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Exchange interactions 

If relativistic effects are not considered, then  
the electric interaction between particles does not depend on their spins 

In the absence of a magnetic field, the Hamiltonian of a system of particles 
in electric interaction does not contain spin operators  



A look to the hamiltonian:                            
a difficult interacting many-body system. 

Kinetic energy operator for the electrons 

Potential acting on the electrons 
due to the nuclei 

Electron-electron interaction 

Kinetic energy operator for the nuclei 

Nucleus-nucleus interaction 



Exchange interactions 

If relativistic effects are not considered, then  
the electric interaction between particles does not depend on their spins 

In the absence of a magnetic field, the Hamiltonian of a system of particles 
in electric interaction does not contain spin operators  

When it is applied to a wavefunction, it does not affect the spinoidal variables 

The wave function of a system of particles can be written as a product 

It depends only on the 
spatial coordinates of the 

particles 

It depends only on the spin 
variables 

The Schrödinger equation determines only      , leaving     arbitrary 



The indistinguisibility of the particles leads to 
symmetry conditions on the wave function 

Despite the fact that the electric interaction is spin-independent, there is a 
dependendency of the energy of the system with respect the total spin 

Let us consider a system of two identical particles. 

After solving the Schrödinger equation, we find a set of energy levels, each of 
which are associated with a spatial wavefunction   

Since the particles are identical, the Hamiltonian of the system has to be invariant 
with respect the permutation of the particles 

               has to be symmetric or antisymmetric 



The possible values of the energy of a system of 
identical particles depend on the total spin system 

Let us assume now that the particles have spin 1/2 

The total wave function (product of a spatial coordinate wave function 
and the spinorial wave function) has to be antisymmetric with respect the 

permutation of the two particles 

symmetric antisymmetric Total spin = 0 
(spins aligned 
antiparallel one 
to the other) 

antisymmetric symmetric Total spin = 1 
(spins aligned 
parallel one to 
the other) 

The energy only depends on                , that is determined by the total spin   



The possible values of the energy of a system of 
identical particles depend on the total spin system 

Let us assume now that the particles have spin 1/2 

Consider two electrons which have spatial coordinates       and  

Let us assume that the two particles, without considering 
their mutual interaction, are in states that can be 

represented by single electron coordinate wavefunctions 
and  

The overall wave function of the system for a state with total spin  

Triplet (                                      )      

Singlet (               )      



The possible values of the energy of a system of 
identical particles depend on the total spin system 

The energies of the two possible states are 

The overall wave function of the system for a state with total spin  

Triplet (                                      )      

Singlet (               )      

We assume that the spin 
part of the wave function 

is normalized 



Mean value of the energy in the 
singlet and triplet states 

The energies of the single state is 

We assume that the spin 
part of the wave function 

is normalized 



Mean value of the energy in the 
singlet and triplet states 

The energies of the triplet state is 

We assume that the spin 
part of the wave function 

is normalized 



Mean value of the energy in the 
singlet and triplet states 

The difference in energies between the singlet and the triplet state is 

(to obtain this expression remembers that the Hamiltonian operator is self-adjoint) 

The difference between single and triplet states can be parametrized by  



Explanation of this mapping:        
The coupling of two spins 

Consider two spin-1/2 particles coupled by an interaction given by the Hamiltonian 

Operator for the spin of particle a Operator for the spin of particle b 

Considered as a joint entity, the total spin can be represented by the operator 

so that 



The coupling of two spins: 
eigenvalue of different operators 

The eigenvalue of               is  The eigenvalue of             and  
are 3/4   

Combining two spin-1/2 particles results in a joint entity with spin quantum number 

Since Since 



The coupling of two spins: 
eigenstates of different operators 

Let us consider the following basis 

First arrow:  z-component of the spin labelled as a 
Second arrow:  z-component of the spin labelled as b 

The eigenstates of                  are linear combination of these basis states 

The degeneracy of each state of each state is given by  

Singlet 

Triplet 



The coupling of two spins: 
eigenstates of different operators 

Let us consider the following basis 

First arrow:  z-component of the spin labelled as a 
Second arrow:  z-component of the spin labelled as b 

The eigenstates of                  are linear combination of these basis states 

The z component of the spin of the state,  
Is the sum of the z components of the individual spins 

Singlet 

Triplet 

Because eigenstates are mixtures of states in the original basis, it is not 
possible in general to know both the z-component of the original spins 

and the total spin of the resultant entity 



The coupling of two spins: 
Summary 

A assumed to be positive 
in the diagram 



Mean value of the energy in the 
singlet and triplet states 

The difference in energies between the singlet and the triplet state is 

(to obtain this expression remembers that the Hamiltonian operator is self-adjoint) 

The difference between single and triplet states can be parametrized by  

For a singlet state For a triplet state 

The Hamiltonian can be written in the form of an effective Hamiltonian 



Effective Hamiltonian to describe 
singlet and triplet states 

The Hamiltonian can be written in the form of an effective Hamiltonian 

Constant term: 
Can be absorbed into other 

constant energy-terms 

Spin-dependent term: 

Since 

We can define the exchange constant (or exchange integral) as 

And hence, the spin dependent term in the model Hamiltonian can be written as  



Effective Hamiltonian to describe 
singlet and triplet states 

And hence, the spin dependent term in the model Hamiltonian can be written as  



Generalization for more than 
two electrons 

The spin dependent term in the model Hamiltonian can be written as  

Generalizing to a many-body system is far from trivial 

Since the early days of Quantum Mechanics, it was recognized that interactions 
such as the previous one probably apply between all neighboring atoms 

This motivates the Hamiltonian of the Heisenberg model 

The factor of 2 is omitted because the 
summation includes each pair of spins twice 

The factor of 2 appears because the 
summation on i >j avoids the double counting 



General features respect the (complicate) 
calculation of exchange integrals 
If the two electrons are on the same atom the exchange integral is usually positive 

Antisymmetric spatial state  

Minimizes the Coulomb repulsion between the two electrons by keeping them 
apart  

Good agreement with Hund’s first rule 



General features respect the (complicate) 
calculation of exchange integrals 

If the two electrons are on neighboring atoms  

Any joint state will be a combination of a state centered on one atom and a state 
centered on the other 

Antisymmetric state usually more 
energetic 

 (more curvature that implies larger 
kinetic energy), 

and the system tends to be in the 
bonding state 

The correct states to consider are molecular orbitals that can be: 
- Bonding (spatially symmetric)   (asymmetric spin state) 
- Antibonding (spatially asymmetric)   (symmetric spin state) 



Aditional information 



Direct exchange 

If the electrons in neighboring magnetic atoms interact via an exchange 
interaction, this is known as direct exchange 

The exchange interaction proceeds directly without the need for an intermediary. 

•  4f electrons in rare earths are strongly localized 
•  3d transition metals, extremely difficult to justify magnetic properties from 

direct exchange. Some of these materials (Fe, Co, Ni) are metals, and 
conduction (delocalized) electrons should not ne neglected. 

Physical situation is rarely that simple: 
Very often, direct exchange cannot be an important mechanism in controlling the 

magnetic properties because there is insufficient direct orbital between 
neighboring magnetic orbitals 



Indirect exchange in ionic solids: 
superexchange 

Superexchange is defined as an indirect exchange interaction between 
non-neighboring magnetic ions which is mediated by a non-magnetic ion 

which is placed in between the magnetic ion 

Imagine two transition metal ions 
separated by an oxygen atom 

(for instance Mn2+ manganese ions 
connected via O2- oxygen ions in MgO) 

For simplicity, we assume that the magnetic 
moment on the transition metal ion is due 

to a single unpaired electron 

In the perfectly ionic picture, each metal ion 
would have a single unpaired electron in a   
d-orbital and the oxygen would have two       

p-electrons in its outermost occupied state 



Indirect exchange in ionic solids: 
superexchange 

Superexchange is defined as an indirect exchange interaction between 
non-neighboring magnetic ions which is mediated by a non-magnetic ion 

which is placed in between the magnetic ion 

In the perfectly ionic picture, each metal ion would have a single unpaired 
electron in a d-orbital and the oxygen would have two p-electrons in its 

outermost occupied state 

In the antiferromagnetic configuration, two 
electrons with spin up and two electrons with 

spin down 

The ground state configuration is (a) 

But the excited states (b) and (c) are also possible 

Therefore (a) can mix with the excited states (b) and (c) 
and the magnetic electrons can be delocalized over 

the M-O-M unit, lowering the kinetic energy 



Indirect exchange in ionic solids: 
superexchange 

Superexchange is defined as an indirect exchange interaction between 
non-neighboring magnetic ions which is mediated by a non-magnetic ion 

which is placed in between the magnetic ion 

In the perfectly ionic picture, each metal ion would have a single unpaired 
electron in a d-orbital and the oxygen would have two p-electrons in its 

outermost occupied state 

In the ferromagnetic configuration, three 
electrons with spin up and one electron with spin 

down 

The ground state configuration is (a) 

The excited states (b) and (c) are not possible due 
to exclusion principle 

Therefore (a) cannot mix with the excited states (b) and (c).             
The ferromagnetic state is more localized and costs more energy. 



Indirect exchange in ionic solids: 
superexchange 

Superexchange is a second order process and is derived from second 
order perturbation theory 

The energy involved is: 

Directly proportional to the square of 
the matrix element of the transition 

Related with the width of the 
conduction band in a simple tight-

binding approach 

Inversely proportional to the to the 
energy cost of making the transition 

state 

Related with the Coulomb energy 



Indirect exchange in ionic solids: 
superexchange 

The exchange integral consists of two parts 

Potential exchange term 

Represents the electron repulsion. 
Favours ferromagnetic state. 

Small when the atoms are well separated 

Kinetic exchange term 

Favours delocalization of the electrons. 
Dominates when the atoms are well 

separated. 
Strongly dependent upon the angle of the 

M-O-M bond. 



Indirect exchange in metals: 
RKKY interaction 

In metals, the exchange interaction between magnetic ions can be 
mediated by the conduction electrons 

A localized magnetic moment spin polarizes the conduction electrons 

The magnetic interaction is indirect because it does not involve direct 
coupling between magnetic moments. 

This polarization, in turn, couples to a neighbouring localized magnetic 
moment a distance      away 

Ruderman, Kittel, Kasuya and 
Yoshida interaction 

•  The interaction is long range 
•  It might be ferro or antiferro 

depending on the distance 
•  Oscillatory coupling, with wave 

length        because sharpness           
  of Fermi surface  



Double exchange 
A ferromagnetic exchange interaction which occurs because the 

magnetic ion can show mixed valency, i.e. that it can exist in more than 
one oxidation state 

Examples: compounds containing the Mn ion which can exist in 
oxidation state 3 or 4 (Mn3+ or Mn4+) 

La1-xSrxMnO3 

Sr is divalent (Sr+2)         a fraction x of the Mn ions are Mn4+ 

La is trivalent (La+3)         a fraction (1-x) of the Mn ions are Mn3+ 

The end members of the series are both antiferromagnetic insulators (as 
expected for an oxide material in which magnetism is mediated by 

superexchange through the oxygen  

When LaMnO3 is doped with Sr up to x = 0.175, the Jahn-Teller distortion 
vanishes and the system becomes ferromagnetic with a Curie temperature 

around room temperature, below which the system is metallic 



Double exchange 
A ferromagnetic exchange interaction which occurs because the 

magnetic ion can show mixed valency, i.e. that it can exist in more than 
one oxidation state 

La1-xSrxMnO3 

The eg electron of a Mn3+ ion can hop to 
the neighboring site only if there is a 

vacancy there with the same spin 
(hopping proceeds without spin flip of the 

hopping electron)  

If the neighboring atom is a Mn4+ 

 (no electrons in its eg shell), 
 this should present no problem  

However, there is a strong single-center 
exchange interaction between the eg 

electron and the t2g level, which wants to 
keep them all aligned  

Ferromagnetic alignement of neighboring 
ions is therefore required to maintain the 
high-spin alignment on the donating and 

receiving ion 



The Pauli spin matrices 

Any two by two matrix can be written in terms of them 
(they are a basis of the Hilbert space of the (2×2) matrices 

Any matrix that can be written has four numbers in it 

It can be written as a linear combination of four matrices 

One special way of doing this is to choose the Pauli spin matrices as the basis 

Are complex 
numbers 



Products of the Pauli spin matrices 



Pauli spin matrices as components 
of a vector of matrices 

You can use        in different coordinate systems as though it is a vector 



Definition of the spin angular 
momentum operator 

We define the spin angular momentum operator by 

Or, in components 

We are using the convention that the angular 
momentum is measured in units of  

The angular momentum associated with an electron is  



Definition of the spin angular 
momentum operator 

We define the spin angular momentum operator by 

Or, in components 

Only the operator       is diagonal. 

If the electron spin points along     the representation is particularly simple 



Representation of the spin operator 
along     -direction 

Eigenstates of  Eigenvalues of  

Spin pointing parallel 
to the     -axis 

Spin pointing antiparallel 
to the     -axis 



axis 

Eigenstates corresponding to the spin pointing 
parallel or antiparallel to the      and     axis 

axis 

All of them have the same magnitude of the eigenvalue: ½ 
 positive if pointing parallel to the axis 
 negative if pointing antiparallel 

These eigenstates are normalized 



Spinor representation: the two-component 
representation of the spin wave function 

Where     and     are complex numbers and it is conventional to normalize the state 



Total spin angular momentum operator 

The spin square operator is given by  

Since the eigenvalues of                           are always  

So we have the result that for any spin state, 



Commutation relations between the spin operators 
From the commutation relations of the Pauli matrices, it follows immediatly than 

And cyclic permutations thereof. 

Besides, each of these components commute with  

Thus, it is possible to know simultaneously the total spin and one of the 
components, but it is impossible to know more than one component 

simultaneously 



Raising and lowering operator 

Raising operator Lowering operator 

They are not Hermitian operators (not observables) 



Raising and lowering operator effect on spin states 

The raising operator will raise the 
component of the spin angular 

momentum by   

The lowering operator will lower the 
component of the spin angular 

momentum by   

If the     component of the spin angular momentum is already at its maximum 
(minimum) level, the raising (lowering) operator will annihilate the state 


