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The Boltzmann factor
Let us imagine a quantum mechanical sample, that might be, for instance:
• a single atom, 
• a molecule
• a box of a perfect gas
• …

This quantum mechanical system is in thermal contact with a large body of matter
(a temperature bath) at temperature

It has some probability of being found in any of its possible quantum states. 
Let us call any single microscopic state , and its energy

This energy might involve:
- Kinetic energy
- Rotational energy
- Internal vibrational energy
- Magnetic energy
- Electronic excited energy
- …
What is the probability of finding the sample in state



The Boltzmann factor

First, let us imagine the sample and the bath together to constitute an
isolated system from the rest of the Universe, with total energy

In equilibrium, the system has      possible states and entropy

is the product of possible states of the sample,              ,                                     
and the number of possible states of the bath when the system is in 

equilibrium with total energy

In equilibrium, and with a total energy , the quantum sample
might be in different quantum states with different energies



The Boltzmann factor
Now, instead of being in equilibrium, let us instead specify that the

sample is in state with energy .

The bath is always internally in equilibrium,
In this case with an energy

Since the sample is in state , its number of possible states is

The number of possible states for the bath when the sample is in state is

Therefore

The probability of finding the sample in state ,          , is simply
the number of states of the system in which the sample happens to 
be in state divided by the total number of states in equilibrium

(ratio of the favourable cases to the
whole number of cases possible)



The Boltzmann factor
The probability plays a crucial role in statistical physics

The sample is always in some state, so

If a quantity, say , has a definite value in each quantum state of 
the sample, then its average or thermodynamic value is given by

In particular,     might be the energy of the sample.
Then, the thermodynamic or average energy is



The Boltzmann factor
The probability plays a crucial role in statistical physics

Substracting this energy from the equilibrium entropy of the system

We have therefore

When the sample is in the definite state , the bath has an entropy



The Boltzmann factor

Assumption:
The entropy of the bath only depends on its energy

Since is much smaller than , we can expand in a Taylor series

But



The Boltzmann factor

Replacing the second equation into the first one

where that is independent of the microstate

is the partition factor, whereIn fact,

Since



The Boltzmann factor
The probability plays a crucial role in statistical physics

is called the Boltzman factor

The probability of finding the sample in state
with energy at temperature is given by



First question about the Boltzmann factor

We started with the assumption that all possible states are equally likely

However, the previous expression shows how the lowest energy states
are more likely than the highest energy states…

How is it possible?

All possible quantum states of an isolated system are equally likely

The system is divided in two parts:
- the sample (very small compared with the rest)
- the bath (the rest)

For all the possible quantum states of the system as a whole,                       
the lower the energy of the sample, the larger the energy available to the bath

Since the bath is much bigger than the sample, it has many more ways to 
use up the extra energy than the sample would, i. e.

The more quantum states are available for the systema as a whole, the
therefore, the more probable the situation is



Second question about the Boltzmann factor

The ground state (i.e. The lowest energy state) is always the most
probable state

Why do not commonly find macroscopic samples in their ground states?
How is it possible?

A macroscopic sample has just one, unique ground state.

At any higher energy, the sample may have many possible quantum 
states with the same energy.

Then, the sample will generally have many possible states at nearly
the same energy

Each of these states is less probable than the ground state,
But there are so many of them that the sample is more likely to be found in 

one of those that it is to be found in the ground state.



Partition function
Equilibrium statistical mechanics is based on the idea that the there is a 
partition function which contains all of the essential information about

the system under consideration

is the Hamiltonian of the system

is the Temperature

is the Boltzmann constant

The sum is over all possible states of the system, that
depends upon its size and the number of particles

In general, the partition function cannot be evaluated exactly



Exact evaluation of a partition function: 
a particular example

A system of     particles
Each of which has only two states (i.e. a non-interacting Ising model in 

an external magnetic field)

Energies of the states and the
temperature dependence of the internal

energy in this case



Exploring all the possible states: 
an impossible mission

A system with one-spin: 21 = 2 possible configurations

A system with two-spin: 22 = 4 possible configurations

A system with three-spin: 23 = 8 possible configurations

A system with 10000-spin: 210000 possible configurations
(and this is only for a very small fraction of Avogadro’s number and only for two

possible states per particle!)



Probability of finding the system 
in a particular state 

The probability of any particular state of the system is
also determined by the partition function

The probability that the system is in state is

Hamiltonian when the system is in the th state

We will take advantage of this property in evaluating the results
for estimating probabilities with Monte Carlo methods



Thermodynamic potentials and         
their relation with the partition function

The free energy of a system can be determined from the partition function as 

and all other quantities can be calculated by appropriate differentiation

The internal energy of a system can be obtained as

This means that if the internal energy of a system can be measured, the free 
energy can be extracted by appropriate integration (assuming that the free 

energy is known as some reference temperature).
Free energy differences may be estimated by integration as



Problem: determine the temperature dependence of the 
internal energy of the non-interacting Ising model 



Problem: determine the temperature dependence of the 
internal energy of the non-interacting Ising model 



Problem: determine the temperature dependence of the 
internal energy of the non-interacting Ising model 



Fluctuations: how to compute probabilities of 
macroscopic quantities

We note the relationship

Since , where is the specific heat, then

We first form the moments, where the average energy is denoted by
and       is a fluctuating quantity



Fluctuations: the isothermal susceptibility
Similar fluctuation relations exist for many other quantities, 

for example, the isothermal susceptibility

that is related to fluctuations of the magnetization

Writing the Hamiltonian of the system in the presence of a magnetic field

And knowing that the average magnetization can be written as

Then

Proof in next slide



Fluctuations: the isothermal susceptibility
Similar fluctuation relations exist for many other quantities, 

for example, the isothermal susceptibility

Then



Basic notions of probability theory
Equivalent notation

From its definition

We call and        “mutually exclusive” events, if and only if the
occurrence of        implies that does not occur and vice versa



Basic notions of probability theory: 
conditional probability

Let us consider two events:
• The first with outcomes and probabilities
• The second with outcomes and probabilities

We consider now the outcome and consider the probability
as a joint probability that both and       occur

If the events are independents:

If they are not independent, we define the conditional probability
that occurs given that occurs

Of course, we have since some must occur



Basic notions of probability theory: 
some basic definitions

The outcome of such random effects might be logical variables or real numbers. 
These real numbers are calles random variables 

We define the expectation value of the random variable as 

Similarly, any real function has the expectation value

We define the nth moment as 

And the cumulants

Of the greatest importance is the case            , called the “variance”



Basic notions of probability theory: 
some basic definitions

Generalizing the definitions to two random variables (      and      ) then the
expectation value is

As a measure of the degree of independence of the
two random variables, we define the covariance

If and      are independent, then



Special probability distributions and 
the central limit theorem

Consider two events and       that are mutually exclusive and exhaustive

Suppose now that independent samples of these events occur. 
Each outcome is 0 or 1.

We denote the sum      of these outcomes

The probability that is the probability that of the
were 1 and            were 0. 

Where is the binomial coefficients

This is called the binomial distribution



Special probability distributions:    
the binomial distribution

Consider two events and       that are mutually exclusive and exhaustive

Suppose now that independent samples of these events occur. 
Each outcome is 0 or 1.

We denote the sum      of these outcomes

The probability that is the probability that of the
were 1 and            were 0. 

Where is the binomial coefficients

This is called the binomial distribution



Special probability distributions:    
the Poisson distribution

The binomial distribution

If the probability of “success” is very small, 
the binomial distribution can be approximated by the Poisson distribution



Special probability distributions:    
the Gaussian distribution

The most important distribution we will encounter in statistical physics

If the number of random variables                       are all independent of each other
and drawn from the same distribution, the average value

In the limit will always be distributed according to the gaussian distribution, 
irrespective of the distribution from which the were drawn

This is known as the “central limit theorem”

The variance of       is

and



Special probability distributions:    
the geometrical distribution

Suppose that we perform an experiment with two possible outcomes: 0 and 1

If the outcome is 0, the experiment is repeated
If the outcome is 1, we stop

Random variable of interest: 
The number of experiments until we get the outcome 1

This is called the geometrical distribution



Basic notions of probability theory: 
Statistical errors

Suppose the quantity is distributed according to a Gaussian with
mean value and width

We consider statistically independent observations of this quantity

Un unbiased estimator of the mean        of this distribution is

And the standard error of this estimate

But, how to estimate the variance from the observations?



Basic notions of probability theory: 
Statistical errors

But, how to estimate the variance from the observations?

Consider the variations

Obviously

So we are interested in the mean square deviations

The expectation value of this quantity is easily related to

Since we arrive to the usual formula for the
computation of errors of averages from uncorrelated estimates



The concept of the Markov chain
We define a stochastic process at discrete times labeled consecutively

for a system with a finite set of possible states

For instance, for a 2D Ising model

We denote by the state the system is in at time  

We consider the conditional probability that given that
at the preceeding time the system state was in state , etc

This finite set of possible outcomes is called the state space



The concept of the Markov chain

We denote by the state the system is in at time  

We consider the conditional probability that given that
at the preceeding time the system state was in state , etc

Such a process is call a Markov process if this conditional probability
is in fact independent of all states but the immediate predecessor

The above conditional probability can be interpreted as the transition probability
to move from state to state

The corresponding sequence of states is called a Markov chain



Transition probabilities

As usual for transition probabilities, we require that

The above conditional probability can be interpreted as the transition probability
to move from state to state

We may construct the total probability that at time       
the system is in state as



The master equation (or “continuity equation”)
The master equation considers the change of this probability with time     

(treating time as a continuous variable rahter than discrete variable)

Knowledge of the state at time   completely determines the future time evolution, 
there is no memory of the past (knowledge of behaviour of the systems at times 

earlier than is not needed) 

Probability to move
away from state to

any other state

Probability to move to
state coming from

any other state



The master equation at the equilibrium probability

Since

then

The equilibrium probability satisfies


