VECTORES: OPERACIONES BÁSICAS

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: \(\vec{A} \) (10 m hacia el Noroeste), \(\vec{B} \) (20 m Este 30º Norte) y \(\vec{C} \) (35 m Sur)

Solución: I.T.I. 94, I.T.T. 05

La representación gráfica de los desplazamientos viene dada en la figura. La magnitud del desplazamiento final y su orientación será:

\[
\vec{D} = \sqrt{\vec{A} + \vec{B} + \vec{C}} = \sqrt{A^2 + B^2 + C^2 + 2AB \cos 105^\circ + 2AC \cos 135^\circ + 2BC \cos 120^\circ} = 20.65 \text{ m}
\]

\[
\vec{D} \cdot \vec{C} = DC \cos \theta
\]

\[
\vec{D} \cdot \vec{C} = (\vec{A} + \vec{B} + \vec{C}) \cdot \vec{C} = (AC \cos 135^\circ + BC \cos 120^\circ + C^2)
\]

\[
\theta = \arccos \left(\frac{\vec{D} \cdot \vec{C}}{DC} \right) = \arccos \left(\frac{A \cos 135^\circ + B \cos 120^\circ + C}{D} \right) = 29.8^\circ
\]
Un automóvil recorre 3 km hacia el Norte y luego 5 km hacia el Norte 40º Este, representar estos desplazamientos y hallar el desplazamiento resultante gráfica y analíticamente.

Solución: I.T.I. 04, I.T.T. 04

La representación gráfica de los desplazamientos viene dada en la figura. La magnitud del desplazamiento final y su orientación será:

\[d = \sqrt{\vec{d} \cdot \vec{d}} = \sqrt{(d_1 + d_2) \cdot (d_1 + d_2)} = \sqrt{d_1^2 + d_2^2 + 2d_1d_2\cos 40^\circ} = 7.55 \text{ km} \]

\[
\vec{d} \cdot \vec{d}_1 = dd_1 \cos \theta \\
\vec{d} \cdot \vec{d}_2 = \left(\vec{d}_1 + \vec{d}_2\right) \cdot \vec{d}_1 = \\
= (d_1^2 + d_2d_1 \cos 40^\circ) \Rightarrow \theta = \arccos \left(\frac{\vec{d} \cdot \vec{d}_1}{d_1} \right) = 25.2^\circ
\]

HALLAR EL ÁNGULO FORMADO POR LOS VECTORES \(\vec{A} = 2\hat{i} + 2\hat{j} - \hat{k} \) Y \(\vec{B} = 6\hat{i} - 3\hat{j} + 2\hat{k} \).

Solución: I.T.I. 94, I.T.T. 05

El ángulo lo obtenemos a partir del producto escalar:

\[\vec{A} \cdot \vec{B} = AB \cos \theta \quad \Rightarrow \quad \theta = \arccos \left(\frac{\vec{A} \cdot \vec{B}}{AB} \right) = 79.0^\circ \]
Dados los vectores: \(\vec{a} = (1, 1, 2) \) y \(\vec{b} = (1, 3, 4) \). Calcular: a) el producto escalar de ambos vectores, b) el ángulo que forman, c) la proyección de \(\vec{b} \) sobre \(\vec{a} \).

Solución: I.T.I. 04

a) El producto escalar será: \(\vec{a} \cdot \vec{b} = 1 \cdot 1 + 1 \cdot 3 + 2 \cdot 4 = 12 \)

b) El ángulo que forman entre sí será:

\[
\vec{a} \cdot \vec{b} = ab \cos \theta \quad \Rightarrow \quad \theta = \arccos \left(\frac{\vec{a} \cdot \vec{b}}{ab} \right) = 16.1^\circ
\]

c) La proyección del vector \(\vec{b} \) sobre el vector \(\vec{a} \) será:

\[
d = |b \cos \theta| = \left| \frac{\vec{a} \cdot \vec{b}}{a} \right| = \frac{2 \sqrt{6}}{6} \text{ unid. de long.}
\]
Entre los cosenos directores de un vector unitario existen las siguientes relaciones:

\[
\frac{\cos \alpha}{\cos \beta} = \frac{2}{3}, \quad \frac{\cos \beta}{\cos \gamma} = \frac{3}{4}.
\]
Calcular el producto escalar y vectorial de este vector con el que tiene por componentes: \(\sqrt{29}(1, 1, 1)\). ¿Qué ángulo forman entre sí ambos vectores?

Solución: I.T.I. 92, I.T.T. 95, 04, I.I. 94

El valor de los cosenos directores lo podemos obtener a partir de las dos ecuaciones del enunciado y de la relación entre los tres cosenos:

\[
\begin{align*}
\frac{\cos \alpha}{\cos \beta} &= \frac{2}{3} \\
\frac{\cos \beta}{\cos \gamma} &= \frac{3}{4} \\
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma &= 1
\end{align*}
\]
\[
\Rightarrow \begin{cases}
\cos \alpha = \pm \frac{2}{\sqrt{29}} \\
\cos \beta = \pm \frac{3}{\sqrt{29}} \\
\cos \gamma = \pm \frac{4}{\sqrt{29}}
\end{cases}
\]

Nuestro vector unitario será por lo tanto: \(\hat{u} = \pm \left(\frac{2}{\sqrt{29}} \hat{i} + \frac{3}{\sqrt{29}} \hat{j} + \frac{4}{\sqrt{29}} \hat{k} \right)\)

Los productos escalar y vectorial de este vector unitario por el vector del enunciado serán:

\[
\hat{u} \cdot \hat{v} = \pm \left(\frac{2}{\sqrt{29}}(29) + \frac{3}{\sqrt{29}}(29) + \frac{4}{\sqrt{29}}(29) \right) = \pm 9
\]

\[
\hat{u} \times \hat{v} = \pm \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\frac{2}{\sqrt{29}} & \frac{3}{\sqrt{29}} & \frac{4}{\sqrt{29}} \\
\frac{29}{\sqrt{29}} & \frac{29}{\sqrt{29}} & \frac{29}{\sqrt{29}}
\end{vmatrix} = \pm \left(-\hat{i} + 2\hat{j} - \hat{k} \right)
\]

El ángulo que forman entre sí los dos vectores será:

\[
\hat{u} \cdot \hat{v} = \hat{v} \cos \theta \quad \Rightarrow \quad \theta = \arccos \left(\frac{\hat{u} \cdot \hat{v}}{\hat{v}} \right) = 15.2^\circ \text{ ó } 167.8^\circ
\]
Demostrar que el vector unitario \(\hat{u} \), cuyos cosenos directores son: \(\cos \alpha = \frac{1}{3} \), \(\cos \beta = \frac{2}{3} \) y \(\cos \gamma > 0 \), es perpendicular al vector \(\vec{b} = (6, -9, 6) \).

Solución: I.T.I. 04, I.T.T. 05

El valor del tercer coseno director lo podemos sacar a partir de la relación entre los tres cosenos:

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \quad \Rightarrow \quad \cos \gamma = \sqrt{1 - \cos^2 \alpha - \cos^2 \beta} = \frac{2}{3}
\]

realizando el producto vectorial entre \(\hat{u} \) y \(\vec{b} \):

\[
\hat{u} \cdot \vec{b} = \frac{1}{3} \cdot 6 + \frac{2}{3} \cdot (-9) + \frac{2}{3} \cdot 6 = 0
\]

lo cual demuestra que son perpendiculares.

La suma de dos vectores \(\vec{a} \) y \(\vec{b} \) es un vector cuyo módulo es 24 y sus cosenos directores son \((1/3, -2/3, 2/3)\). Sabemos también que \(3\vec{a} - 2\vec{b} = (9, 7, 3)\). Determinar ambos vectores.

Solución: I.T.I. 99, 02, 05, I.T.T. 99, curso cero de física

Según los datos nuestras dos ecuaciones serán:

\[
\vec{a} + \vec{b} = 24 \begin{pmatrix} 1/3, -2/3, 2/3 \end{pmatrix} = \begin{pmatrix} 8, -16, 16 \end{pmatrix}
\]

\[
3\vec{a} - 2\vec{b} = \begin{pmatrix} 9, 7, 3 \end{pmatrix}
\]

Multiplicando la primera ecuación por dos y sumándole la segunda:

\[
5\vec{a} = \begin{pmatrix} 25, -25, 35 \end{pmatrix} \quad \Rightarrow \quad \vec{a} = \begin{pmatrix} 5, -5, 7 \end{pmatrix}
\]

Sustituyendo esta solución en la primera ecuación y despejando:

\[
\vec{b} = \begin{pmatrix} 3, -11, 9 \end{pmatrix}
\]
Descomponer el vector \(\vec{V} = (1, 2, 3) \) según las direcciones de los vectores: \(\vec{a} = (0, 0, 1) \), \(\vec{b} = (1, 1, 1) \) y \(\vec{c} = (1, 0, 1) \).

Solución: I.T.I. 92, I.T.T. 95, I.I. 94

Llamemos \(l, m, n \) a los coeficientes de \(\vec{V} \) como composición de \(\vec{a}, \vec{b} \) y \(\vec{c} \):

\[
\vec{V} = l\vec{a} + m\vec{b} + n\vec{c}
\]

\[
\begin{cases}
 m + n = 1 \\
 m = 2 \\
 l + m + n = 3
\end{cases} \Rightarrow \begin{cases}
 l = 2 \\
 m = 2 \\
 n = -1
\end{cases} \Rightarrow \vec{V} = 2\vec{a} + 2\vec{b} - \vec{c}
\]

Sabiendo que el vector \(\vec{a} \) tiene de módulo 6 y dos de sus cosenos directores son \(\cos\alpha = 1/2 \), \(\cos\beta = 1/3 \). Calcular las componentes del vector \(\vec{a} \), y las componentes de un vector \(\vec{b} \) tal que \(\vec{a} \cdot \vec{b} = \frac{23}{2} \) y \(\vec{a} \times \vec{b} = \hat{i} - \frac{3}{2} \hat{j} \).

Solución: I.T.I. 01, I.T.T. 01, curso cero de física

Los cosenos directores de un vector verifican la ecuación:
\[\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1, \]
con lo que podemos calcular el valor del tercer coseno director:
\[\cos\gamma = \sqrt{1 - \cos^2\alpha - \cos^2\beta} = \pm \frac{\sqrt{23}}{6} \]

El vector \(\vec{a} \) vendrá dado por: \(\vec{a} = a (\cos\alpha, \cos\beta, \cos\gamma) = (3, 2, \pm \sqrt{23}) \)

Para encontrar el vector \(\vec{b} \) tenemos que:
\[
\begin{align*}
\vec{a} \cdot \vec{b} &= \frac{\sqrt{23}}{2} \Rightarrow 3b_x + 2b_y \pm \sqrt{23}b_z = \frac{\sqrt{23}}{2} \\
\vec{a} \times \vec{b} &= \hat{i} - \frac{3}{2} \hat{j} \Rightarrow \begin{cases}
 2b_x + \sqrt{23}b_y = 1 \\
 z\sqrt{23}b_z - 3b_y = -\frac{3}{2}
\end{cases} \Rightarrow \\
\end{align*}
\]

\(\vec{a} = (3, 2, +\sqrt{23}) \) y \(\vec{b} = \left(0, 0, \frac{1}{2} \right) \) ó \(\vec{a} = (3, 2, -\sqrt{23}) \) y \(\vec{b} = \left(\frac{\sqrt{23}}{12}, \frac{\sqrt{23}}{18}, -\frac{5}{36} \right) \)
Halla el volumen del paralelepípedo formado por los vectores \(\vec{a} \) \((2, -3, 4)\), \(\vec{b} \) \((1, 2, -1)\) y \(\vec{c} \) \((3, -1, 2)\).

Solución: I.T.I. 93, I.T.T. 04

El volumen del paralelepípedo viene dado por el valor absoluto del producto mixto de los tres vectores:

\[
\text{Volumen} = |\vec{a} \cdot (\vec{b} \times \vec{c})| = |\begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix}| = |-7| = 7 \text{ unid. long.}^3
\]

Halla el volumen del tetraedro formado por los vectores \(\vec{a} \) \((1, 1, 1)\), \(\vec{b} \) \((1, 1, 0)\) y \(\vec{c} \) \((1, 0, 1)\), así como su doble producto vectorial.

Solución: I.T.I. 94, I.T.T. 05

Sabiendo que el volumen de una pirámide es un tercio del área de la base por la altura y teniendo en cuenta que la base del tetraedro es un triángulo y que por lo tanto su área será la mitad de la base del paralelepípedo formado por los tres vectores, el volumen del tetraedro será una sexta parte del volumen del paralelepípedo:

\[
\text{Volumen tetraedro} = \frac{1}{3} \text{base tetraedro} \cdot altura = \frac{1}{3} \left(\frac{1}{2} \text{base paralelepípedo} \right) \cdot altura = \frac{1}{6} \text{base paralelepípedo} \cdot altura = \frac{1}{6} \text{Volumen paralelepípedo}
\]

\[
\Rightarrow \text{Volumen tetraedro} = \frac{1}{6} |\vec{a} \cdot (\vec{b} \times \vec{c})| = \frac{1}{6} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = \frac{1}{6} \text{ unid. long.}^3
\]

En cuanto al doble producto vectorial como no nos dicen en que orden calculemos una de las posibles combinaciones:
\[\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (0, 2, -2) \]
Hallar el vector unitario paralelo al plano XY y perpendicular al vector \(\vec{A} = (4, -3, 1) \).

Solución: I.T.I. 93, I.T.T. 05

Si el vector unitario está contenido en el plano XY será de la forma:

\[
\hat{u} = \left(\cos \alpha, \cos \beta, 0 \right) \quad \cos^2 \alpha + \cos^2 \beta = 1
\]

donde \(a \) y \(b \) son los ángulos que forma con los ejes \(X \) y \(Y \). Por otro lado si es perpendicular al vector \(\vec{A} \) tenemos que:

\[
\hat{u} \cdot \vec{A} = 0 \quad \Rightarrow \quad 4 \cos \alpha - 3 \cos \beta = 0
\]

De estas dos ecuaciones se obtiene que: \(\cos \alpha = \frac{3}{5} \) y \(\cos \beta = \frac{4}{5} \), con lo que nuestro vector unitario será:

\[
\hat{u} = \left(\frac{3}{5}, \frac{4}{5}, 0 \right)
\]

Hallar el vector unitario con la dirección y el sentido de la resultante de los vectores \(\vec{A} = (2, 4, -5) \) y \(\vec{B} = (1, 2, 5) \)

Solución: I.T.I. 98, I.T.T. 01, curso cero de física

La suma de los vectores será: \(\vec{C} = \vec{A} + \vec{B} = (3, 6, 0) \)

Dividiendo por el módulo obtendremos el vector unitario:

\[
\hat{C} = \frac{\vec{C}}{\sqrt{3^2 + 6^2 + 0^2}} = \frac{1}{\sqrt{3}} (1, 2, 0)
\]

Hallar un vector unitario en la dirección y sentido de la resultante de los vectores \(\vec{R}_1 = (2, 4, -5) \) y \(\vec{R}_2 = (1, 1, 3) \).

Solución: I.T.I. 04

La suma de los vectores será: \(\vec{C} = \vec{R}_1 + \vec{R}_2 = (3, 5, -2) \)

Dividiendo por el módulo obtendremos el vector unitario:
\[\hat{C} = \frac{\hat{C}}{C} = \frac{(3, 5, -2)}{\sqrt{3^2 + 5^2 + (-2)^2}} = \frac{1}{\sqrt{38}} (3, 5, -2) \]

Encontrar el vector unitario perpendicular a los vectores \(\vec{A} = (2, -6, -3) \) y \(\vec{B} = (4, 3, -1) \)

Solución: I.T.T. 94, I.T.T. 04

El vector \(\vec{A} \times \vec{B} \) es un vector perpendicular a \(\vec{A} \) y \(\vec{B} \), si lo dividimos por su módulo tendremos un vector unitario. Este vector, o el vector de sentido contrario, es solución del problema:

\[\hat{u} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \frac{1}{7} \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix} \]

Encontrar el vector unitario perpendicular a los vectores \(\vec{A} = (4, -1, 3) \) y \(\vec{B} = (-2, 1, -2) \)

Solución: I.T.I. 95, 96, 00, I.T.T. 96, 00, curso cero de física

El vector \(\vec{A} \times \vec{B} \) es un vector perpendicular a \(\vec{A} \) y \(\vec{B} \), si lo dividimos por su módulo tendremos un vector unitario. Este vector, o el vector de sentido contrario, es solución del problema:

\[\hat{u} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \frac{1}{3} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} \]

Hallar el valor de \(a \) de modo que \(\vec{A} = (2, a, 1) \) y \(\vec{B} = (4, -2, -2) \) sean perpendiculares. Obtener el vector unitario perpendicular al plano formado por los dos vectores.

Solución: I.T.I. 04

Si \(\vec{A} \) y \(\vec{B} \) son perpendiculares su producto escalar debe ser nulo:

\[\vec{A} \cdot \vec{B} = 8 - 2a - 2 = 0 \implies a = 3 \]

El vector \(\vec{A} \times \vec{B} \) es un vector perpendicular a \(\vec{A} \) y \(\vec{B} \), si lo dividimos por su módulo tendremos un vector unitario. Este vector, o el vector de sentido contrario, es solución del problema:

\[\hat{u} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \frac{1}{\sqrt{21}} \begin{pmatrix} -1, 2, -4 \end{pmatrix} \]
Determinar los ángulos α, β y γ que el vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ forma con los ejes coordenados. Verificar que la suma de los cosenos al cuadrado de dichos ángulos es igual a la unidad.

Solución: I.T.I. 94

El producto escalar de este vector por el vector unitario \hat{i} será: $\vec{r} \cdot \hat{i} = r \cdot 1 \cdot \cos \alpha$
Realizando la misma operación con componentes: $\vec{r} \cdot \hat{i} = x \cdot 1 + y \cdot 0 + z \cdot 0 = x$
Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

$$\cos \alpha = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

Razonando de igual forma con los otros ejes:

$$\cos \beta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$

$$\cos \gamma = \frac{z}{r} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Determinar los ángulos que el vector de componentes $(3, -6, 2)$ forma con los ejes coordenados.

Solución: I.T.I. 94, I.T.T. 05

El producto escalar de este vector por el vector unitario \hat{i} será: $\vec{v} \cdot \hat{i} = v \cdot 1 \cdot \cos \alpha$
Realizando la misma operación con componentes: $\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x$
Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

$$\cos \alpha = \frac{v_x}{v} = \frac{3}{7}$$

Razonando de igual forma con los otros ejes:

$$\cos \beta = \frac{v_y}{v} = \frac{-6}{7}$$

$$\cos \gamma = \frac{v_z}{v} = \frac{2}{7}$$

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
Determinar los ángulos que el vector de componentes \((3, 4, 5) \) forma con los ejes coordenados.

Solución: I.T.I. 92, I.T.T. 95, I.I. 94

El producto escalar de este vector por el vector unitario \(\hat{i} \) será: \(\vec{v} \cdot \hat{i} = v \cdot 1 \cdot \cos \alpha \)

Realizando la misma operación con componentes: \(\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x \)

Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

\[
\cos \alpha = \frac{v_x}{v} = \frac{3}{5\sqrt{5}}
\]

Razonando de igual forma con los otros ejes:

\[
\cos \beta = \frac{v_y}{v} = \frac{4}{5\sqrt{5}} \quad \text{y} \quad \cos \gamma = \frac{v_z}{v} = \frac{1}{5\sqrt{5}}
\]

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1
\]

Determinar los ángulos que el vector de componentes \((1, 4, 3) \) forma con los ejes coordenados.

Solución: I.T.I. 96, 00, I.T.T. 96, 00, curso cero de física

El producto escalar de este vector por el vector unitario \(\hat{i} \) será: \(\vec{v} \cdot \hat{i} = v \cdot 1 \cdot \cos \alpha \)

Realizando la misma operación con componentes: \(\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x \)

Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

\[
\cos \alpha = \frac{v_x}{v} = \frac{3}{5\sqrt{5}}
\]

Razonando de igual forma con los otros ejes:

\[
\cos \beta = \frac{v_y}{v} = \frac{4}{5\sqrt{5}} \quad \text{y} \quad \cos \gamma = \frac{v_z}{v} = \frac{1}{5\sqrt{5}}
\]

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1
\]
Determinar los ángulos que el vector de componentes \((2, -1, 5)\) forma con los ejes coordenados. Verificar que la suma de los cosenos al cuadrado de dichos ángulos es igual a la unidad.

Solución: I.T.I. 97, 03, I.T.T. 97, 02

El producto escalar de este vector por el vector unitario \(\hat{i}\) será:
\[
\vec{v} \cdot \hat{i} = v_x \cdot 1 = v_x \cdot \cos \alpha
\]
Realizando la misma operación con componentes:
\[
\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x
\]
Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

\[
\cos \alpha = \frac{v_x}{v} = \frac{2}{\sqrt{30}}
\]

Razonando de igual forma con los otros ejes:

\[
\cos \beta = \frac{v_y}{v} = \frac{-1}{\sqrt{30}} \quad \text{y} \quad \cos \gamma = \frac{v_z}{v} = \frac{5}{\sqrt{30}}
\]

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1
\]

Determinar los ángulos que el vector de componentes \((3, 12, 4)\) forma con los ejes coordenados.

Solución: I.T.I. 02, 06, I.T.T. 03, 06

El producto escalar de este vector por el vector unitario \(\hat{i}\) será:
\[
\vec{v} \cdot \hat{i} = v_x \cdot 1 = v_x \cdot \cos \alpha
\]
Realizando la misma operación con componentes:
\[
\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x
\]
Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

\[
\cos \alpha = \frac{v_x}{v} = \frac{3}{13}
\]

Razonando de igual forma con los otros ejes:

\[
\cos \beta = \frac{v_y}{v} = \frac{12}{13} \quad \text{y} \quad \cos \gamma = \frac{v_z}{v} = \frac{4}{13}
\]

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1
\]

Determinar los ángulos que la recta \(x = y = z\) forma con los ejes coordenados.

Solución: I.T.I. 99, 05, I.T.T. 99, curso cero de física
El origen $O(0,0,0)$ y el punto $P(1,1,1)$ pertenecen a la recta, luego el problema es equivalente a determinar los ángulos que el vector $\vec{v} = \overrightarrow{OP}$ de componentes $(1, 1, 1)$ forma con los ejes coordenados.

El producto escalar de este vector por el vector unitario \hat{i} será: $\vec{v} \cdot \hat{i} = v \cdot 1 \cdot \cos \alpha$
Realizando la misma operación con componentes: $\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x$

 Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

| $\cos \alpha = \frac{v_x}{v} = \frac{1}{\sqrt{3}}$ |
| $\cos \beta = \frac{v_y}{v} = \frac{1}{\sqrt{3}}$ |
| $\cos \gamma = \frac{v_z}{v} = \frac{1}{\sqrt{3}}$ |

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

Hallar los cosenos directores de la recta que pasa por los puntos $A(3, 2, -4)$ y $B(1, -1, 2)$.

Solución: I.T.I. 95, 01, I.T.I. 01

El problema es equivalente a determinar los ángulos que el vector $\vec{v} = \overrightarrow{AB}$ de componentes $(-2, -3, 6)$ forma con los ejes coordenados.

El producto escalar de este vector por el vector unitario \hat{i} será: $\vec{v} \cdot \hat{i} = v \cdot 1 \cdot \cos \alpha$
Realizando la misma operación con componentes: $\vec{v} \cdot \hat{i} = v_x \cdot 1 + v_y \cdot 0 + v_z \cdot 0 = v_x$

 Esto se corresponde con la idea de que las componentes de un vector son la proyección de dicho vector sobre los ejes coordenados.

Igualando las dos expresiones tenemos que:

| $\cos \alpha = \frac{v_x}{v} = \frac{-2}{7}$ |
| $\cos \beta = \frac{v_y}{v} = \frac{-3}{7}$ |
| $\cos \gamma = \frac{v_z}{v} = \frac{6}{7}$ |

Estos cosenos reciben el nombre de cosenos directores y se puede verificar que:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
Hallar la proyección del vector \(\vec{A} \) (1, -2, 1) según la dirección del vector \(\vec{B} \) (4, -4, 7).

Solución: I.T.I. 93, I.T.T. 05

La proyección del vector \(\vec{A} \) sobre el vector \(\vec{B} \) será:

\[
d = |\cos \theta| = \frac{\vec{A} \cdot \vec{B}}{B} = \frac{19}{9} \text{ unidades de longitud}
\]

Hallar la proyección del vector \(\vec{A} \) (4, -4, 7) según la dirección del vector \(\vec{B} \) (1, -2, 1).

Solución: I.T.I. 94

La proyección del vector \(\vec{A} \) sobre el vector \(\vec{B} \) será:

\[
d = |\cos \theta| = \frac{\vec{A} \cdot \vec{B}}{B} = \frac{19}{\sqrt{6}} \text{ unidades de longitud}
\]

Hallar la proyección del vector \(\vec{A} \) (3, -1, 4) según la dirección del vector \(\vec{B} \) (1, 1, 2).

Solución: I.T.I. 97, 00, 03, 05, I.T.T. 97, 00, 03, 06

La proyección del vector \(\vec{A} \) sobre el vector \(\vec{B} \) será:

\[
d = |\cos \theta| = \frac{\vec{A} \cdot \vec{B}}{B} = \frac{10}{\sqrt{6}} \text{ unidades de longitud}
\]

Un vector tiene por módulo 36 y sus cosenos directores son proporcionales a 2, -3, -1. Otro vector \(\vec{b} \) tiene por componentes (2, -3, 4). Determinar: a) el producto escalar de ambos vectores, b) el ángulo que forman los mismos, c) el área del triángulo que forman y d) el vector proyección del primero sobre el segundo.

Solución: I.T.I. 99, 02, 03, I.T.T. 99, 02, 04

a) El vector unitario \(\hat{a} \) tiene que tener la misma dirección y sentido que el vector (2, -3, -1) por lo tanto:
\[\vec{a} = \frac{(2, -3, -1)}{|(2, -3, -1)|} = \frac{(2, -3, -1)}{\sqrt{14}} \]

Con lo cual el vector \(\vec{a} \) tomará el valor: \(\vec{a} = 36 \vec{a} = \frac{(72, -108, -36)}{\sqrt{14}} \)

El producto escalar de los dos vectores será:

\[\vec{a} \cdot \vec{b} = \frac{72}{\sqrt{14}} \cdot 2 + \frac{108}{\sqrt{14}} \cdot 3 - \frac{36}{\sqrt{14}} \cdot 4 = \frac{324}{\sqrt{14}} \]

b) Por otro lado \(\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \theta \), siendo \(\theta \) el ángulo entre los dos vectores. Despejando:

\[\cos \theta = \frac{\vec{a} \cdot \vec{b}}{a \cdot b} = \frac{324/\sqrt{14}}{36/\sqrt{29}} = \frac{9}{\sqrt{406}} \]

c) Sabemos que el producto vectorial de dos vectores es un vector cuyo módulo es igual al área del paralelogramo formado con ayuda de esos dos vectores. El área del triángulo será justamente la mitad:

\[\text{Area} = \frac{1}{2} |\vec{a} \times \vec{b}| = 18 \sqrt{\frac{325}{14}} \text{ unid. de long.}^2 \]

d) La proyección del vector \(\vec{a} \) sobre el \(\vec{b} \) será un vector de longitud:

\[c = a \cos \theta = \frac{\vec{a} \cdot \vec{b}}{b} = \vec{a} \cdot \hat{b} \]

Por otro lado su orientación es similar a la del vector \(\vec{b} \): \(\hat{c} = \hat{b} \)

Con lo que finalmente: \(\vec{c} = c \hat{c} = (\vec{a} \cdot \hat{b}) \hat{b} = \frac{324}{29\sqrt{14}} (2, -3, 4) \)
Dados los vectores \(\vec{a} = (1, 3, 2) \) y \(\vec{b} = (1, 1, 0) \). Calcular: a) su producto vectorial, b) el área del paralelogramo que tiene a los dos vectores como lados, c) un vector \(\vec{c} \), de módulo 6, perpendicular al plano en que se encuentran \(\vec{a} \) y \(\vec{b} \).

Solución: I.T.I. 04

a) Su producto vectorial será:

\[
\vec{a} \times \vec{b} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & 2 \\
1 & 1 & 0
\end{vmatrix} = -2\hat{i} + 2\hat{j} - 2\hat{k}
\]

b) Sabemos que el producto vectorial de dos vectores es un vector cuyo módulo es igual al área del paralelogramo formado con ayuda de esos dos vectores:

\[
\text{Area} = |\vec{a} \times \vec{b}| = 2\sqrt{3} \text{ unid. de long.}^2
\]

c) El vector \(\vec{a} \times \vec{b} \) es un vector perpendicular al plano que contiene \(\vec{a} \) y \(\vec{b} \). El vector \(\vec{c} \) que nos piden será proporcional:

\[
\vec{c} = \lambda (\vec{a} \times \vec{b}) \\
\text{c} = \lambda |\vec{a} \times \vec{b}|
\]

\[
\Rightarrow \vec{c} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \times 2\sqrt{3}(-1, -1, -1)
\]

¿Qué ángulo forma el vector (3, 12, 4) con la recta que pasa por los puntos (3, 2, –4) y (-2, 1, –2)? Determínese el vector proyección de dicho vector sobre la citada recta.

Solución: I.T.I. 02

Si \(Q \) y \(P \) son los dos puntos de la recta, el ángulo que nos piden es el mismo que forman entre sí nuestro vector \(\vec{v} \) con el vector \(\overrightarrow{PQ} \):

\[
\overrightarrow{PQ} \cdot \vec{v} = |\overrightarrow{PQ}| \cdot |\vec{v}| \cdot \cos \theta \\
\Rightarrow \cos \theta = \frac{\overrightarrow{PQ} \cdot \vec{v}}{|\overrightarrow{PQ}|} = \frac{19}{13\sqrt{30}}
\]
(Si hubiésemos cogido para el cálculo el vector \overrightarrow{QP} el resultado cambiaría de signo y el ángulo que nos resultaría sería $180^\circ - \theta$, los dos ángulos son soluciones válidas)

La proyección del vector \overrightarrow{v} sobre la recta será un vector \overrightarrow{c} cuya longitud será:

$$c = v \cos \theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{v}}{\overrightarrow{PQ}} = \overrightarrow{v} \cdot \hat{u}$$

donde \hat{u} es un vector unitario con la misma dirección y sentido que \overrightarrow{PQ}.

Por otro lado la orientación de \overrightarrow{c} es similar a la del vector \hat{u}: $\overrightarrow{c} = \hat{u}$.

Con lo que finalmente: $\overrightarrow{c} = c \hat{c} = (\overrightarrow{v} \cdot \hat{u}) \hat{u} = \frac{19}{30} (5,1,-2)$

Demostrar las siguientes desigualdades:

$$|A + B| \leq |A| + |B|, \quad |A - B| \leq |A| - |B|$$

Solución: I.T.I. 97, 00, I.T.T. 97, 99, 00, curso cero de física

Para demostrar las desigualdades utilizamos el hecho de que el producto escalar de un vector por sí mismo es el cuadrado de su módulo y que el coseno de cualquier ángulo nunca es superior a uno:

$$|A + B|^2 = (A + B) \cdot (A + B) = A^2 + B^2 + 2AB \cos \theta \leq A^2 + B^2 + 2AB = A + B = |A| + |B|$$

$$|A - B|^2 = (A - B) \cdot (A - B) = A^2 + B^2 - 2AB \cos \theta \leq A^2 + B^2 - 2AB = A - B = |A| - |B|$$

Demostrar que las diagonales de un rombo son perpendiculares.

Solución: I.T.I. 98, I.T.T. 99, 01, curso cero de física

El rombo tiene todos sus lados de igual longitud. Cojamos dos de esos lados que tengan en común un vértice del rombo y representémoslos por un vector. Como se indica en la figura, las dos diagonales estarán asociadas a los vectores suma y resta respectivamente. Demostrar que las dos diagonales son perpendiculares es equivalente a demostrar que estos dos vectores que las representan son perpendiculares:
\[
\begin{align*}
\{ \vec{B} + \vec{A}, \vec{B} - \vec{A} \} & : B^2 - A^2 \\
B = A
\end{align*}
\]
$$
\Rightarrow \quad \vec{B} + \vec{A} \cdot (\vec{B} - \vec{A}) = 0 \quad \Rightarrow \quad \vec{B} + \vec{A} \perp (\vec{B} - \vec{A})
$$