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Physical processes with probabilistic character

Certain physical processes do have a probabilistic character

Desintegration of atomic nuclei: Brownian movement of a particle
in a liquid:
The dynamic (based on Quantum We do not know in detail the
Mechanics) is strictly probabilistic dynamical variables of all the
particles involved in the problem

We need to base our knowledge in new laws that do not rely on
dynamical variables with determined values, but with
probabilistic distributions

Starting from the probabilistic distribution, it is possible to
obtain well defined averages of physical magnitudes,
especially if we deal with very large number of particles




The stochastic oracle

Computers are (or at least should be) totally predictible

Given some data and a program to operate with them,
the results could be exactly reproduced

But imagine, that we couple our code with a special module
that generates randomness

program randomness .
real = x $<your compiler> -o randomness.x randomness.f90

do $.randomness
call random_number(x)

print "(f10.6)" , x
enddo

end program randomness

The output of the subroutine randomness is a real number,
uniformly distributed in the interval [0, 1)

"Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.” (John von Neumann)




Probability distribution

The subroutine “random number” generates a uniform
distribution of real numbers in [0, 1)

The probability of occurrence is given by

f<x):{ lif0<z<1

0 otherwise

This is a continuous probability distribution.
It has to be used as a “density”, i.e.,
The probability of having a number in dx is f(x)dx

The probability of obtaining a predefined exact number is 0




Other probability distributions

Discrete distribution

Some probability for a set of )\ discrete numbers

The probability of occurrence of a given number is given by

P:N

Poison distribution

Gaussian distribution

Important because the central limit theorem
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Jacob Bernoulli (1654-1705): Game Theory

experiment X. , and the result of the experiment
is either X;=0 or X;=1. When | repeat the
experiment, | sometimes get X.=0, and
sometimes | obtain X,=1

- Let’s think of X; as a coin, which is flipped (head/tail).
1 Experiment: flip the coin 1000 times A

-l how many “tail”’, how many “head”?

1 Definition of a Probability:

“|P(head) = N(head)/total || P(tail) = N(tail) / total

L Reference: The Life and Times of the Central Limit Theorem, William J. Adams 6

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html



Flipping many coins ...

*"We attribute the value o0 to tail, 1 to head

(X1, X2, X3, Xy, X5, X, X

* To describe the outcome of thlS experlment, we define the variable Sn :

Sn=X1+Xo+ ...+ X,

* In the experiment abovelget: S =3

* We get (fill the blank): S =[...]2 | 1

* Now, I throw the coins again ...




Central limit theorem

- I repeat the experiments many times ... | throw 7 coins, count how
many heads | obtain, I'do it again

* | obtain the sequence:
% S=3,S=4, S=1, S=7, S=4, S=3, S=4, S=5, S=4, S=0, S=2 eer e reeree e

* /I count how many times | obtain S=0, how many times | obtain S=1, ..., )

and how many times | obtain S=7

B Number of occurence

Question: if | throw the coins
700 times, how many times
will you obtain the result S=0?
As many times as you obtain
S=1, S=2, S=3, S=4, S=5, S=6
and S=7 right?

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html



Simulating this experiment with a compute

[ Result: The number 01’ S ;S,,S;... S, obtained

Al

.. . > N .‘. = o
44 1 ]
S=4 -
S
* This histogram gives the probability P(S) to obtain S, if we divide the number of

occurrence of each S; by the total number of experiments (700 in this case)
* Who can spot something wrong in the histogram ? )

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html



Seriously?

* Central limit theorem (CLT) :

* the sum of a large collection of random variables (S, =X, + ... + X_)is
distributed as a binomial law (or gaussian)

P(S) = e (5—mw)7/(257)

* Where | is called the average and o the variance
* First discussed by Abraham De Moivre (1667-1754)

* Physical experiment in a laboratory: There is a large number of
unknown parameters which are uncontrolled and contribute to your
physical measurement (measure velocity with a timer, ... )

* CLT : by repeating the same measurement, you will obtain a distribution
of results (data), this distribution will a gaussian centered around the
average value (U=your final measurement) and with a given width
(o=your error bars) .

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html




Gaussian function

04T

u=0, 0=3

y
0.

Average |

0.

Variance 0




Example 1: gambling (Dices

A pair of dice

practice session

* Throwing to the casino a
pair of dice at the same time

* Sum of a pair of dice takes
values from 2 to 12

* Where do you put your bet?
*S5=27

* Rolling many dices :
Distribution is again

Number of possibilities to obtain S

gaussian ”523456789101112

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html



Example 2: Galton
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33333313
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333335333
333333331
333333333
3333338535
3333333313
333333331
333333331

d Balls are bumping against many ticks
during their fall

[ Balls are collected at the end of the free fall

 Gaussian distribution

http://www.elica.net (software

to perform simple model

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html




Example 3: population height

+1 Distribution ot peopleaccording to their height is a gaussian as well (top:
college male students, bottom: men in black and women in white)
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Connecticut State College (J. Heredity 5:511-518, 1914).

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html
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Fuzzy CLT ...

IN FACT, DEMOIVRE'S DISCOVERY ABOUT THE BINOMIAL 15 A SPECIAL CASE OF AN
EVEN MORE GENERAL RESULT, WHICH HELPS EXPLAIN WHY THE NORMAL 15 50
IMPORTANT AND WIDESPREAD IN NATURE. TT 15 THIS:

"Fuz
Cenh?l Limit

Theorem™™:
\ DATA THAT ARE
INFLUENCZED BY MANY

SMALL AND UNRELATED
RANDOM ELFFECTS ARE
APPROXIMATELY NORMALLY
DISTRIBUTED.

MON DiEL!
THIS INCLUDES
ENERYTHING !

* Larry Gonick, The Cartoon Guide to Statistics, New York,1ENY : Collins Reference [ HarperPerennial 1993, p. 83.

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html




Integration of functions

Standard example of the use of stocastic methods in Applied Mathematics

b
Problem: compute / f(z)dx




Integration of functions

\YiV-YdaTeYe [ )

+ Discretize the horizontal axis, approximate the surface enclosed
by the function f(x) by a set of rectangles

f(x)

* Example: f(X) = COS(X) 10‘
ST

* width of a rectangle:

b—a

* Discretization x: Axr =
n

* Area=sum of rectangles:

Ty = To + nAx

n—1
F, = Z f(x;)Ax
i=0

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html



Integration of functions

Method 2 : cutting and weighting

Plot the function f(x) on a piece of paper, from a to b, and
fromOto F .,

Weight the full sheet of paper, we define this as Ws
Plot the function on a sheet of paper
Cut the sheet in paper along the function

Weight the sheet of paper contained between the
horizontal axis and the function f(x), we define this as Wf

1
0 p: paper weight density
0 Ws=(b-a)xF_, X p
S Wf = integral X P
0 Integral = Wf/Ws x (b-a) x F .,

F

Reproduced with permission of Cedric Weber, from King’s College London

http://nms.kcl.ac.uk/cedric.weber/index.html



Integration of functions

Method 3: estimation from the average of the function between [a, b]

/ f(@)dz = (b— a){f)

Assume that we choose /V points {Iz} randomly distributed between [a, b] , then

The larger the number of points, the better the estimation.
The typical error A in (f) ,in the sense that 63% of the
estimations of () will be between(f) + Aand (f) — A




Example of integration:
How to estimate 7T with a needle

Buffon’s experiment

If a needle of length / is thrown at random onto a set of equally
spaced parallel lines,d apart (where d > [ ), the probability of
the needle crossing a line is

2
d

Lazzerini (1901):
Spinning round and dropping a needle 3407 times:

T~ 3.1415929




Example of integration:
How to estimate 77 in a rainy day

Let us rephrase the problem:
how to estimate the area of a circle of radius 1

A circle centred at the origin and A number of trial shots are generated in
inscribed in a square the square OABC

At each trial two independent random

numbers are chosen from a uniform
distribution on (0, 1)

These numbers are taken as the
coordinates of a point
(marked as + in the figure)

The distance from the random point to
the origin is calculated

If the distance is less or equal to one,
the shot has landed in the shaded
region and a hit is scored

If a total of 7s,ot are fired and T, hits scored, then

_ Area under the curve CA  7R*/4 7 Y 4 x Area under the curve CA 47y
~ Area of the square OABC ~ R?2 4 "~ Area of the square OABC Tshot




Example of integration:
How to estimate 77 in a rainy day

In mathematical words, we have estimated the integral

| [ f.ixdy

where the function f(z,y)is

1if 22 +9° <1
0 otherwise

f(xay)z{

In the two-dimensional interval

0, 1] x [0,1]




Example of integration:
How to estimate 7T from the hit and miss method

program pi
|
! Compute pi by the hit and miss Monte Carlo method
|
real :: x, ¥y
integer :: n, 1
integer :: sum
print *, ’Number of points to use?’
read *, n
sum = 0.0
doi=1, n
call random_number (x)
call random_number (y)
if (x*x+y*y <= 1.0) sum = sum + 1
enddo
print *, ’pi = ’, 4.0 *x sum / real(n)
end program pi




Example of integration:
How to estimate 7T in a rainy day or with a needle

3.144
3.143
3.142
N
3.141
3.140
3.139
3.138

0

Fig. 4.2 The cumulative estimate of x as a function

of the number of MC shots by hit-and-miss
area of a circle (triangles) and the Buffon needle ex

periment (squares).

To gain one significative figure (i.e. to reduce the typical error
by one order of magnitude) we should to increase the number
of integration points by 100




Why Monte Carlo?

should be used only when all alternative
methods are worse.” Alan Sokal

Monte Carlo methods in statistical mechanics, 996

The error is only shrinkingas 1 /v N
Other simple methods for integrations in two dimensions: ]_ /N

3/2

In more than two dimensions (2D), e.g. in three dimensions (3D) (volume of

a sphere,...): ]_/NS/D

Which method is better forD=10? Answer =...[ FILLIN]....




Applications to Statistical Mechanics

Fundamental postulate of Statistical Physics:
All the microstates of a closed system in equilibrium are equally probable

Closed means that the total energy [/, the number of particles }V,
and the volume 71/ are constant

In thermodynamics, these are the natural variables in the entropic representation
S=S5(UV,N)

The fundamental connection between Statistical Mechanics and Thermodynamics
The entropy can be computed from the total number of microstates of a system

Q=Q(U,V,N)

S(U,V,N) = kgInQ (U, V, N)




Applications to Statistical Mechanics
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Any macroscopic physical quantity can be computed as an
statistical average over accesible microstates

1 Q
Mzﬁj;Mj

Therefore, to study the properties of any closed macroscopic system
in equilibrium, it should be enough (in principle) to determine all the
microscopic states and evaluate the corresponding averages taking
only those microstates compatible with the thermodynamic variables

U, N,and V

In practice, it is impossible to find all the microscopic states available
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Number of possible microstates might be
inconceivable large

Let us imagine a system of )\ spins with two possible states (up or down).
How many microstates are possible?

2N

With a few dozens of particles, this number might be very, very large

Q
It is impossible to compute these averages, |/ — % Z M; exactly

=

But we can estimate them by a partial sampling of all the possible
microstates, in the same way as sociologist prepare the poll.
We should employ a non-bias method to sample the configuration space




The Metropolis algorithm

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6

Equation of State Calculations by Fast Computing Machines

NicuoLAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.




Boundary conditions

Typical boundary conditions for the two-dimensional Ising model

”~

!
|
|
|
|
~
r
|
|
|
|
|
|
)
I
|
|

N o

Periodic boundary Screw periodic Free edges
contsitions




