time interval !t " tf # ti, its position vector changes from ri to rf . As we
learned in Chapter 2, displacement is a vector, and the displacement of the particle is
the difference between its final position and its initial position. We now define the dis-
placement vector !r for the particle of Figure 4.1 as being the difference between its
final position vector and its initial position vector:

(4.1)

The direction of !r is indicated in Figure 4.1. As we see from the figure, the magnitude of
!r is less than the distance traveled along the curved path followed by the particle.

As we saw in Chapter 2, it is often useful to quantify motion by looking at the ratio
of a displacement divided by the time interval during which that displacement occurs,
which gives the rate of change of position. In two-dimensional (or three-dimensional)
kinematics, everything is the same as in one-dimensional kinematics except that we
must now use full vector notation rather than positive and negative signs to indicate
the direction of motion.

We define the average velocity of a particle during the time interval !t as the dis-
placement of the particle divided by the time interval:
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Figure 4.1 A particle moving in
the xy plane is located with the posi-
tion vector r drawn from the origin
to the particle. The displacement of
the particle as it moves from ! to
" in the time interval !t " tf # ti is
equal to the vector !r " rf # ri.
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Si una partícula comienza su movimiento en un determinado punto, y al cabo de un 
tiempo vuelve a ese punto después de haber recorrido una cierta trayectoria, su 

velocidad media es cero porque su desplazamiento es cero. 
Sin embargo, su celeridad media no es nula. 



Movimiento en tres dimensiones.     
Vector velocidad instantánea  

Objetivo: conocer la posición de una partícula como función del tiempo 

Vector velocidad instantánea se define como el límite de la velocidad 
media cuando el intervalo de tiempo en el que se mide tiende a cero 

La dirección del vector velocidad instantánea en cualquier punto de la trayectoria de una 
partícula viene determinado por la línea tangente a la trayectoria en ese punto. 

El sentido del vector velocidad instantánea viene determinado por la dirección del movimiento. 

El módulo del vector velocidad instantánea se le conoce como celeridad instantánea. 
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Multiplying or dividing a vector quantity by a positive scalar quantity such as !t
changes only the magnitude of the vector, not its direction. Because displacement is a
vector quantity and the time interval is a positive scalar quantity, we conclude that the
average velocity is a vector quantity directed along !r.

Note that the average velocity between points is independent of the path taken. This is
because average velocity is proportional to displacement, which depends only on the
initial and final position vectors and not on the path taken. As with one-dimensional
motion, we conclude that if a particle starts its motion at some point and returns to
this point via any path, its average velocity is zero for this trip because its displacement
is zero. Figure 4.2 suggests such a situation in a baseball park. When a batter hits a
home run, he runs around the bases and returns to home plate. Thus, his average ve-
locity is zero during this trip. His average speed, however, is not zero.

Consider again the motion of a particle between two points in the xy plane, as
shown in Figure 4.3. As the time interval over which we observe the motion becomes
smaller and smaller, the direction of the displacement approaches that of the line tan-
gent to the path at !. The instantaneous velocity v is defined as the limit of the aver-
age velocity !r/!t as !t approaches zero:

(4.3)

That is, the instantaneous velocity equals the derivative of the position vector with
respect to time. The direction of the instantaneous velocity vector at any point in a par-
ticle’s path is along a line tangent to the path at that point and in the direction of 
motion.

The magnitude of the instantaneous velocity vector v " ! v ! is called the speed,
which is a scalar quantity.

As a particle moves from one point to another along some path, its instantaneous
velocity vector changes from vi at time ti to vf at time tf . Knowing the velocity at these
points allows us to determine the average acceleration of the particle—the average
acceleration of a particle as it moves is defined as the change in the instantaneous
velocity vector !v divided by the time interval !t during which that change occurs:

(4.4)a " 
vf # vi

tf # ti
"

!v
!t

a

v " lim
!t : 0

 
!r
!t

"
dr
dt

Figure 4.2 Bird’s-eye view of a baseball dia-
mond. A batter who hits a home run travels
around the bases, ending up where he began.
Thus, his average velocity for the entire trip is
zero. His average speed, however, is not zero
and is equal to the distance around the bases
divided by the time interval during which he
runs around the bases.M
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Figure 4.3 As a particle moves be-
tween two points, its average veloc-
ity is in the direction of the dis-
placement vector !r. As the end
point of the path is moved from "
to "$ to "%, the respective dis-
placements and corresponding
time intervals become smaller and
smaller. In the limit that the end
point approaches !, !t approaches
zero, and the direction of !r ap-
proaches that of the line tangent to
the curve at !. By definition, the
instantaneous velocity at ! is 
directed along this tangent line.



Movimiento en tres dimensiones.     
Vector aceleración media   

Objetivo: conocer la posición de una partícula como función del tiempo 

Vector aceleración media en un intervalo de tiempo 
se  define como el cociente en la variación de la 
velocidad instantánea y el intervalo de tiempo 

La aceleración media es una magnitud vectorial,     
con la misma dirección que el cambio en la velocidad. 
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Because is the ratio of a vector quantity !v and a positive scalar quantity !t, we con-
clude that average acceleration is a vector quantity directed along !v. As indicated in
Figure 4.4, the direction of !v is found by adding the vector " vi (the negative of vi) to
the vector vf , because by definition !v # vf " vi.

When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accelera-
tion a is defined as the limiting value of the ratio !v/!t as !t approaches zero:

(4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity vec-
tor with respect to time.

It is important to recognize that various changes can occur when a particle
accelerates. First, the magnitude of the velocity vector (the speed) may change
with time as in straight-line (one-dimensional) motion. Second, the direction of
the velocity vector may change with time even if its magnitude (speed) remains
constant, as in curved-path (two-dimensional) motion. Finally, both the magni-
tude and the direction of the velocity vector may change simultaneously.

a ! lim
!t : 0

 
!v
!t

#
d v
dt

a

Instantaneous acceleration

Quick Quiz 4.1 Which of the following cannot possibly be accelerating?
(a) An object moving with a constant speed (b) An object moving with a constant
velocity (c) An object moving along a curve.

Quick Quiz 4.2 Consider the following controls in an automobile: gas pedal,
brake, steering wheel. The controls in this list that cause an acceleration of the car are
(a) all three controls (b) the gas pedal and the brake (c) only the brake (d) only the
gas pedal.

x

y

O

! vi

ri

rf

vf

"

–vi

∆v vf

or
vi

∆vvf Figure 4.4 A particle moves
from position ! to position ".
Its velocity vector changes from
vi to vf. The vector diagrams at
the upper right show two ways of
determining the vector !v from
the initial and final velocities.

4.2 Two-Dimensional Motion with 
Constant Acceleration

In Section 2.5, we investigated one-dimensional motion in which the acceleration is
constant because this type of motion is common. Let us consider now two-dimensional
motion during which the acceleration remains constant in both magnitude and direc-
tion. This will also be useful for analyzing some common types of motion.

The position vector for a particle moving in the xy plane can be written

(4.6) r # x î $ y ĵ

! PITFALL PREVENTION
4.1 Vector Addition
While the vector addition dis-
cussed in Chapter 3 involves dis-
placement vectors, vector addition
can be applied to any type of 
vector quantity. Figure 4.4, for 
example, shows the addition of
velocity vectors using the graphi-
cal approach.



Movimiento en tres dimensiones.     
Vector aceleración instantánea 

Objetivo: conocer la posición de una partícula como función del tiempo 

Vector aceleración instantánea se define como el 
límite del cociente entre el cambio en la posición y el 
intervalo de tiempo, cuando el intervalo de tiempo tiende 
a cero.  

La aceleración instantánea es una magnitud vectorial. 

El cambio en la velocidad puede ser tanto en su módulo como en su dirección o en el sentido. 
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Because is the ratio of a vector quantity !v and a positive scalar quantity !t, we con-
clude that average acceleration is a vector quantity directed along !v. As indicated in
Figure 4.4, the direction of !v is found by adding the vector " vi (the negative of vi) to
the vector vf , because by definition !v # vf " vi.

When the average acceleration of a particle changes during different time inter-
vals, it is useful to define its instantaneous acceleration. The instantaneous accelera-
tion a is defined as the limiting value of the ratio !v/!t as !t approaches zero:

(4.5)

In other words, the instantaneous acceleration equals the derivative of the velocity vec-
tor with respect to time.

It is important to recognize that various changes can occur when a particle
accelerates. First, the magnitude of the velocity vector (the speed) may change
with time as in straight-line (one-dimensional) motion. Second, the direction of
the velocity vector may change with time even if its magnitude (speed) remains
constant, as in curved-path (two-dimensional) motion. Finally, both the magni-
tude and the direction of the velocity vector may change simultaneously.

a ! lim
!t : 0

 
!v
!t

#
d v
dt

a

Instantaneous acceleration

Quick Quiz 4.1 Which of the following cannot possibly be accelerating?
(a) An object moving with a constant speed (b) An object moving with a constant
velocity (c) An object moving along a curve.

Quick Quiz 4.2 Consider the following controls in an automobile: gas pedal,
brake, steering wheel. The controls in this list that cause an acceleration of the car are
(a) all three controls (b) the gas pedal and the brake (c) only the brake (d) only the
gas pedal.

x

y

O

! vi

ri

rf

vf

"

–vi

∆v vf

or
vi

∆vvf Figure 4.4 A particle moves
from position ! to position ".
Its velocity vector changes from
vi to vf. The vector diagrams at
the upper right show two ways of
determining the vector !v from
the initial and final velocities.

4.2 Two-Dimensional Motion with 
Constant Acceleration

In Section 2.5, we investigated one-dimensional motion in which the acceleration is
constant because this type of motion is common. Let us consider now two-dimensional
motion during which the acceleration remains constant in both magnitude and direc-
tion. This will also be useful for analyzing some common types of motion.

The position vector for a particle moving in the xy plane can be written

(4.6) r # x î $ y ĵ

! PITFALL PREVENTION
4.1 Vector Addition
While the vector addition dis-
cussed in Chapter 3 involves dis-
placement vectors, vector addition
can be applied to any type of 
vector quantity. Figure 4.4, for 
example, shows the addition of
velocity vectors using the graphi-
cal approach.



Movimiento uniformemente acelerado en tres dimensiones.     

Supongamos que una partícula se mueve en el espacio con aceleración constante. 
Tanto el módulo, como la dirección y el sentido son constantes. 

Objetivo: conocer la posición de una partícula como función del tiempo 

Si el vector posición es conocido, podemos conocer el vector 
velocidad sin más que tomar la derivada 

A no ser que se especifique otra cosa, supondremos que los vectores 
unitarios permanecen constantes con el tiempo 
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Objetivo: conocer la posición de una partícula como función del tiempo 



Modelo analítico para el movimiento rectilíneo, 
uniformemente acelerado 

Si la aceleración de la partícula es constante, su aceleración instantánea en cualquier momento 
de un determinado intervalo de tiempo es igual a la aceleración media en dicho intervalo 

Si ahora tomamos la definición de aceleración media 

Si                       y 
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Supongamos que una partícula se mueve en el espacio con aceleración constante. 
Tanto el módulo, como la dirección y el sentido son constantes. 

Objetivo: conocer la posición de una partícula como función del tiempo 

Aplicando esta ecuación para cada 
una de las componentes 

En notación vectorial 



Posición como función del tiempo en el    
movimiento rectilíneo uniformemente acelerado  

Si                       y 

Sustituyendo el valor de la velocidad final como función de la aceleración y del tiempo 
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En notación vectorial 



Resumen del movimiento uniformemente acelerado en 3D     

Un movimiento en tres dimensiones con aceleración constante es equivalente 
a tres movimientos independientes en las direcciones x, y, y z con 

aceleraciones constantes ax, ay, y az. 
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where x, y, and r change with time as the particle moves while the unit vectors î  and ĵ
remain constant. If the position vector is known, the velocity of the particle can be ob-
tained from Equations 4.3 and 4.6, which give

(4.7)

Because a is assumed constant, its components ax and ay also are constants. Therefore,
we can apply the equations of kinematics to the x and y components of the velocity vec-
tor. Substituting, from Equation 2.9, vxf ! vxi " axt and vyf ! vyi " ayt into Equation 4.7
to determine the final velocity at any time t, we obtain

(4.8)

This result states that the velocity of a particle at some time t equals the vector sum of
its initial velocity vi and the additional velocity at acquired at time t as a result of con-
stant acceleration. It is the vector version of Equation 2.9.

Similarly, from Equation 2.12 we know that the x and y coordinates of a particle
moving with constant acceleration are

Substituting these expressions into Equation 4.6 (and labeling the final position
vector rf ) gives

(4.9)

which is the vector version of Equation 2.12. This equation tells us that the position
vector rf is the vector sum of the original position ri, a displacement vit arising from
the initial velocity of the particle and a displacement at 2 resulting from the constant
acceleration of the particle.

Graphical representations of Equations 4.8 and 4.9 are shown in Figure 4.5. Note
from Figure 4.5a that vf is generally not along the direction of either vi or a because
the relationship between these quantities is a vector expression. For the same reason,

1
2

rf ! ri " vit " 1
2 at 2

 ! (xi î " yi ĵ ) " (vxi î " vyi ĵ )t " 1
2(ax î " ay ĵ )t 2

rf ! (xi " vxit " 1
2axt 2) î " (yi " vyit " 1

2ayt 2)ĵ

xf ! xi " vxit " 1
2axt2  yf ! yi " vyit " 1

2ayt2

 vf ! vi " at

 ! (vxi î " vyi ĵ )" (ax î " ay ĵ )t

vf  ! (vxi " axt)î " (vyi " ayt)ĵ

v !
dr
dt

!
dx
dt

î "
dy
dt

 ĵ ! vx î " vy ĵ
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Active Figure 4.5 Vector representations and components of (a) the velocity and (b) the posi-
tion of a particle moving with a constant acceleration a. 

Velocity vector as a function of
time

Position vector as a function of
time

At the Active Figures link
at http://www.pse6.com, you
can investigate the effect of
different initial positions and
velocities on the final position
and velocity (for constant
acceleration).



Tiro parabólico:        
aproximaciones fundamentales     

La aceleración de caída libre, g, es constante a lo largo de todo el 
movimiento y tiene dirección descendente (hacia el centro de la Tierra) 

El efecto de la resistencia del aire es despreciable 

Equivalente a suponer: 

 - la velocidad inicial del objeto es pequeña (para que el efecto 
del rozamiento sea despreciable). 

 - rango de movimiento pequeño comparado con el radio de la 
Tierra (podemos considerar que la Tierra es plana dentro de ese rango). 

 - la altura máxima del objeto es también pequeña comparada 
con el radio de la Tierra (g varía con la altura). 

 - la Tierra está en reposo. 



Tiro parabólico:        
condiciones iniciales   

Sistema de referencia: eje y sea vertical y sentido positivo hacia arriba 

Posición inicial: en t = 0, la partícula está en el origen (xi = yi = 0) 

Velocidad inicial:  
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Active Figure 4.7 The parabolic path of a projectile that leaves the origin with
a velocity vi. The velocity vector v changes with time in both magnitude and
direction. This change is the result of acceleration in the negative y direction.
The x component of velocity remains constant in time because there is no accel-
eration along the horizontal direction. The y component of velocity is zero at
the peak of the path.

A welder cuts holes through a heavy
metal construction beam with a hot
torch. The sparks generated in the
process follow parabolic paths. 
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Repeating with the y component and using yi ! 0 and ay ! " g, we obtain

(4.12)

Next, from Equation 4.11 we find t ! xf/(vi cos #i) and substitute this expression for t
into Equation 4.12; this gives

This equation is valid for launch angles in the range 0 $ #i $ %/2. We have left the
subscripts off the x and y because the equation is valid for any point (x, y) along the
path of the projectile. The equation is of the form y ! ax " bx 2, which is the equation
of a parabola that passes through the origin. Thus, we have shown that the trajectory of
a projectile is a parabola. Note that the trajectory is completely specified if both the ini-
tial speed vi and the launch angle #i are known.

The vector expression for the position vector of the projectile as a function of time
follows directly from Equation 4.9, with a ! g:

This expression is plotted in Figure 4.8, for a projectile launched from the origin, so
that ri ! 0.

The final position of a particle can be considered to be the superposition of the ini-
tial position ri, the term vit, which is the displacement if no acceleration were present,
and the term gt 2 that arises from the acceleration due to gravity. In other words, if
there were no gravitational acceleration, the particle would continue to move along a
straight path in the direction of vi. Therefore, the vertical distance gt 2 through which
the particle “falls” off the straight-line path is the same distance that a freely falling ob-
ject would fall during the same time interval. 

In Section 4.2, we stated that two-dimensional motion with constant acceleration
can be analyzed as a combination of two independent motions in the x and y direc-
tions, with accelerations ax and ay . Projectile motion is a special case of two-
dimensional motion with constant acceleration and can be handled in this way, with
zero acceleration in the x direction and ay ! " g in the y direction. Thus, when ana-
lyzing projectile motion, consider it to be the superposition of two motions:

1
2

1
2

rf ! ri & vit & 1
2 gt 2

y ! (tan #i)x " ! g
2v 2

i     cos2  #i
"x 2

yf ! vyit & 1
2ayt 2 ! (vi  sin #i)t " 1

2gt 2

! PITFALL PREVENTION
4.2 Acceleration at the

Highest Point
As discussed in Pitfall Prevention
2.8, many people claim that the
acceleration of a projectile at
the topmost point of its trajec-
tory is zero. This mistake arises
from confusion between zero
vertical velocity and zero acceler-
ation. If the projectile were to
experience zero acceleration at
the highest point, then its veloc-
ity at that point would not
change—the projectile would
move horizontally at constant
speed from then on! This does
not happen, because the acceler-
ation is NOT zero anywhere
along the trajectory.

At the Active Figures link
at http://www.pse6.com, you
can change launch angle and
initial speed. You can also ob-
serve the changing compo-
nents of velocity along the tra-
jectory of the projectile.



Tiro parabólico:                                         
velocidad y posición como función del tiempo  

Posición Velocidad 
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Active Figure 4.7 The parabolic path of a projectile that leaves the origin with
a velocity vi. The velocity vector v changes with time in both magnitude and
direction. This change is the result of acceleration in the negative y direction.
The x component of velocity remains constant in time because there is no accel-
eration along the horizontal direction. The y component of velocity is zero at
the peak of the path.

A welder cuts holes through a heavy
metal construction beam with a hot
torch. The sparks generated in the
process follow parabolic paths. 
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Repeating with the y component and using yi ! 0 and ay ! " g, we obtain

(4.12)

Next, from Equation 4.11 we find t ! xf/(vi cos #i) and substitute this expression for t
into Equation 4.12; this gives

This equation is valid for launch angles in the range 0 $ #i $ %/2. We have left the
subscripts off the x and y because the equation is valid for any point (x, y) along the
path of the projectile. The equation is of the form y ! ax " bx 2, which is the equation
of a parabola that passes through the origin. Thus, we have shown that the trajectory of
a projectile is a parabola. Note that the trajectory is completely specified if both the ini-
tial speed vi and the launch angle #i are known.

The vector expression for the position vector of the projectile as a function of time
follows directly from Equation 4.9, with a ! g:

This expression is plotted in Figure 4.8, for a projectile launched from the origin, so
that ri ! 0.

The final position of a particle can be considered to be the superposition of the ini-
tial position ri, the term vit, which is the displacement if no acceleration were present,
and the term gt 2 that arises from the acceleration due to gravity. In other words, if
there were no gravitational acceleration, the particle would continue to move along a
straight path in the direction of vi. Therefore, the vertical distance gt 2 through which
the particle “falls” off the straight-line path is the same distance that a freely falling ob-
ject would fall during the same time interval. 

In Section 4.2, we stated that two-dimensional motion with constant acceleration
can be analyzed as a combination of two independent motions in the x and y direc-
tions, with accelerations ax and ay . Projectile motion is a special case of two-
dimensional motion with constant acceleration and can be handled in this way, with
zero acceleration in the x direction and ay ! " g in the y direction. Thus, when ana-
lyzing projectile motion, consider it to be the superposition of two motions:

1
2

1
2

rf ! ri & vit & 1
2 gt 2

y ! (tan #i)x " ! g
2v 2

i     cos2  #i
"x 2

yf ! vyit & 1
2ayt 2 ! (vi  sin #i)t " 1

2gt 2

! PITFALL PREVENTION
4.2 Acceleration at the

Highest Point
As discussed in Pitfall Prevention
2.8, many people claim that the
acceleration of a projectile at
the topmost point of its trajec-
tory is zero. This mistake arises
from confusion between zero
vertical velocity and zero acceler-
ation. If the projectile were to
experience zero acceleration at
the highest point, then its veloc-
ity at that point would not
change—the projectile would
move horizontally at constant
speed from then on! This does
not happen, because the acceler-
ation is NOT zero anywhere
along the trajectory.

At the Active Figures link
at http://www.pse6.com, you
can change launch angle and
initial speed. You can also ob-
serve the changing compo-
nents of velocity along the tra-
jectory of the projectile.



Tiro parabólico:                                         
origen del nombre  

Posición 
Despejando t de la primera ecuación y 

sustituyendo en la segunda 

Ecuación de una parábola  
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Active Figure 4.7 The parabolic path of a projectile that leaves the origin with
a velocity vi. The velocity vector v changes with time in both magnitude and
direction. This change is the result of acceleration in the negative y direction.
The x component of velocity remains constant in time because there is no accel-
eration along the horizontal direction. The y component of velocity is zero at
the peak of the path.

A welder cuts holes through a heavy
metal construction beam with a hot
torch. The sparks generated in the
process follow parabolic paths. 
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Repeating with the y component and using yi ! 0 and ay ! " g, we obtain

(4.12)

Next, from Equation 4.11 we find t ! xf/(vi cos #i) and substitute this expression for t
into Equation 4.12; this gives

This equation is valid for launch angles in the range 0 $ #i $ %/2. We have left the
subscripts off the x and y because the equation is valid for any point (x, y) along the
path of the projectile. The equation is of the form y ! ax " bx 2, which is the equation
of a parabola that passes through the origin. Thus, we have shown that the trajectory of
a projectile is a parabola. Note that the trajectory is completely specified if both the ini-
tial speed vi and the launch angle #i are known.

The vector expression for the position vector of the projectile as a function of time
follows directly from Equation 4.9, with a ! g:

This expression is plotted in Figure 4.8, for a projectile launched from the origin, so
that ri ! 0.

The final position of a particle can be considered to be the superposition of the ini-
tial position ri, the term vit, which is the displacement if no acceleration were present,
and the term gt 2 that arises from the acceleration due to gravity. In other words, if
there were no gravitational acceleration, the particle would continue to move along a
straight path in the direction of vi. Therefore, the vertical distance gt 2 through which
the particle “falls” off the straight-line path is the same distance that a freely falling ob-
ject would fall during the same time interval. 

In Section 4.2, we stated that two-dimensional motion with constant acceleration
can be analyzed as a combination of two independent motions in the x and y direc-
tions, with accelerations ax and ay . Projectile motion is a special case of two-
dimensional motion with constant acceleration and can be handled in this way, with
zero acceleration in the x direction and ay ! " g in the y direction. Thus, when ana-
lyzing projectile motion, consider it to be the superposition of two motions:
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rf ! ri & vit & 1
2 gt 2

y ! (tan #i)x " ! g
2v 2

i     cos2  #i
"x 2

yf ! vyit & 1
2ayt 2 ! (vi  sin #i)t " 1

2gt 2

! PITFALL PREVENTION
4.2 Acceleration at the

Highest Point
As discussed in Pitfall Prevention
2.8, many people claim that the
acceleration of a projectile at
the topmost point of its trajec-
tory is zero. This mistake arises
from confusion between zero
vertical velocity and zero acceler-
ation. If the projectile were to
experience zero acceleration at
the highest point, then its veloc-
ity at that point would not
change—the projectile would
move horizontally at constant
speed from then on! This does
not happen, because the acceler-
ation is NOT zero anywhere
along the trajectory.

At the Active Figures link
at http://www.pse6.com, you
can change launch angle and
initial speed. You can also ob-
serve the changing compo-
nents of velocity along the tra-
jectory of the projectile.



Tiro parabólico:                                         
expresión vectorial para la posición  

S E C T I O N  4 . 3 •  Projectile Motion 85

(1) constant-velocity motion in the horizontal direction and (2) free-fall motion
in the vertical direction. The horizontal and vertical components of a projectile’s
motion are completely independent of each other and can be handled separately, with
time t as the common variable for both components.

Quick Quiz 4.3 Suppose you are running at constant velocity and you wish
to throw a ball such that you will catch it as it comes back down. In what direction
should you throw the ball relative to you? (a) straight up (b) at an angle to the ground
that depends on your running speed (c) in the forward direction.

Quick Quiz 4.4 As a projectile thrown upward moves in its parabolic path
(such as in Figure 4.8), at what point along its path are the velocity and acceleration
vectors for the projectile perpendicular to each other? (a) nowhere (b) the highest
point (c) the launch point.

Quick Quiz 4.5 As the projectile in Quick Quiz 4.4 moves along its path, at
what point are the velocity and acceleration vectors for the projectile parallel to each
other? (a) nowhere (b) the highest point (c) the launch point.

Example 4.2 Approximating Projectile Motion

A ball is thrown in such a way that its initial vertical and hor-
izontal components of velocity are 40 m/s and 20 m/s, re-
spectively. Estimate the total time of flight and the distance
the ball is from its starting point when it lands.

Solution A motion diagram like Figure 4.9 helps us concep-
tualize the problem. The phrase “A ball is thrown” allows us
to categorize this as a projectile motion problem, which we
analyze by continuing to study Figure 4.9. The acceleration
vectors are all the same, pointing downward with a magni-
tude of nearly 10 m/s2. The velocity vectors change direc-
tion. Their horizontal components are all the same: 20 m/s. 

Remember that the two velocity components are inde-
pendent of each other. By considering the vertical motion Figure 4.9 (Example 4.2) Motion diagram for a projectile.

rf
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(x, y)

gt2
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O

y

1
2

Figure 4.8 The position vector rf of a projectile launched from the origin whose initial
velocity at the origin is vi. The vector vit would be the displacement of the projectile if
gravity were absent, and the vector is its vertical displacement due to its downward
gravitational acceleration.
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Tiro parabólico: Ilustración del movimiento de caída libre, 
con y sin velocidad inicial a lo largo de x 

¿Qué les ocurre a los astronautas en la ISS? 



Tiro parabólico:                                         
Alcance horizontal y altura máxima 

Punto de altura máxima 

Alcance horizontal 

En el punto de altura máxima, la componente 
de la velocidad a lo largo de y se anula 

La partícula llegará al punto de 
altura máxima en el instante t1 

Durante este tiempo, la partícula se habrá 
desplazado una distancia h a lo largo de y 

¿Cómo se puede aumentar h? 

Aumentando módulo de la velocidad inicial 

Lanzando con un ángulo mayor 

Lanzando en un sitio con aceleración de caída libre menor (la Luna) 
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Horizontal Range and Maximum Height of a Projectile

Let us assume that a projectile is launched from the origin at ti ! 0 with a positive vyi
component, as shown in Figure 4.10. Two points are especially interesting to analyze:
the peak point !, which has Cartesian coordinates (R/2, h), and the point ", which
has coordinates (R, 0). The distance R is called the horizontal range of the projectile,
and the distance h is its maximum height. Let us find h and R in terms of vi, "i, and g.

We can determine h by noting that at the peak, Therefore, we can use
Equation 4.8a to determine the time tA at which the projectile reaches the peak:

Substituting this expression for tA into the y part of Equation 4.9a and replacing
y ! yA with h, we obtain an expression for h in terms of the magnitude and direction of
the initial velocity vector: 

(4.13)

The range R is the horizontal position of the projectile at a time that is twice
the time at which it reaches its peak, that is, at time t B ! 2tA. Using the x part of Equa-
tion 4.9a, noting that vxi ! vxB ! vi cos "i and setting x B ! R at t ! 2tA, we find that

Using the identity sin 2" ! 2sin " cos " (see Appendix B.4), we write R in the more
compact form

(4.14)

The maximum value of R from Equation 4.14 is R max ! vi
2/g. This result follows

from the fact that the maximum value of sin 2"i is 1, which occurs when 2"i ! 90°.
Therefore, R is a maximum when "i ! 45°.

Figure 4.11 illustrates various trajectories for a projectile having a given initial speed
but launched at different angles. As you can see, the range is a maximum for "i ! 45°.
In addition, for any "i other than 45°, a point having Cartesian coordinates (R, 0) can be
reached by using either one of two complementary values of "i , such as 75° and 15°. Of
course, the maximum height and time of flight for one of these values of "i are different
from the maximum height and time of flight for the complementary value.

R !
v 2

i     sin 2"i

g

! (vi  cos "i)
2vi  sin "i

g
!

2v 2
i    sin "i  cos "i

g

R ! vxit B ! (vi  cos "i)2tA

h !
v 2

i    sin2 "i

2g

h ! (vi  sin "i)
vi  sin "i

g
#

1
2g! vi  sin "i

g "2

tA !
vi  sin "i

g

0 ! vi sin "i # gtA

vyf ! vyi $ ayt

vyA ! 0.

first, we can determine how long the ball remains in the
air. Because the vertical motion is free-fall, the vertical
components of the velocity vectors change, second by
second, from 40 m/s to roughly 30, 20, and 10 m/s in the
upward direction, and then to 0 m/s. Subsequently, its ve-
locity becomes 10, 20, 30, and 40 m/s in the downward di-
rection. Thus it takes the ball about 4 s to go up and
another 4 s to come back down, for a total time of flight of
approximately 8 s.

Now we shift our analysis to the horizontal motion. Be-
cause the horizontal component of velocity is 20 m/s, and
because the ball travels at this speed for 8 s, it ends up ap-
proximately 160 m from its starting point.

This is the first example that we have performed for pro-
jectile motion. In subsequent projectile motion problems,
keep in mind the importance of separating the two compo-
nents and of making approximations to give you rough ex-
pected results.

R

x

y

h

vi

vyA = 0

!

"θ i

O

Figure 4.10 A projectile launched
from the origin at ti ! 0 with an
initial velocity vi. The maximum
height of the projectile is h, and
the horizontal range is R. At !, the
peak of the trajectory, the particle
has coordinates (R/2, h).

! PITFALL PREVENTION
4.3 The Height and Range

Equations
Equation 4.14 is useful for calcu-
lating R only for a symmetric
path, as shown in Figure 4.10. If
the path is not symmetric, do not
use this equation. The general ex-
pressions given by Equations 4.8
and 4.9 are the more important re-
sults, because they give the posi-
tion and velocity components of
any particle moving in two di-
mensions at any time t.



Tiro parabólico:                                         
Alcance horizontal y altura máxima 

En alcance R es la distancia horizontal recorrida. 
En el punto de alcance máximo yf = 0  

Como ¿Cómo se puede aumentar R? 

Aumentando módulo de la velocidad inicial 

Lanzando en un sitio con aceleración de caída libre menor 
(la Luna) 

Punto de altura máxima 

Alcance horizontal 
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Horizontal Range and Maximum Height of a Projectile

Let us assume that a projectile is launched from the origin at ti ! 0 with a positive vyi
component, as shown in Figure 4.10. Two points are especially interesting to analyze:
the peak point !, which has Cartesian coordinates (R/2, h), and the point ", which
has coordinates (R, 0). The distance R is called the horizontal range of the projectile,
and the distance h is its maximum height. Let us find h and R in terms of vi, "i, and g.

We can determine h by noting that at the peak, Therefore, we can use
Equation 4.8a to determine the time tA at which the projectile reaches the peak:

Substituting this expression for tA into the y part of Equation 4.9a and replacing
y ! yA with h, we obtain an expression for h in terms of the magnitude and direction of
the initial velocity vector: 

(4.13)

The range R is the horizontal position of the projectile at a time that is twice
the time at which it reaches its peak, that is, at time t B ! 2tA. Using the x part of Equa-
tion 4.9a, noting that vxi ! vxB ! vi cos "i and setting x B ! R at t ! 2tA, we find that

Using the identity sin 2" ! 2sin " cos " (see Appendix B.4), we write R in the more
compact form

(4.14)

The maximum value of R from Equation 4.14 is R max ! vi
2/g. This result follows

from the fact that the maximum value of sin 2"i is 1, which occurs when 2"i ! 90°.
Therefore, R is a maximum when "i ! 45°.

Figure 4.11 illustrates various trajectories for a projectile having a given initial speed
but launched at different angles. As you can see, the range is a maximum for "i ! 45°.
In addition, for any "i other than 45°, a point having Cartesian coordinates (R, 0) can be
reached by using either one of two complementary values of "i , such as 75° and 15°. Of
course, the maximum height and time of flight for one of these values of "i are different
from the maximum height and time of flight for the complementary value.

R !
v 2

i     sin 2"i

g

! (vi  cos "i)
2vi  sin "i

g
!

2v 2
i    sin "i  cos "i

g

R ! vxit B ! (vi  cos "i)2tA

h !
v 2

i    sin2 "i

2g

h ! (vi  sin "i)
vi  sin "i

g
#

1
2g! vi  sin "i

g "2

tA !
vi  sin "i

g

0 ! vi sin "i # gtA

vyf ! vyi $ ayt

vyA ! 0.

first, we can determine how long the ball remains in the
air. Because the vertical motion is free-fall, the vertical
components of the velocity vectors change, second by
second, from 40 m/s to roughly 30, 20, and 10 m/s in the
upward direction, and then to 0 m/s. Subsequently, its ve-
locity becomes 10, 20, 30, and 40 m/s in the downward di-
rection. Thus it takes the ball about 4 s to go up and
another 4 s to come back down, for a total time of flight of
approximately 8 s.

Now we shift our analysis to the horizontal motion. Be-
cause the horizontal component of velocity is 20 m/s, and
because the ball travels at this speed for 8 s, it ends up ap-
proximately 160 m from its starting point.

This is the first example that we have performed for pro-
jectile motion. In subsequent projectile motion problems,
keep in mind the importance of separating the two compo-
nents and of making approximations to give you rough ex-
pected results.

R

x

y

h

vi

vyA = 0

!

"θ i

O

Figure 4.10 A projectile launched
from the origin at ti ! 0 with an
initial velocity vi. The maximum
height of the projectile is h, and
the horizontal range is R. At !, the
peak of the trajectory, the particle
has coordinates (R/2, h).

! PITFALL PREVENTION
4.3 The Height and Range

Equations
Equation 4.14 is useful for calcu-
lating R only for a symmetric
path, as shown in Figure 4.10. If
the path is not symmetric, do not
use this equation. The general ex-
pressions given by Equations 4.8
and 4.9 are the more important re-
sults, because they give the posi-
tion and velocity components of
any particle moving in two di-
mensions at any time t.

Sólo para movimientos simétricos 



Tiro parabólico:                                         
Alcance horizontal y altura máxima 

El alcance horizontal máximo se consigue para un valor del ángulo  

Para cualquier otro valor del ángulo, un punto de coordenadas (R,0) 
se puede alcanzar con los dos valores complementarios de  
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x(m)

50

100

150

y(m)

75°

60°

45°

30°

15°

vi = 50 m/s

50 100 150 200 250
Active Figure 4.11 A projectile launched from the origin with an initial speed of
50 m/s at various angles of projection. Note that complementary values of !i result in
the same value of R (range of the projectile).

P R O B L E M - S O LV I N G  H I N T S

Projectile Motion
We suggest that you use the following approach to solving projectile motion
problems:

• Select a coordinate system and resolve the initial velocity vector into x and y
components.

• Follow the techniques for solving constant-velocity problems to analyze the hori-
zontal motion. Follow the techniques for solving constant-acceleration problems
to analyze the vertical motion. The x and y motions share the same time t.

Example 4.3 The Long Jump

A long-jumper (Fig. 4.12) leaves the ground at an angle of
20.0° above the horizontal and at a speed of 11.0 m/s.

(A) How far does he jump in the horizontal direction? (As-
sume his motion is equivalent to that of a particle.)

Solution We conceptualize the motion of the long-jumper
as equivalent to that of a simple projectile such as the ball
in Example 4.2, and categorize this problem as a projectile
motion problem. Because the initial speed and launch an-
gle are given, and because the final height is the same as
the initial height, we further categorize this problem as
satisfying the conditions for which Equations 4.13 and
4.14 can be used. This is the most direct way to analyze this
problem, although the general methods that we have been
describing will always give the correct answer. We will take
the general approach and use components. Figure 4.10

Quick Quiz 4.6 Rank the launch angles for the five paths in Figure 4.11 with
respect to time of flight, from the shortest time of flight to the longest.

provides a graphical representation of the flight of the
long-jumper. As before, we set our origin of coordinates at
the takeoff point and label the peak as ! and the landing
point as ". The horizontal motion is described by Equa-
tion 4.11:

The value of x B can be found if the time of landing tB is
known. We can find tB by remembering that ay " # g and by
using the y part of Equation 4.8a. We also note that at the top
of the jump the vertical component of velocity vyA is zero:

tA " 0.384 s

0 " (11.0 m/s) sin 20.0$ # (9.80 m/s2)tA

vyf " vyA " vi   sin !i # gtA

xf " x B " (vi  cos !i)t B " (11.0 m/s)(cos 20.0$)t B

At the Active Figures link at
http://www.pse6.com, you can
vary the projection angle to ob-
serve the effect on the trajectory
and measure the flight time.



Partícula con movimiento circular uniforme: 
definición 

Se dice que una partícula se mueve con un movimiento circular uniforme cuando se 
desplaza siguiendo una trayectoria circular con celeridad constante v 

Aunque un objeto se mueva con una celeridad constante en una 
trayectoria circular, también tiene una aceleración, ya que varía la 

dirección del vector velocidad. 

El vector velocidad siempre es tangente a la trayectoria del objeto 
y perpendicular al radio de la trayectoria circular. 
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path of the object and perpendicular to the radius of the circular path. We now show
that the acceleration vector in uniform circular motion is always perpendicular to
the path and always points toward the center of the circle. An acceleration of this
nature is called a centripetal acceleration (centripetal means center-seeking), and its
magnitude is 

(4.15)

where r is the radius of the circle. The subscript on the acceleration symbol reminds us
that the acceleration is centripetal.

First note that the acceleration must be perpendicular to the path followed by the
object, which we will model as a particle. If this were not true, there would be a compo-
nent of the acceleration parallel to the path and, therefore, parallel to the velocity vec-
tor. Such an acceleration component would lead to a change in the speed of the parti-
cle along the path. But this is inconsistent with our setup of the situation—the particle
moves with constant speed along the path. Thus, for uniform circular motion, the accel-
eration vector can only have a component perpendicular to the path, which is toward
the center of the circle.

To derive Equation 4.15, consider the diagram of the position and velocity vectors
in Figure 4.17b. In addition, the figure shows the vector representing the change in po-
sition !r. The particle follows a circular path, part of which is shown by the dotted
curve. The particle is at ! at time ti , and its velocity at that time is vi ; it is at " at some
later time tf, and its velocity at that time is vf . Let us also assume that vi and vf differ
only in direction; their magnitudes are the same (that is, vi " vf " v, because it is uni-
form circular motion). In order to calculate the acceleration of the particle, let us begin
with the defining equation for average acceleration (Eq. 4.4):

In Figure 4.17c, the velocity vectors in Figure 4.17b have been redrawn tail to tail.
The vector !v connects the tips of the vectors, representing the vector addition
vf " vi # !v. In both Figures 4.17b and 4.17c, we can identify triangles that help us
analyze the motion. The angle !$ between the two position vectors in Figure 4.17b
is the same as the angle between the velocity vectors in Figure 4.17c, because the ve-
locity vector v is always perpendicular to the position vector r. Thus, the two trian-
gles are similar. (Two triangles are similar if the angle between any two sides is the
same for both triangles and if the ratio of the lengths of these sides is the same.)
This enables us to write a relationship between the lengths of the sides for the two
triangles:

! !v !
v

"
! !r !

r

a " 
vf % vi

tf % ti
"

!v
!t

ac "
v2

r

(a)

v
r

O

(c)

∆v∆θθ
vf

vi

(b)

∆r

vi
vf!

ri rf

"

∆θθ

Figure 4.17 (a) A car moving along a circular path at constant speed experiences uni-
form circular motion. (b) As a particle moves from ! to ", its velocity vector changes
from vi to vf . (c) The construction for determining the direction of the change in ve-
locity !v, which is toward the center of the circle for small !r.

Centripetal acceleration



Partícula con movimiento circular uniforme: 
dirección de la velocidad y aceleración 

Se dice que una partícula se mueve con un movimiento circular uniforme cuando se 
desplaza siguiendo una trayectoria circular con celeridad constante v 

El vector velocidad siempre es tangente a la trayectoria del objeto 
y perpendicular al radio de la trayectoria circular. 

El vector aceleración en un movimiento circular uniforme siempre es 
perpendicular a la trayectoria y siempre apunta hacia el centro del círculo. 

Si no fuera así, habría una componente de la aceleración paralela a la 
trayectoria, es decir, paralela al vector velocidad. Esta componente 

contribuiría a aumentar la celeridad, contradiciendo nuestra hipótesis  
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path of the object and perpendicular to the radius of the circular path. We now show
that the acceleration vector in uniform circular motion is always perpendicular to
the path and always points toward the center of the circle. An acceleration of this
nature is called a centripetal acceleration (centripetal means center-seeking), and its
magnitude is 

(4.15)

where r is the radius of the circle. The subscript on the acceleration symbol reminds us
that the acceleration is centripetal.

First note that the acceleration must be perpendicular to the path followed by the
object, which we will model as a particle. If this were not true, there would be a compo-
nent of the acceleration parallel to the path and, therefore, parallel to the velocity vec-
tor. Such an acceleration component would lead to a change in the speed of the parti-
cle along the path. But this is inconsistent with our setup of the situation—the particle
moves with constant speed along the path. Thus, for uniform circular motion, the accel-
eration vector can only have a component perpendicular to the path, which is toward
the center of the circle.

To derive Equation 4.15, consider the diagram of the position and velocity vectors
in Figure 4.17b. In addition, the figure shows the vector representing the change in po-
sition !r. The particle follows a circular path, part of which is shown by the dotted
curve. The particle is at ! at time ti , and its velocity at that time is vi ; it is at " at some
later time tf, and its velocity at that time is vf . Let us also assume that vi and vf differ
only in direction; their magnitudes are the same (that is, vi " vf " v, because it is uni-
form circular motion). In order to calculate the acceleration of the particle, let us begin
with the defining equation for average acceleration (Eq. 4.4):

In Figure 4.17c, the velocity vectors in Figure 4.17b have been redrawn tail to tail.
The vector !v connects the tips of the vectors, representing the vector addition
vf " vi # !v. In both Figures 4.17b and 4.17c, we can identify triangles that help us
analyze the motion. The angle !$ between the two position vectors in Figure 4.17b
is the same as the angle between the velocity vectors in Figure 4.17c, because the ve-
locity vector v is always perpendicular to the position vector r. Thus, the two trian-
gles are similar. (Two triangles are similar if the angle between any two sides is the
same for both triangles and if the ratio of the lengths of these sides is the same.)
This enables us to write a relationship between the lengths of the sides for the two
triangles:
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Figure 4.17 (a) A car moving along a circular path at constant speed experiences uni-
form circular motion. (b) As a particle moves from ! to ", its velocity vector changes
from vi to vf . (c) The construction for determining the direction of the change in ve-
locity !v, which is toward the center of the circle for small !r.

Centripetal acceleration



Partícula con movimiento circular uniforme: 
módulo de la aceleración 

El ángulo           entre los dos vectores posición es igual al ángulo 
entre los dos vectores velocidad                                                      

(el vector velocidad siempre es perpendicular al vector posición) 

Los dos triángulos son similares  

(dos triángulos son similares si el ángulo entre cualquiera de dos de sus lados es igual en 
ambos triángulos y si la relación entre las longitudes de dichos lados es la misma).  
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path of the object and perpendicular to the radius of the circular path. We now show
that the acceleration vector in uniform circular motion is always perpendicular to
the path and always points toward the center of the circle. An acceleration of this
nature is called a centripetal acceleration (centripetal means center-seeking), and its
magnitude is 

(4.15)

where r is the radius of the circle. The subscript on the acceleration symbol reminds us
that the acceleration is centripetal.

First note that the acceleration must be perpendicular to the path followed by the
object, which we will model as a particle. If this were not true, there would be a compo-
nent of the acceleration parallel to the path and, therefore, parallel to the velocity vec-
tor. Such an acceleration component would lead to a change in the speed of the parti-
cle along the path. But this is inconsistent with our setup of the situation—the particle
moves with constant speed along the path. Thus, for uniform circular motion, the accel-
eration vector can only have a component perpendicular to the path, which is toward
the center of the circle.

To derive Equation 4.15, consider the diagram of the position and velocity vectors
in Figure 4.17b. In addition, the figure shows the vector representing the change in po-
sition !r. The particle follows a circular path, part of which is shown by the dotted
curve. The particle is at ! at time ti , and its velocity at that time is vi ; it is at " at some
later time tf, and its velocity at that time is vf . Let us also assume that vi and vf differ
only in direction; their magnitudes are the same (that is, vi " vf " v, because it is uni-
form circular motion). In order to calculate the acceleration of the particle, let us begin
with the defining equation for average acceleration (Eq. 4.4):

In Figure 4.17c, the velocity vectors in Figure 4.17b have been redrawn tail to tail.
The vector !v connects the tips of the vectors, representing the vector addition
vf " vi # !v. In both Figures 4.17b and 4.17c, we can identify triangles that help us
analyze the motion. The angle !$ between the two position vectors in Figure 4.17b
is the same as the angle between the velocity vectors in Figure 4.17c, because the ve-
locity vector v is always perpendicular to the position vector r. Thus, the two trian-
gles are similar. (Two triangles are similar if the angle between any two sides is the
same for both triangles and if the ratio of the lengths of these sides is the same.)
This enables us to write a relationship between the lengths of the sides for the two
triangles:
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Figure 4.17 (a) A car moving along a circular path at constant speed experiences uni-
form circular motion. (b) As a particle moves from ! to ", its velocity vector changes
from vi to vf . (c) The construction for determining the direction of the change in ve-
locity !v, which is toward the center of the circle for small !r.

Centripetal acceleration



Partícula con movimiento circular uniforme: 
módulo de la aceleración 

Tomando límite cuando  
Módulo de la velocidad v 

Aceleración instantánea  
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path of the object and perpendicular to the radius of the circular path. We now show
that the acceleration vector in uniform circular motion is always perpendicular to
the path and always points toward the center of the circle. An acceleration of this
nature is called a centripetal acceleration (centripetal means center-seeking), and its
magnitude is 

(4.15)

where r is the radius of the circle. The subscript on the acceleration symbol reminds us
that the acceleration is centripetal.

First note that the acceleration must be perpendicular to the path followed by the
object, which we will model as a particle. If this were not true, there would be a compo-
nent of the acceleration parallel to the path and, therefore, parallel to the velocity vec-
tor. Such an acceleration component would lead to a change in the speed of the parti-
cle along the path. But this is inconsistent with our setup of the situation—the particle
moves with constant speed along the path. Thus, for uniform circular motion, the accel-
eration vector can only have a component perpendicular to the path, which is toward
the center of the circle.

To derive Equation 4.15, consider the diagram of the position and velocity vectors
in Figure 4.17b. In addition, the figure shows the vector representing the change in po-
sition !r. The particle follows a circular path, part of which is shown by the dotted
curve. The particle is at ! at time ti , and its velocity at that time is vi ; it is at " at some
later time tf, and its velocity at that time is vf . Let us also assume that vi and vf differ
only in direction; their magnitudes are the same (that is, vi " vf " v, because it is uni-
form circular motion). In order to calculate the acceleration of the particle, let us begin
with the defining equation for average acceleration (Eq. 4.4):

In Figure 4.17c, the velocity vectors in Figure 4.17b have been redrawn tail to tail.
The vector !v connects the tips of the vectors, representing the vector addition
vf " vi # !v. In both Figures 4.17b and 4.17c, we can identify triangles that help us
analyze the motion. The angle !$ between the two position vectors in Figure 4.17b
is the same as the angle between the velocity vectors in Figure 4.17c, because the ve-
locity vector v is always perpendicular to the position vector r. Thus, the two trian-
gles are similar. (Two triangles are similar if the angle between any two sides is the
same for both triangles and if the ratio of the lengths of these sides is the same.)
This enables us to write a relationship between the lengths of the sides for the two
triangles:
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Figure 4.17 (a) A car moving along a circular path at constant speed experiences uni-
form circular motion. (b) As a particle moves from ! to ", its velocity vector changes
from vi to vf . (c) The construction for determining the direction of the change in ve-
locity !v, which is toward the center of the circle for small !r.

Centripetal acceleration



Partícula con movimiento circular uniforme: 
resumen de la aceleración 

En el movimiento circular uniforme, la aceleración se 
dirige hacia el centro del círculo y tiene por módulo 
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path of the object and perpendicular to the radius of the circular path. We now show
that the acceleration vector in uniform circular motion is always perpendicular to
the path and always points toward the center of the circle. An acceleration of this
nature is called a centripetal acceleration (centripetal means center-seeking), and its
magnitude is 

(4.15)

where r is the radius of the circle. The subscript on the acceleration symbol reminds us
that the acceleration is centripetal.

First note that the acceleration must be perpendicular to the path followed by the
object, which we will model as a particle. If this were not true, there would be a compo-
nent of the acceleration parallel to the path and, therefore, parallel to the velocity vec-
tor. Such an acceleration component would lead to a change in the speed of the parti-
cle along the path. But this is inconsistent with our setup of the situation—the particle
moves with constant speed along the path. Thus, for uniform circular motion, the accel-
eration vector can only have a component perpendicular to the path, which is toward
the center of the circle.

To derive Equation 4.15, consider the diagram of the position and velocity vectors
in Figure 4.17b. In addition, the figure shows the vector representing the change in po-
sition !r. The particle follows a circular path, part of which is shown by the dotted
curve. The particle is at ! at time ti , and its velocity at that time is vi ; it is at " at some
later time tf, and its velocity at that time is vf . Let us also assume that vi and vf differ
only in direction; their magnitudes are the same (that is, vi " vf " v, because it is uni-
form circular motion). In order to calculate the acceleration of the particle, let us begin
with the defining equation for average acceleration (Eq. 4.4):

In Figure 4.17c, the velocity vectors in Figure 4.17b have been redrawn tail to tail.
The vector !v connects the tips of the vectors, representing the vector addition
vf " vi # !v. In both Figures 4.17b and 4.17c, we can identify triangles that help us
analyze the motion. The angle !$ between the two position vectors in Figure 4.17b
is the same as the angle between the velocity vectors in Figure 4.17c, because the ve-
locity vector v is always perpendicular to the position vector r. Thus, the two trian-
gles are similar. (Two triangles are similar if the angle between any two sides is the
same for both triangles and if the ratio of the lengths of these sides is the same.)
This enables us to write a relationship between the lengths of the sides for the two
triangles:
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Figure 4.17 (a) A car moving along a circular path at constant speed experiences uni-
form circular motion. (b) As a particle moves from ! to ", its velocity vector changes
from vi to vf . (c) The construction for determining the direction of the change in ve-
locity !v, which is toward the center of the circle for small !r.

Centripetal acceleration
El vector aceleración centrípeta no es constante:  

 - su módulo si es constante y viene dada por la expresión anterior. 
 - su dirección cambia de manera contínua según se desplaza el objeto: 

siempre apunta hacia el centro del círculo. 

Aceleración centrípeta 



Descripción del movimiento circular 
uniforme en términos del periodo 

Se define el periodo como el tiempo requerido para completar una vuelta 
Se suele representar por la letra      y se mide en segundos 

En un periodo la partícula recorre una distancia de              

Por lo tanto, la celeridad de la partícula vendrá dada por 

De donde 



Componentes intrínsecas de la aceleración:  
aceleraciones tangencial y radial 

Imaginemos una partícula que se mueve a lo largo de una trayectoria curva, 
donde el vector velocidad varía tanto en dirección como en módulo  

El vector velocidad siempre es tangente a la trayectoria 

El vector aceleración forma un ángulo con la misma 
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4.5 Tangential and Radial Acceleration

Let us consider the motion of a particle along a smooth curved path where the velocity
changes both in direction and in magnitude, as described in Figure 4.18. In this situa-
tion, the velocity vector is always tangent to the path; however, the acceleration vector a
is at some angle to the path. At each of three points !, ", and # in Figure 4.18, we
draw dashed circles that represent a portion of the actual path at each point. The ra-
dius of the circles is equal to the radius of curvature of the path at each point.

As the particle moves along the curved path in Figure 4.18, the direction of the to-
tal acceleration vector a changes from point to point. This vector can be resolved into
two components, based on an origin at the center of the dashed circle: a radial compo-
nent ar along the radius of the model circle, and a tangential component at perpendic-
ular to this radius. The total acceleration vector a can be written as the vector sum of
the component vectors:

(4.17)

The tangential acceleration component causes the change in the speed of the
particle. This component is parallel to the instantaneous velocity, and is given by

(4.18)

The radial acceleration component arises from the change in direction of the ve-
locity vector and is given by

(4.19)

where r is the radius of curvature of the path at the point in question. We recognize the
radial component of the acceleration as the centripetal acceleration discussed in Section
4.4. The negative sign indicates that the direction of the centripetal acceleration is toward
the center of the circle representing the radius of curvature, which is opposite the direc-
tion of the radial unit vector r̂, which always points away from the center of the circle.

Because ar and at are perpendicular component vectors of a, it follows 
that the magnitude of a is . At a given speed, ar is large when 
the radius of curvature is small (as at points ! and " in Fig. 4.18) and small when r is
large (such as at point #). The direction of at is either in the same direction as v (if v
is increasing) or opposite v (if v is decreasing).

In uniform circular motion, where v is constant, at ! 0 and the acceleration is al-
ways completely radial, as we described in Section 4.4. In other words, uniform circular
motion is a special case of motion along a general curved path. Furthermore, if the di-
rection of v does not change, then there is no radial acceleration and the motion is
one-dimensional (in this case, ar ! 0, but at may not be zero).

a ! √ar 
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t   

ar ! #ac ! #
v2

r

at !
d ! v !
dt

a ! a r " a t

Path of
particle

at

ar
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Active Figure 4.18 The motion of a particle along an arbitrary curved path lying in
the xy plane. If the velocity vector v (always tangent to the path) changes in direction
and magnitude, the components of the acceleration a are a tangential component at
and a radial component ar .

Total acceleration

Tangential acceleration

Radial acceleration

At the Active Figures link
at http://www.pse6.com, you
can study the acceleration
components of a roller coaster
car.



Componentes intrínsecas de la aceleración:  
aceleraciones tangencial y radial 

Imaginemos una partícula que se mueve a lo largo de una trayectoria curva, 
donde el vector velocidad varía tanto en dirección como en módulo  

Modelo geométrico: se sustituye la trayectoria real en cada punto por una trayectoria circular, 
cuyo radio es el radio de curvatura de la trayectoria en ese punto. 

Sustituimos pequeñas porciones de la trayectoria real por trayectorias circulares 
(líneas discontinuas). 
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4.5 Tangential and Radial Acceleration

Let us consider the motion of a particle along a smooth curved path where the velocity
changes both in direction and in magnitude, as described in Figure 4.18. In this situa-
tion, the velocity vector is always tangent to the path; however, the acceleration vector a
is at some angle to the path. At each of three points !, ", and # in Figure 4.18, we
draw dashed circles that represent a portion of the actual path at each point. The ra-
dius of the circles is equal to the radius of curvature of the path at each point.

As the particle moves along the curved path in Figure 4.18, the direction of the to-
tal acceleration vector a changes from point to point. This vector can be resolved into
two components, based on an origin at the center of the dashed circle: a radial compo-
nent ar along the radius of the model circle, and a tangential component at perpendic-
ular to this radius. The total acceleration vector a can be written as the vector sum of
the component vectors:

(4.17)

The tangential acceleration component causes the change in the speed of the
particle. This component is parallel to the instantaneous velocity, and is given by

(4.18)

The radial acceleration component arises from the change in direction of the ve-
locity vector and is given by

(4.19)

where r is the radius of curvature of the path at the point in question. We recognize the
radial component of the acceleration as the centripetal acceleration discussed in Section
4.4. The negative sign indicates that the direction of the centripetal acceleration is toward
the center of the circle representing the radius of curvature, which is opposite the direc-
tion of the radial unit vector r̂, which always points away from the center of the circle.

Because ar and at are perpendicular component vectors of a, it follows 
that the magnitude of a is . At a given speed, ar is large when 
the radius of curvature is small (as at points ! and " in Fig. 4.18) and small when r is
large (such as at point #). The direction of at is either in the same direction as v (if v
is increasing) or opposite v (if v is decreasing).

In uniform circular motion, where v is constant, at ! 0 and the acceleration is al-
ways completely radial, as we described in Section 4.4. In other words, uniform circular
motion is a special case of motion along a general curved path. Furthermore, if the di-
rection of v does not change, then there is no radial acceleration and the motion is
one-dimensional (in this case, ar ! 0, but at may not be zero).
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Active Figure 4.18 The motion of a particle along an arbitrary curved path lying in
the xy plane. If the velocity vector v (always tangent to the path) changes in direction
and magnitude, the components of the acceleration a are a tangential component at
and a radial component ar .

Total acceleration

Tangential acceleration

Radial acceleration

At the Active Figures link
at http://www.pse6.com, you
can study the acceleration
components of a roller coaster
car.



Componentes intrínsecas de la aceleración:  
aceleraciones tangencial y radial 

Expresamos la aceleración en cada punto mediante dos componentes, 
en función de un origen situado en el centro de cada círculo. 

Componente radial a lo largo del círculo 
del modelo 

Componente tangencial perpendicular 
a dicho radio 
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Componentes intrínsecas de la aceleración:  
aceleraciones tangencial y radial 

La aceleración tangencial produce el cambio del 
módulo del vector velocidad de la partícula.  

Su módulo es: 

Su dirección es tangencial.  
Como la velocidad lleva también la dirección 

tangencial podemos calcular un vector 
unitario en esa dirección  

La aceleración radial se debe al cambio de la 
dirección del vector velocidad de la partícula.  

Su módulo es: 

Signo menos: la aceleración centrípeta se dirige 
hacia el centro del círculo modelo, y éste es 

opuesto al vector unidad en la dirección radial 

Radio del círculo modelo 

El vector aceleración normal vendrá dado por la 
diferencia entre el vector aceleración total y el 

vector aceleración tangencial 



Componentes intrínsecas de la aceleración:  
aceleraciones tangencial y radial 

Como las dos componentes son normales (perpediculares) entre sí 

Para una celeridad constante, ar es mayor 
cuanto menor sea el radio de curvatura 

La dirección de at puede ser: 

•  la misma que la de la velocidad (si la celeridad aumenta)  

•  opuesta a la de la velocidad (si la celeridad disminuye)  



Aceleraciones tangencial y radial en 
términos de vectores unitarios 

S E C T I O N  4 . 5 •  Tangential and Radial Acceleration 95

Quick Quiz 4.9 A particle moves along a path and its speed increases with
time. In which of the following cases are its acceleration and velocity vectors parallel?
(a) the path is circular (b) the path is straight (c) the path is a parabola (d) never.

Quick Quiz 4.10 A particle moves along a path and its speed increases with
time. In which of the following cases are its acceleration and velocity vectors perpendic-
ular everywhere along the path? (a) the path is circular (b) the path is straight (c) the
path is a parabola (d) never.
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ˆ
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r

r

(a)
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ar

a

at

a  =  ar  +  at

!

Figure 4.19 (a) Descriptions of the unit vectors r̂ and !̂. (b) The total acceleration a of
a particle moving along a curved path (which at any instant is part of a circle of radius r)
is the sum of radial and tangential component vectors. The radial component vector is
directed toward the center of curvature. If the tangential component of acceleration 
becomes zero, the particle follows uniform circular motion.

Example 4.9 Over the Rise

A car exhibits a constant acceleration of 0.300 m/s2 parallel
to the roadway. The car passes over a rise in the roadway
such that the top of the rise is shaped like a circle of radius
500 m. At the moment the car is at the top of the rise, its ve-
locity vector is horizontal and has a magnitude of 6.00 m/s.
What is the direction of the total acceleration vector for the
car at this instant?

Solution Conceptualize the situation using Figure 4.20a. Be-
cause the car is moving along a curved path, we can catego-

rize this as a problem involving a particle experiencing both
tangential and radial acceleration. Now we recognize that
this is a relatively simple plug-in problem. The radial accel-
eration is given by Equation 4.19. With v ! 6.00 m/s and
r ! 500 m, we find that

The radial acceleration vector is directed straight downward

"0.072 0 m/s2ar ! "
v2

r
! "

(6.00 m/s)2

500 m
!

It is convenient to write the acceleration of a particle moving in a circular path
in terms of unit vectors. We do this by defining the unit vectors r̂ and !̂ shown in
Figure 4.19a, where r̂ is a unit vector lying along the radius vector and directed radially
outward from the center of the circle and !̂ is a unit vector tangent to the circle. The di-
rection of !̂ is in the direction of increasing #, where # is measured counterclockwise
from the positive x axis. Note that both r̂ and !̂ “move along with the particle” and so
vary in time. Using this notation, we can express the total acceleration as

(4.20)

These vectors are described in Figure 4.19b. 

a ! at $ ar !
d ! v !

dt
 !̂ "

v2

r
 r̂

: Vector unitario dirigido a lo largo del radiovector y dirigido hacia fuera 

: Vector unitario tangente al círculo. La dirección de       viene determinada 
por la dirección de crecimiento del ángulo, cuando éste se mide en sentido 
contrario a las agujas del reloj desde el eje positivo de las x    

Tanto     como      “se mueven con la partícula”, es decir, cambian con el tiempo 



Partícula en un movimiento de rotación. 
Posición angular o posición de rotación 

Supongamos un objeto que gira sobre sí mismo 

¿cómo describiríamos su posición en ese movimiento de rotación?.  

La manera más fácil de describir su posición en ese movimiento de 
rotación es describiendo su orientación con respecto a alguna dirección 

de referencia fija. 

Podemos utilizar un ángulo, medido a partir de una dirección de referencia, como 
una medida de la posición de rotación o posición angular. 



Partícula en un movimiento de rotación. 
Posición angular o posición de rotación 

Supongamos un objeto plano que gira alrededor de un eje fijo 
perpendicular al objeto y que pasa por un punto O.  

Hay una estrecha relación entre el movimiento de 
rotación del objeto y el movimiento de una partícula 

a lo largo de una trayectoria circular. 

Todas las partículas del objeto describen un 
movimiento circular alrededor de O. 

La partícula indicada por el punto negro se 
encuentra a una distancia fija r del origen y gira 

alrededor de O describiendo un círculo de radio r. 
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When an extended object such as a wheel rotates about its axis, the motion cannot
be analyzed by treating the object as a particle because at any given time different parts
of the object have different linear velocities and linear accelerations. We can, however,
analyze the motion by considering an extended object to be composed of a collection
of particles, each of which has its own linear velocity and linear acceleration.

In dealing with a rotating object, analysis is greatly simplified by assuming that the
object is rigid. A rigid object is one that is nondeformable—that is, the relative loca-
tions of all particles of which the object is composed remain constant. All real objects
are deformable to some extent; however, our rigid-object model is useful in many situa-
tions in which deformation is negligible.

10.1 Angular Position, Velocity, and Acceleration

Figure 10.1 illustrates an overhead view of a rotating compact disc. The disc is rotating
about a fixed axis through O. The axis is perpendicular to the plane of the figure. Let
us investigate the motion of only one of the millions of “particles” making up the disc.
A particle at P is at a fixed distance r from the origin and rotates about it in a circle of
radius r. (In fact, every particle on the disc undergoes circular motion about O.) It is
convenient to represent the position of P with its polar coordinates (r, !), where r is
the distance from the origin to P and ! is measured counterclockwise from some
reference line as shown in Figure 10.1a. In this representation, the only coordinate
for the particle that changes in time is the angle !; r remains constant. As the particle
moves along the circle from the reference line (! " 0), it moves through an arc of
length s, as in Figure 10.1b. The arc length s is related to the angle ! through the 
relationship

(10.1a)

(10.1b)

Note the dimensions of ! in Equation 10.1b. Because ! is the ratio of an arc length
and the radius of the circle, it is a pure number. However, we commonly give ! the arti-
ficial unit radian (rad), where

Because the circumference of a circle is 2#r, it follows from Equation 10.1b that 360°
corresponds to an angle of (2#r/r) rad " 2# rad. (Also note that 2# rad corresponds

one radian is the angle subtended by an arc length equal to the radius of the arc.

! "
s
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s " r !
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line
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Figure 10.1 A compact disc
rotating about a fixed axis through
O perpendicular to the plane of the
figure. (a) In order to define
angular position for the disc,
a fixed reference line is chosen.
A particle at P is located at a
distance r from the rotation axis
at O. (b) As the disc rotates, point
P moves through an arc length s on
a circular path of radius r.

Un objeto que rota está compuesto por muchas 
partículas, cada una de las cuales se mueve con un 

movimiento circular (puede ser no uniforme) 



Partícula en un movimiento de rotación. 
Coordenadas polares 

Resulta conveniente representar la posición de una partícula mediante 
sus coordenadas polares 

A medida que un partícula del objeto se mueve a lo largo del 
círculo de radio r desde el eje x positivo (θ = 0) hasta el punto 
P, se está moviendo a lo largo de un arco de longitud s, que 

está relacionado con el ángulo θ por la expresión 

En este sistema de referencia, la única coordenada 
de una determinada partícula que cambia con el 

tiempo es θ, permaneciendo r constante 

Se elige como centro del sistema de coordenadas 
polares un punto que coincida con el centro de las 

trayectorias circulares de las partículas 
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A particle at P is located at a
distance r from the rotation axis
at O. (b) As the disc rotates, point
P moves through an arc length s on
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Partícula con movimiento circular: 
definición de radián 

Un radián representa el ángulo central en una circunferencia que 
subtiende un arco cuya longitud es igual a la del radio.                            

Su símbolo es rad.  

Grados   0° 30° 45° 60° 90° 180° 270° 360° 
Radianes 0 π/6 π/4 π/3 π/2 π 3π/2 2π 

Equivalencia entre grados y radianes 



Partícula con movimiento circular: 
definición de velocidades angulares 

to one complete revolution.) Hence, 1 rad ! 360°/2" ! 57.3° . To convert an angle in
degrees to an angle in radians, we use the fact that " rad ! 180°, or

For example, 60° equals "/3 rad and 45° equals "/4 rad.
Because the disc in Figure 10.1 is a rigid object, as the particle moves along the cir-

cle from the reference line, every other particle on the object rotates through the same
angle #. Thus, we can associate the angle ! with the entire rigid object as well as
with an individual particle. This allows us to define the angular position of a rigid ob-
ject in its rotational motion. We choose a reference line on the object, such as a line
connecting O and a chosen particle on the object. The angular position of the rigid
object is the angle # between this reference line on the object and the fixed reference
line in space, which is often chosen as the x axis. This is similar to the way we identify
the position of an object in translational motion—the distance x between the object
and the reference position, which is the origin, x ! 0.

As the particle in question on our rigid object travels from position ! to position
" in a time interval $t as in Figure 10.2, the reference line of length r sweeps out an
angle $# ! #f % #i. This quantity $# is defined as the angular displacement of the
rigid object:

The rate at which this angular displacement occurs can vary. If the rigid object spins
rapidly, this displacement can occur in a short time interval. If it rotates slowly, this dis-
placement occurs in a longer time interval. These different rotation rates can be quan-
tified by introducing angular speed. We define the average angular speed (Greek
omega) as the ratio of the angular displacement of a rigid object to the time interval
$t during which the displacement occurs:

(10.2)

In analogy to linear speed, the instantaneous angular speed & is defined as the
limit of the ratio $#/$t as $t approaches zero:

(10.3)

Angular speed has units of radians per second (rad/s), which can be written as
second%1 (s%1) because radians are not dimensional. We take & to be positive when # is
increasing (counterclockwise motion in Figure 10.2) and negative when # is decreasing
(clockwise motion in Figure 10.2).

& " lim
$t : 0

 
$#

$t
!

d#

dt

& " 
#f % #i

tf % ti
!

$#

$t

&

$# " #f % #i

# (rad) !
"

180'
 # (deg)
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Figure 10.2 A particle on a
rotating rigid object moves from !
to " along the arc of a circle. In
the time interval $t ! tf % ti , the
radius vector moves through an
angular displacement $# ! #f % #i.

Average angular speed

Quick Quiz 10.1 A rigid object is rotating in a counterclockwise sense
around a fixed axis. Each of the following pairs of quantities represents an initial angu-
lar position and a final angular position of the rigid object. Which of the sets can only
occur if the rigid object rotates through more than 180°? (a) 3 rad, 6 rad (b) % 1 rad,
1 rad (c) 1 rad, 5 rad.

Quick Quiz 10.2 Suppose that the change in angular position for each of
the pairs of values in Quick Quiz 10.1 occurs in 1 s. Which choice represents the lowest
average angular speed?

Instantaneous angular speed

! PITFALL PREVENTION
10.1 Remember the

Radian
In rotational equations, we must
use angles expressed in radians.
Don’t fall into the trap of using
angles measured in degrees in ro-
tational equations. Mientras la partícula se mueve desde A hasta B en un 

tiempo                       , el vector correspondiente al radio barre 
el ángulo                        que equivale al desplazamiento 

angular durante ese intervalo de tiempo  

Ni la posición angular ni el desplazamiento angular 
están limitados al rango 
(no hace falta “reiniciar” la posición angular a cero 
cada vez que la partícula cruza el eje x).  

Definimos la velocidad angular media       como el cociente 
entre el desplazamiento angular y el intervalo de tiempo 



Partícula con movimiento circular: 
definición de velocidades angulares 
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the time interval $t ! tf % ti , the
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angular displacement $# ! #f % #i.

Average angular speed

Quick Quiz 10.1 A rigid object is rotating in a counterclockwise sense
around a fixed axis. Each of the following pairs of quantities represents an initial angu-
lar position and a final angular position of the rigid object. Which of the sets can only
occur if the rigid object rotates through more than 180°? (a) 3 rad, 6 rad (b) % 1 rad,
1 rad (c) 1 rad, 5 rad.

Quick Quiz 10.2 Suppose that the change in angular position for each of
the pairs of values in Quick Quiz 10.1 occurs in 1 s. Which choice represents the lowest
average angular speed?

Instantaneous angular speed

! PITFALL PREVENTION
10.1 Remember the

Radian
In rotational equations, we must
use angles expressed in radians.
Don’t fall into the trap of using
angles measured in degrees in ro-
tational equations.

Definimos la velocidad angular media       como el cociente 
entre el desplazamiento angular y el intervalo de tiempo 

Por analogía con la velocidad de traslación,          
la velocidad angular instantánea se define como 

Unidades: rad/s o s-1 

Si adoptamos el convenio de que el eje fijo de rotación es el eje z, entonces diremos 
que      es positiva cuando      aumente (movimiento en sentido contrario del sentido 

del reloj y negativo en caso contrario 



Partícula con movimiento circular: 
definición de aceleraciones angulares 

to one complete revolution.) Hence, 1 rad ! 360°/2" ! 57.3° . To convert an angle in
degrees to an angle in radians, we use the fact that " rad ! 180°, or

For example, 60° equals "/3 rad and 45° equals "/4 rad.
Because the disc in Figure 10.1 is a rigid object, as the particle moves along the cir-

cle from the reference line, every other particle on the object rotates through the same
angle #. Thus, we can associate the angle ! with the entire rigid object as well as
with an individual particle. This allows us to define the angular position of a rigid ob-
ject in its rotational motion. We choose a reference line on the object, such as a line
connecting O and a chosen particle on the object. The angular position of the rigid
object is the angle # between this reference line on the object and the fixed reference
line in space, which is often chosen as the x axis. This is similar to the way we identify
the position of an object in translational motion—the distance x between the object
and the reference position, which is the origin, x ! 0.

As the particle in question on our rigid object travels from position ! to position
" in a time interval $t as in Figure 10.2, the reference line of length r sweeps out an
angle $# ! #f % #i. This quantity $# is defined as the angular displacement of the
rigid object:

The rate at which this angular displacement occurs can vary. If the rigid object spins
rapidly, this displacement can occur in a short time interval. If it rotates slowly, this dis-
placement occurs in a longer time interval. These different rotation rates can be quan-
tified by introducing angular speed. We define the average angular speed (Greek
omega) as the ratio of the angular displacement of a rigid object to the time interval
$t during which the displacement occurs:

(10.2)

In analogy to linear speed, the instantaneous angular speed & is defined as the
limit of the ratio $#/$t as $t approaches zero:

(10.3)

Angular speed has units of radians per second (rad/s), which can be written as
second%1 (s%1) because radians are not dimensional. We take & to be positive when # is
increasing (counterclockwise motion in Figure 10.2) and negative when # is decreasing
(clockwise motion in Figure 10.2).

& " lim
$t : 0

 
$#

$t
!

d#

dt

& " 
#f % #i

tf % ti
!

$#

$t

&

$# " #f % #i

# (rad) !
"

180'
 # (deg)
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Figure 10.2 A particle on a
rotating rigid object moves from !
to " along the arc of a circle. In
the time interval $t ! tf % ti , the
radius vector moves through an
angular displacement $# ! #f % #i.

Average angular speed

Quick Quiz 10.1 A rigid object is rotating in a counterclockwise sense
around a fixed axis. Each of the following pairs of quantities represents an initial angu-
lar position and a final angular position of the rigid object. Which of the sets can only
occur if the rigid object rotates through more than 180°? (a) 3 rad, 6 rad (b) % 1 rad,
1 rad (c) 1 rad, 5 rad.

Quick Quiz 10.2 Suppose that the change in angular position for each of
the pairs of values in Quick Quiz 10.1 occurs in 1 s. Which choice represents the lowest
average angular speed?

Instantaneous angular speed

! PITFALL PREVENTION
10.1 Remember the

Radian
In rotational equations, we must
use angles expressed in radians.
Don’t fall into the trap of using
angles measured in degrees in ro-
tational equations. Si la velocidad angular instantánea de una partícula cambia 

de       a       en el intervalo de tiempo      , la partícula tiene una 
aceleración angular 

Aceleración angular media 

Por analogía con la aceleración de traslación,          
la aceleración angular instantánea se define como 

Unidades: rad/s2 o s-2 



Partícula con movimiento circular:           
dirección de velocidad y aceleración angular  

No se ha asociado ninguna dirección con la velocidad angular ni la aceleración angular 

Siendo estrictos, la velocidad y la aceleración angular instantánea definidas anteriormente son 
los módulos de las correspondientes magnitudes vectoriales  

En el caso de rotación alrededor de un eje fijo, la única dirección que permite especificar 
de forma unívoca el movimiento de rotación es la dirección a lo largo del eje 

La dirección de      se orienta a lo largo del eje de rotación. 

Por convenio, se considera que el sentido de      
es saliente con respecto al plano en el diagrama 
cuando la rotación es en el sentido contrario a 

las agujas del reloj 

ω

ω

Figure 10.3 The right-hand rule for determin-
ing the direction of the angular velocity vector.
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If the instantaneous angular speed of an object changes from !i to !f in the time 
interval "t, the object has an angular acceleration. The average angular acceleration
(Greek alpha) of a rotating rigid object is defined as the ratio of the change in the angu-
lar speed to the time interval "t during which the change in the angular speed occurs:

(10.4)

In analogy to linear acceleration, the instantaneous angular acceleration is 
defined as the limit of the ratio "!/"t as "t approaches zero:

(10.5)

Angular acceleration has units of radians per second squared (rad/s2), or just
second#2 (s#2). Note that $ is positive when a rigid object rotating counterclockwise is
speeding up or when a rigid object rotating clockwise is slowing down during some
time interval.

When a rigid object is rotating about a fixed axis, every particle on the object 
rotates through the same angle in a given time interval and has the same angular
speed and the same angular acceleration. That is, the quantities %, !, and $ charac-
terize the rotational motion of the entire rigid object as well as individual particles in the
object. Using these quantities, we can greatly simplify the analysis of rigid-object rotation.

Angular position (%), angular speed (!), and angular acceleration ($) are analo-
gous to linear position (x), linear speed (v), and linear acceleration (a). The variables
%, !, and $ differ dimensionally from the variables x, v, and a only by a factor having
the unit of length. (See Section 10.3.)

We have not specified any direction for angular speed and angular acceleration.
Strictly speaking, ! and $ are the magnitudes of the angular velocity and the angular
acceleration vectors1 ! and ", respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can use nonvector notation
and indicate the directions of the vectors by assigning a positive or negative sign to !
and $, as discussed earlier with regard to Equations 10.3 and 10.5. For rotation about a
fixed axis, the only direction that uniquely specifies the rotational motion is the direc-
tion along the axis of rotation. Therefore, the directions of ! and " are along this axis.
If an object rotates in the xy plane as in Figure 10.1, the direction of ! is out of the
plane of the diagram when the rotation is counterclockwise and into the plane of the
diagram when the rotation is clockwise. To illustrate this convention, it is convenient to
use the right-hand rule demonstrated in Figure 10.3. When the four fingers of the right

$ ! lim
"t:0

 
"!

"t
&

d!

dt

 $ ! 
!f # !i

tf # ti
&

"!

"t

$

1 Although we do not verify it here, the instantaneous angular velocity and instantaneous angular ac-
celeration are vector quantities, but the corresponding average values are not. This is because angular
displacements do not add as vector quantities for finite rotations.

! PITFALL PREVENTION
10.2 Specify Your Axis
In solving rotation problems, you
must specify an axis of rotation.
This is a new feature not found in
our study of translational motion.
The choice is arbitrary, but once
you make it, you must maintain
that choice consistently through-
out the problem. In some
problems, the physical situation
suggests a natural axis, such as the
center of an automobile wheel. In
other problems, there may not be
an obvious choice, and you must
exercise judgement.

Average angular acceleration

Instantaneous angular
acceleration

Por convenio, se considera que el sentido de      
es entrante con respecto al plano en el diagrama 

cuando la rotación es en el sentido de las 
agujas del reloj 

ω

ω

Figure 10.3 The right-hand rule for determin-
ing the direction of the angular velocity vector.
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If the instantaneous angular speed of an object changes from !i to !f in the time 
interval "t, the object has an angular acceleration. The average angular acceleration
(Greek alpha) of a rotating rigid object is defined as the ratio of the change in the angu-
lar speed to the time interval "t during which the change in the angular speed occurs:
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In analogy to linear acceleration, the instantaneous angular acceleration is 
defined as the limit of the ratio "!/"t as "t approaches zero:
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Angular acceleration has units of radians per second squared (rad/s2), or just
second#2 (s#2). Note that $ is positive when a rigid object rotating counterclockwise is
speeding up or when a rigid object rotating clockwise is slowing down during some
time interval.

When a rigid object is rotating about a fixed axis, every particle on the object 
rotates through the same angle in a given time interval and has the same angular
speed and the same angular acceleration. That is, the quantities %, !, and $ charac-
terize the rotational motion of the entire rigid object as well as individual particles in the
object. Using these quantities, we can greatly simplify the analysis of rigid-object rotation.

Angular position (%), angular speed (!), and angular acceleration ($) are analo-
gous to linear position (x), linear speed (v), and linear acceleration (a). The variables
%, !, and $ differ dimensionally from the variables x, v, and a only by a factor having
the unit of length. (See Section 10.3.)

We have not specified any direction for angular speed and angular acceleration.
Strictly speaking, ! and $ are the magnitudes of the angular velocity and the angular
acceleration vectors1 ! and ", respectively, and they should always be positive. Because
we are considering rotation about a fixed axis, however, we can use nonvector notation
and indicate the directions of the vectors by assigning a positive or negative sign to !
and $, as discussed earlier with regard to Equations 10.3 and 10.5. For rotation about a
fixed axis, the only direction that uniquely specifies the rotational motion is the direc-
tion along the axis of rotation. Therefore, the directions of ! and " are along this axis.
If an object rotates in the xy plane as in Figure 10.1, the direction of ! is out of the
plane of the diagram when the rotation is counterclockwise and into the plane of the
diagram when the rotation is clockwise. To illustrate this convention, it is convenient to
use the right-hand rule demonstrated in Figure 10.3. When the four fingers of the right
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10.2 Specify Your Axis
In solving rotation problems, you
must specify an axis of rotation.
This is a new feature not found in
our study of translational motion.
The choice is arbitrary, but once
you make it, you must maintain
that choice consistently through-
out the problem. In some
problems, the physical situation
suggests a natural axis, such as the
center of an automobile wheel. In
other problems, there may not be
an obvious choice, and you must
exercise judgement.

Average angular acceleration

Instantaneous angular
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Partícula con movimiento circular:           
dirección de velocidad y aceleración angular  

No se ha asociado ninguna dirección con la velocidad angular ni la aceleración angular 

Siendo estrictos, la velocidad y la aceleración angular instantánea definidas anteriormente son 
los módulos de las correspondientes magnitudes vectoriales  

En el caso de rotación alrededor de un eje fijo, la única dirección que permite especificar 
de forma unívoca el movimiento de rotación es la dirección a lo largo del eje 

La dirección de      se deduce de su definición vectorial como  

La dirección de la aceleración es la misma que 
la de la velocidad angular si la velocidad angular 

(el módulo de      ) aumenta con el tiempo 

La dirección de la aceleración es antiparalela a 
la velocidad angular si la velocidad angular (el 

módulo de      ) disminuye con el tiempo 



Vector velocidad angular       

Vector velocidad angular 

Módulo: celeridad angular 

Dirección: perpendicular al plano del movimiento 

Sentido: tornillo a derechas 

Como 

sugiere que 

Derivando el vector velocidad, obtenemos la aceleración 

R

α



Cinemática de rotación:                                          
cuerpo rígido con aceleración angular constante 

En el caso de movimiento de rotación alrededor de un eje fijo, el movimiento 
acelerado más simple es el movimiento bajo aceleración angular constante 

Y además 

Podemos integrar esta expresión directamente para calcular la velocidad angular final 



Cinemática de rotación:                                          
cuerpo rígido con aceleración angular constante 

Integrando una vez más obtenemos el ángulo en función del tiempo 



Cinemática de rotación:                                          
cuerpo rígido con aceleración angular constante 

Si eliminamos el tiempo de la primera ecuación y sustituimos en la segunda 

Y eliminando la aceleración angular 



Cinemática de rotación:                                          
cuerpo rígido con aceleración angular constante 

Las expresiones cinemáticas para el movimiento de rotación bajo aceleración 
angular constante tienen la misma forma matemática que las del movimiento de 

traslación bajo aceleración de traslación constante, sustituyendo  
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Rotational Motion  
About Fixed Axis Linear Motion

!f " !i # $t vf " vi # at
%f " %i # !i t # $t 2 xf " xi # vit # at2

!f
2 " !i

2 # 2$(%f & %i) vf
2 " vi

2 # 2a(xf & xi)
%f " %i # (!i # !f)t xf " xi # (vi # vf)t1

2
1
2

1
2

1
2

Kinematic Equations for Rotational and Linear 
Motion Under Constant Acceleration

Table 10.1

10.3 Angular and Linear Quantities

In this section we derive some useful relationships between the angular speed and ac-
celeration of a rotating rigid object and the linear speed and acceleration of a point in
the object. To do so, we must keep in mind that when a rigid object rotates about a
fixed axis, as in Figure 10.4, every particle of the object moves in a circle whose
center is the axis of rotation.

Quick Quiz 10.4 Consider again the pairs of angular positions for the rigid
object in Quick Quiz 10.1. If the object starts from rest at the initial angular position,
moves counterclockwise with constant angular acceleration, and arrives at the final an-
gular position with the same angular speed in all three cases, for which choice is the
angular acceleration the highest?

Example 10.1 Rotating Wheel

A wheel rotates with a constant angular acceleration of
3.50 rad/s2.

(A) If the angular speed of the wheel is 2.00 rad/s at ti " 0,
through what angular displacement does the wheel rotate in
2.00 s?

Solution We can use Figure 10.2 to represent the wheel. We
arrange Equation 10.7 so that it gives us angular displacement:

"

(B) Through how many revolutions has the wheel turned
during this time interval?

Solution We multiply the angular displacement found in part
(A) by a conversion factor to find the number of revolutions:

(C) What is the angular speed of the wheel at t " 2.00 s?

Solution Because the angular acceleration and the angular
speed are both positive, our answer must be greater than
2.00 rad/s. Using Equation 10.6, we find

1.75 rev'% " 630( ! 1 rev
360( " "

630(" (11.0 rad)(57.3(/rad) "11.0 rad

"(2.00 rad/s)(2.00 s) # 1
2 (3.50 rad/s2)(2.00 s)2

'% " %f & %i " !it # 1
2 $t 

2

"

We could also obtain this result using Equation 10.8 and the
results of part (A). Try it! 

What If? Suppose a particle moves along a straight line
with a constant acceleration of 3.50 m/s2. If the velocity of
the particle is 2.00 m/s at ti ! 0, through what displacement
does the particle move in 2.00 s? What is the velocity of the
particle at t ! 2.00 s?

Answer Notice that these questions are translational
analogs to parts (A) and (C) of the original problem. The
mathematical solution follows exactly the same form. For
the displacement,

and for the velocity,

Note that there is no translational analog to part (B) because
translational motion is not repetitive like rotational motion.

vf " vi #at " 2.00 m/s # (3.50 m/s2)(2.00 s) " 9.00 m/s

" 11.0 m

" (2.00 m/s)(2.00 s) # 1
2(3.50 m/s2)(2.00 s)2

'x " xf & xi " vit # 1
2at 

2

9.00 rad/s

!f " !i # $t " 2.00 rad/s # (3.50 rad/s2)(2.00 s)



Relaciones entre las magnitudes de 
rotación y traslación 

Cuando un cuerpo rígido gira alrededor de un eje fijo, cada partícula del cuerpo 
se mueve alrededor de un círculo cuyo centro es el eje de giro 

Una partícula de un cuerpo rígido en rotación se 
mueve en un círculo de radio r alrededor del eje z 

Dado que la partícula se mueve en una trayectoria 
circular, su vector velocidad es siempre 

perpendicular a la trayectoria                                             
(a menudo se denomina velocidad tangencial) 

El módulo de la velocidad tangencial viene dado por  

Donde s es la distancia recorrida por la partícula a lo 
largo de la trayectoria circular 

El módulo de la velocidad tangencial de la partícula 
es igual a la distancia de la partícula al eje de giro 

multiplicada por la velocidad angular de la partícula 
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Quick Quiz 10.5 Andy and Charlie are riding on a merry-go-round. Andy
rides on a horse at the outer rim of the circular platform, twice as far from the center
of the circular platform as Charlie, who rides on an inner horse. When the merry-go-
round is rotating at a constant angular speed, Andy’s angular speed is (a) twice Char-
lie’s (b) the same as Charlie’s (c) half of Charlie’s (d) impossible to determine.

Quick Quiz 10.6 Consider again the merry-go-round situation in Quick Quiz
10.5. When the merry-go-round is rotating at a constant angular speed, Andy’s tangen-
tial speed is (a) twice Charlie’s (b) the same as Charlie’s (c) half of Charlie’s (d) impos-
sible to determine.

Relation between tangential
and angular acceleration

x

y

O

ar

at

P
a

Figure 10.5 As a rigid object
rotates about a fixed axis through
O, the point P experiences a
tangential component of linear
acceleration at and a radial
component of linear acceleration
ar . The total linear acceleration of
this point is a ! at " ar .

Because point P in Figure 10.4 moves in a circle, the linear velocity vector v is al-
ways tangent to the circular path and hence is called tangential velocity. The magnitude
of the tangential velocity of the point P is by definition the tangential speed v ! ds/dt,
where s is the distance traveled by this point measured along the circular path. Recall-
ing that s ! r# (Eq. 10.1a) and noting that r is constant, we obtain

Because d#/dt ! $ (see Eq. 10.3), we see that

(10.10)

That is, the tangential speed of a point on a rotating rigid object equals the perpendic-
ular distance of that point from the axis of rotation multiplied by the angular speed.
Therefore, although every point on the rigid object has the same angular speed, not
every point has the same tangential speed because r is not the same for all points on the
object. Equation 10.10 shows that the tangential speed of a point on the rotating object
increases as one moves outward from the center of rotation, as we would intuitively ex-
pect. The outer end of a swinging baseball bat moves much faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tangential
acceleration of the point P by taking the time derivative of v :

(10.11)

That is, the tangential component of the linear acceleration of a point on a rotating
rigid object equals the point’s distance from the axis of rotation multiplied by the an-
gular acceleration.

In Section 4.4 we found that a point moving in a circular path undergoes a radial
acceleration ar of magnitude v2/r directed toward the center of rotation (Fig. 10.5).
Because v ! r$ for a point P on a rotating object, we can express the centripetal accel-
eration at that point in terms of angular speed as

(10.12)

The total linear acceleration vector at the point is a ! at " ar , where the magni-
tude of ar is the centripetal acceleration ac . Because a is a vector having a radial and a
tangential component, the magnitude of a at the point P on the rotating rigid object is

(10.13)a ! √at 
2 " ar 

2 ! √r 
2% 2 " r  2$4 ! r  √%2 " $4

ac !
v 

2

r
! r$2

at ! r%

at !
dv
dt

! r  
d$

dt

v ! r$

v !
ds
dt

! r  
d#

dt

y

P

x
O

v

r
u

s

Active Figure 10.4 As a rigid object
rotates about the fixed axis through
O, the point P has a tangential
velocity v that is always tangent to
the circular path of radius r.

At the Active Figures link
at http://www.pse6.com, you
can move point P and observe
the tangential velocity as the
object rotates.



Relaciones entre las magnitudes de 
rotación y traslación 

Cuando un cuerpo rígido gira alrededor de un eje fijo, cada partícula del cuerpo 
se mueve alrededor de un círculo cuyo centro es el eje de giro 

Una partícula de un cuerpo rígido en rotación se 
mueve en un círculo de radio r alrededor del eje z 

El módulo de la velocidad tangencial de la partícula 
es igual a la distancia de la partícula al eje de giro 

multiplicada por la velocidad angular de la partícula 
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Because point P in Figure 10.4 moves in a circle, the linear velocity vector v is al-
ways tangent to the circular path and hence is called tangential velocity. The magnitude
of the tangential velocity of the point P is by definition the tangential speed v ! ds/dt,
where s is the distance traveled by this point measured along the circular path. Recall-
ing that s ! r# (Eq. 10.1a) and noting that r is constant, we obtain

Because d#/dt ! $ (see Eq. 10.3), we see that
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That is, the tangential speed of a point on a rotating rigid object equals the perpendic-
ular distance of that point from the axis of rotation multiplied by the angular speed.
Therefore, although every point on the rigid object has the same angular speed, not
every point has the same tangential speed because r is not the same for all points on the
object. Equation 10.10 shows that the tangential speed of a point on the rotating object
increases as one moves outward from the center of rotation, as we would intuitively ex-
pect. The outer end of a swinging baseball bat moves much faster than the handle.

We can relate the angular acceleration of the rotating rigid object to the tangential
acceleration of the point P by taking the time derivative of v :
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That is, the tangential component of the linear acceleration of a point on a rotating
rigid object equals the point’s distance from the axis of rotation multiplied by the an-
gular acceleration.

In Section 4.4 we found that a point moving in a circular path undergoes a radial
acceleration ar of magnitude v2/r directed toward the center of rotation (Fig. 10.5).
Because v ! r$ for a point P on a rotating object, we can express the centripetal accel-
eration at that point in terms of angular speed as
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Active Figure 10.4 As a rigid object
rotates about the fixed axis through
O, the point P has a tangential
velocity v that is always tangent to
the circular path of radius r.

At the Active Figures link
at http://www.pse6.com, you
can move point P and observe
the tangential velocity as the
object rotates.

Aunque cada punto del sólido rígido tenga la misma velocidad 
angular, no todos los puntos tienen la misma velocidad 

tangencial, puesto que r cambia de punto a punto. 

La velocidad tangencial de un punto en un objeto que rota 
aumenta según nos separamos del eje de giro 



Relaciones entre las magnitudes de 
rotación y traslación 

Podemos establecer una relación entre la aceleración angular de la partícula y su 
aceleración tangencial       , cuya componente es tangente a la trayectoria del movimiento 

La componente tangencial de la aceleración de traslación de una 
partícula que experimenta un movimiento circular es igual a la 

distancia de la partícula al eje de giro multiplicada por la 
aceleración angular 

Módulo de la aceleración de traslación total  Aceleración de traslación total 

Pero la aceleración de traslación también tiene una componente centrípeta 
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That is, the tangential speed of a point on a rotating rigid object equals the perpendic-
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Therefore, although every point on the rigid object has the same angular speed, not
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That is, the tangential component of the linear acceleration of a point on a rotating
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In Section 4.4 we found that a point moving in a circular path undergoes a radial
acceleration ar of magnitude v2/r directed toward the center of rotation (Fig. 10.5).
Because v ! r$ for a point P on a rotating object, we can express the centripetal accel-
eration at that point in terms of angular speed as

(10.12)

The total linear acceleration vector at the point is a ! at " ar , where the magni-
tude of ar is the centripetal acceleration ac . Because a is a vector having a radial and a
tangential component, the magnitude of a at the point P on the rotating rigid object is

(10.13)a ! √at 
2 " ar 

2 ! √r 
2% 2 " r  2$4 ! r  √%2 " $4
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Active Figure 10.4 As a rigid object
rotates about the fixed axis through
O, the point P has a tangential
velocity v that is always tangent to
the circular path of radius r.

At the Active Figures link
at http://www.pse6.com, you
can move point P and observe
the tangential velocity as the
object rotates.



Transparencias de soporte 



Partícula con movimiento circular: 
Celeridad angular 

El desplazamiento lineal es igual al radio por el ángulo 

Se define a la celeridad angular como: 

Unidades: (rad/s) 

Definimos el módulo de la velocidad instantánea como 



Partícula con movimiento circular: 
Módulo de la aceleración angular 

El desplazamiento lineal es igual al radio por el ángulo 

Se define la aceleración angular como: 



Partícula con movimiento circular uniforme: 
celeridad angular constante 

Se define el periodo T como el tiempo necesario para completar una vuelta. 
El periodo se mide en segundos. 

Se define la frecuencia ν  como el número de vueltas que la partícula completa en un segundo. 
La frecuencia se mide en (revoluciones/segundo) = Hertz 

Celeridad angular 

Por definición ⇒ integrando 



Partícula con movimiento circular uniformemente acelerado: 
aceleración angular constante 



Componentes intrínsecas de la aceleración:       
aceleración tangencial y radial en el movimiento circular 



Vector velocidad angular       

Vector velocidad angular 

Módulo: celeridad angular 

Dirección: perpendicular al plano del movimiento 

Sentido: tornillo a derechas 

Como 

Podemos escribir 

Derivando el vector velocidad, obtenemos la aceleración 


