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Physical processes with probabilistic character

Certain physical processes do have a probabilistic character

Desintegration of atomic nuclei:

The dynamic (based on Quantum 
Mechanics) is strictly probabilistic

Brownian movement of a particle
in a liquid:

We do not know in detail the
dynamical variables of all the

particles involved in the problem

We need to base our knowledge in new laws that do not rely on
dynamical variables with determined values, but with

probabilistic distributions

Starting from the probabilistic distribution, it is possible to
obtain well defined averages of physical magnitudes, 

especially if we deal with very large number of particles



The stochastic oracle

Computers are (or at least should be) totally predictible

Given some data and a program to operate with them, 
the results could be exactly reproduced

But imagine, that we couple our code with a special module 
that generates randomness

program randomness
real :: x
do
call random_number(x)
print "(f10.6)" , x

enddo
end program randomness

$<your compiler> -o randomness.x randomness.f90
$./randomness

"Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.” (John von Neumann)

The output of the subroutine randomness is a real number, 
uniformly distributed in the interval



Probability distribution

The subroutine “random number” generates a uniform
distribution of real numbers in 

The probability of occurrence is given by

This is a continuous probability distribution.
It has to be used as a “density”, i.e.,

The probability of having a number in         is

The probability of obtaining a predefined exact number is 0



Other probability distributions

Some probability for a set of        discrete numbers

The probability of occurrence of a given number is given by

Gaussian distribution

Poison distribution

Discrete distribution

Important because the central limit theorem



" Simple idea: lets define the outcome of an 
experiment Xi , and the result of the experiment 
is either Xi=0 or Xi=1. When I repeat the 
experiment, I sometimes get Xi=0, and 
sometimes I obtain Xi=1"

"  Letʼs think of Xi as a coin, which is flipped (head/tail). "

"  Experiment:  flip the coin 1000 times"

"  how many “tail”, how many “head”?"

"  Definition of a Probability: "

" P(head)  =  N(head) / total       P(tail) = N(tail) / total "
"

"  Reference: The Life and Times of the Central Limit Theorem, William J. Adams" 6"

Jacob"Bernoulli"(1654^1705):"Game"Theory"

= 500 = 500
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�  Now,"what"if"I"throw"many"coins"at"the"same"time?"
�  Each"coin"is"labeled"with"an"index"

�  We"attribute"the"value"0"to"tail,"1"to"head""

�  """""""""""""""""""""""""""""""""""""""""""""""""""""""""0""""""""""""0"""""""""""1""""""""""0"""""""""""0"""""""""""1"""""""""""1"
�  To"describe"the"outcome"of"this"experiment,"we"define"the"variable"Sn":""

"

�  In"the"experiment"above"I"get":""Sn+=+3+
�  Now,"I"throw"the"coins"again"…"
"

�  We"get"(fill"the"blank)":"""""Sn=+[…]+?+""""""1""""""""""1""""""""""""1""""""""""0""""""""""0"""""""""""1""""""""""0"

7"

Flipping"many"coins"…"

Sn = X1 +X2 + ...+Xn

X = (X1, X2, X3, X4, X5, X6, X7)
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�  I"repeat"the"experiments"many"times"…"I"throw"7"coins,"count"how"
many"heads"I"obtain,"I"do"it"again"
�  I"obtain"the"sequence":"
�  S=3,"S=4,"S=1,"S=7,"S=4,"S=3,"S=4,"S=5,"S=4,"S=0,"S=2"…………….."

�  I"count"how"many"times"I"obtain"S=0,"how"many"times"I"obtain"S=1,"…","
and"how"many"times"I"obtain"S=7"

8"

Central"limit"theorem"

0
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S=0 S=1 S=2 S=3 S=4 S=5 S=6 S=7

Number of occurence

Question:"if"I"throw"the"coins"
700"times,"how"many"times"
will"you"obtain"the"result"S=0?""
As"many"times"as"you"obtain"
S=1,"S=2,"S=3,"S=4,"S=5,"S=6"
and"S=7"right?"
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�  This"program"will"be"written"in"the"practice"session"
�  Result":"The"number"of"S1,S2,S3…S7"obtained"

"

�  This"histogram"gives"the"probability"P(S)"to"obtain"S,"if"we"divide"the"number"of"
occurrence"of"each"Si"by"the"total"number"of"experiments"(700"in"this"case)"

�  Who"can"spot"something"wrong"in"the"histogram"?"
9"

Simulating"this"experiment"with"a"computer"
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�  Nope,"I"am"not"cheating"you…""
�  Central"limit"theorem"(CLT)":""
�  the"sum"of"a"large"collection"of"random"variables"(Sn"="X1"+"…"+"Xn")"is"

distributed"as"a"binomial"law"(or"gaussian)"

�  Where"m"is"called"the"average"and"s"the"variance"
�  First"discussed"by"Abraham,De,Moivre+(1667^1754)"

�  Physical+experiment+in+a+laboratory:"There"is"a"large"number"of"
unknown"parameters"which"are"uncontrolled"and"contribute"to"your"
physical"measurement"(measure"velocity"with"a"timer,"…")"
�  CLT":"by"repeating"the"same"measurement,"you"will"obtain"a"distribution"
of"results"(data),"this"distribution"will"a"gaussian"centered"around"the"
average"value"(m=your+final+measurement)"and"with"a"given"width"
(s=your+error+bars)" 10"

Seriously?+

P (S) = e�(S�µ)2/(2�2)
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m=0,"s=1"

11"

Gaussian"function"

m=1,"s=1"
m=0,"s=3"

Average"m 

Variance"s 
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� Problem"to"be"solved"in"the"
practice"session"
� Throwing"to"the"casino"a"
pair"of"dice"at"the"same"time"
� Sum"of"a"pair"of"dice"takes"
values"from"2"to"12"
� Where"do"you"put"your"bet?"
� S=2"?"""
� Rolling"many"dices":"
Distribution"is"again"
gaussian" 12"

Example"1":""gambling"(Dices)"
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13"

Example+2:+Galton++

http://www.elica.net"(software"
to"perform"simple"model"
calculations)"

"  Balls"are"bumping"against"many"ticks"
during"their"fall"

"  Balls"are"collected"at"the"end"of"the"free"fall"
"  Gaussian"distribution"
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�  Distribution"of"people"according"to"their"height"is"a"gaussian"as"well"(top:"
college"male"students,"bottom:"men"in"black"and"women"in"white)"

Connecticut"State"College"(J.!Heredity!5:511–518,"1914)." 14"

Example+3:+population+height+

Pr"Joiner’s"students,"class"of"1975,"
Penn"state"
"
Joiner,"B."L."(1975),"“Living"
Histograms,”"International"
Statistical"Review,"3,"339–340."
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�  Larry"Gonick,"The!Cartoon!Guide!to!Statistics,"New"York,"NY":"Collins"Reference"/"HarperPerennial"1993,"p."83."15"

Fuzzy"CLT"…"



Integration of functions

Standard example of the use of stocastic methods in Applied Mathematics

Problem: compute

6)

Integration)
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f(x)

a b 
x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n ∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

Chapter 11

Numerical Integration and Monte
Carlo Methods

c⃝2001 by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
10 April 2001

Simple classical and Monte Carlo methods are illustrated in the context of the numerical
evaluation of definite integrals.

11.1 Numerical Integration Methods in One Dimension

Monte Carlo methods were introduced in Chapter 7 in the context of systems that are intrinsically
random. In this chapter we will find that we can use sequences of random numbers to estimate
definite integrals, a problem that seemingly has nothing to do with randomness. To place the
Monte Carlo numerical integration methods in perspective, we will first discuss several common
classical methods of determining the numerical value of definite integrals. We will see that these
classical methods, although usually preferable in low dimensions, are impractical for multidimen-
sional integrals and that Monte Carlo methods are essential for the evaluation of the latter if the
number of dimensions is sufficiently high.

Consider the one-dimensional definite integral of the form

F =
∫ b

a
f(x) dx. (11.1)

For some choices of the integrand f(x), the integration in (11.1) can be done analytically, found
in tables of integrals, or evaluated as a series. However, there are relatively few functions that can
be evaluated analytically and most functions and must be integrated numerically.

The classical methods of numerical integration are based on the geometrical interpretation
of the integral (11.1) as the area under the curve of the function f(x) from x = a to x = b (see

367



Integration of functions

�  Discretize)the)horizontal)axis,)approximate)the)surface)enclosed)
by)the)function)f(x))by)a)set)of)rectangles)

�  Example:)))))))))+f(x)+=+cos(x)+

�  width)of)a)rectangle:)

�  Discretization)x:))

�  Area=sum)of)rectangles:)

7)

Method+1+:+Discretization+

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 369

1.0

f(x)

x
0 !/4 !/2

Figure 11.2: The rectangular approximation for f(x) = cos x for 0 ≤ x ≤ π/2. The error in
the rectangular approximation is shaded. Numerical values of the error for various values of the
number of intervals n are given in Table 11.1.

A generally more accurate method is to use a quadratic or parabolic interpolation procedure
through adjacent triplets of points. For example, the equation of the second-order polynomial that
passes through the points (x0, y0), (x1, y1), and (x2, y2) can be written as

y(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

+ y2
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
. (11.5)

What is the value of y(x) at x = x1? The area under the parabola y(x) between x0 and x2 can be
found by simple integration and is given by

F0 =
1
3

(y0 + 4y1 + y2) ∆x, (11.6)

where ∆x = x1−x0 = x2−x1. The total area under all the parabolic segments yields the parabolic
approximation for the total area:

Fn =
1
3
[

f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .

+ 2f(xn−2) + 4f(xn−1) + f(xn)
]

∆x. (Simpson’s rule) (11.7)

�x =
b� a

n

xn = x0 + n�x

Fn =
n�1X

i=0

f(xi)�x
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Integration of functions

" Plot the function f(x) on a piece of paper, from a to b, and 
from 0 to Fmax 

" Weight the full sheet of paper, we define this as Ws 
" Plot the function on a sheet of paper 
" Cut the sheet in paper along the function 
" Weight the sheet of paper contained between the 

horizontal axis and the function f(x), we define this as Wf 

8)

Method+2+:+cutting+and+weighting+

#  r+:)paper)weight)density++
#  Ws)=)(baa))x)Fmax))))x)))) r 

#  Wf)=)integral)))))))))))x)))))r)
#  Integral)=)Wf/Ws)x)(baa))x)Fmax))

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 368

f(x)

a b 
x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n ∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

Fmax)
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Integration of functions
Method 3: estimation from the average of the function between

Assume that we choose points randomly distributed between , then

The larger the number of points, the better the estimation.
The typical error        in          , in the sense that 63% of the

estimations of         will be between and  

where



Example of integration:                                          
How to estimate     with a needle

If a needle of length is thrown at random onto a set of equally
spaced parallel lines,    apart (where ), the probability of 

the needle crossing a line is

Buffon’s experiment

Lazzerini (1901):
Spinning round and dropping a needle 3407 times: 



Example of integration:                                          
How to estimate     in a rainy day

Let us rephrase the problem:
how to estimate the area of a circle of radius 1 

A number of trial shots are generated in 
the square OABC

At each trial two independent random
numbers are chosen from a uniform

distribution on
These numbers are taken as the

coordinates of a point
(marked as + in the figure)

The distance from the random point to
the origin is calculated

If the distance is less or equal to one, 
the shot has landed in the shaded

region and a hit is scored

If a total of             are fired and           hits scored, then

A circle centred at the origin and 
inscribed in a square



Example of integration:                                          
How to estimate     in a rainy day

In mathematical words, we have estimated the integral 

In the two-dimensional interval

where the function is



Example of integration:                                          
How to estimate     from the hit and miss method

3

program pi
!
! Compute pi by the hit and miss Monte Carlo method
!
real :: x, y
integer :: n, i
integer :: sum
print *, ’Number of points to use?’
read *, n
sum = 0.0
do i = 1, n

call random_number(x)
call random_number(y)
if (x*x+y*y <= 1.0) sum = sum + 1

enddo
print *, ’pi = ’, 4.0 * sum / real(n)
end program pi

BC matrix
x y z

x 2.5275365 -0.0000002 0.0000013 |
y 0.0010035 2.5302200 -0.0000002 | Born effective charges for Ba
z -0.0000137 0.0003847 2.5285002 |
--------------------------------------------------
x 7.5581447 -0.0000001 0.0001447 |
y -0.0004625 7.5559190 0.0000031 | Born effective charges for Ti
z -0.0000003 0.0002686 7.5581385 |
--------------------------------------------------
x -2.0648235 0.0000017 -0.0007149 |
y 0.0003726 -2.0647665 -0.0000099 | Born effective charges for O1
z 0.0000077 0.0002320 -5.9525109 |
--------------------------------------------------
x -2.0647275 0.0000029 0.0004251 |
y 0.0002713 -5.9519215 -0.0000003 | Born effective charges for O2
z -0.0000006 0.0004387 -2.0647094 |
--------------------------------------------------
x -5.9521785 0.0000059 0.0003053 |
y 0.0004152 -2.0646781 0.0000069 | Born effective charges for O3
z 0.0000021 0.0003887 -2.0646981 |
--------------------------------------------------



Example of integration:                                          
How to estimate     in a rainy day or with a needle

To gain one significative figure (i.e. to reduce the typical error 
by one order of magnitude) we should to increase the number

of integration points by 100



Why+Monte+Carlo?+
�Monte%Carlo%is%an%extremely%bad%method;%it%
should%be%used%only%when%all%alternative%
methods%are%worse.��%%%%%%%%%%Alan)Sokal)

Monte Carlo methods in statistical mechanics,)1996!

The)error)is)only)shrinking)as))))))))))))))

Other)simple)methods)for)integrations)in)two)dimensions:))

In)more)than)two)dimensions)(2D),)e.g.)in)three)dimensions)(3D))(volume)of)
a)sphere,…):)))

)

Which)method)is)better)for)D=10)?) )))Answer)=)…[)FILL)IN])….)

1/
p
N

1/N3/2

1/N3/D



Applications to Statistical Mechanics

Fundamental postulate of Statistical Physics:
All the microstates of a closed system in equilibrium are equally probable

Closed means that the total energy , the number of particles , 
and the volume are constant

In thermodynamics, these are the natural variables in the entropic representation

The fundamental connection between Statistical Mechanics and Thermodynamics
The entropy can be computed from the total number of microstates of a system



Applications to Statistical Mechanics

Boltzmann's grave in the Zentralfriedhof, Vienna, with bust and entropy formula



Any macroscopic physical quantity can be computed as an 
statistical average over accesible microstates

Therefore, to study the properties of any closed macroscopic system
in equilibrium, it should be enough (in principle) to determine all the
microscopic states and evaluate the corresponding averages taking
only those microstates compatible with the thermodynamic variables   

,        ,  and  

In practice, it is impossible to find all the microscopic states available



Any macroscopic physical quantity can be computed as an 
statistical average over accesible microstates

Therefore, to study the properties of any closed macroscopic system
in equilibrium, it should be enough (in principle) to determine all the
microscopic states and evaluate the corresponding averages taking
only those microstates compatible with the thermodynamic variables   

,        ,  and  

In practice, it is impossible to find all the microscopic states available



Number of possible microstates might be 
inconceivable large 

Let us imagine a system of       spins with two possible states (up or down). 
How many microstates are possible?

With a few dozens of particles, this number might be very, very large

It is impossible to compute these averages,                        , exactly

But we can estimate them by a partial sampling of all the possible
microstates, in the same way as sociologist prepare the poll. 

We should employ a non-bias method to sample the configuration space



The Metropolis algorithm



Boundary conditions

Periodic boundary
contsitions

Free edgesScrew periodic

Typical boundary conditions for the two-dimensional Ising model


