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Statistical mechanics 



From the microscopic to the macroscopic level: 
the realm of statistical mechanics 

Computer simulations 

Generates information at the 
microscopic level 

Atomic positions 

Momenta 

Can be thought of as coordinates of a 
multidimensional space of       dimensions:  

the phase space 

Thermodynamic state 

Pressure 

Temperature 

Number of particles 

Defined by a small set of  
macroscopic parameters 

Other thermodynamic 
properties may be derived 

through the knowledge of the 
equation of state and the 
fundamental equations of 

thermodynamics 



Statistical sampling from ensembles 

A particular point in phase space 

A given property (for instance, the potential energy) 

Instantaneous value of the property when the system is at point  

It is reasonable to assume that the experimentally observable 
macroscopic property         is really the time average of         taken 

over a long time interval 

The equations governing this time evolution 
 (Newton's equation of motion in a simple classical system)  

are well known 



Statistical sampling from ensembles 

The equations governing this time evolution 
 (Newton's equation of motion in a simple classical system)  

are well known 

But we can not hope to extend the integration of the dynamical equations: 
-  For a truly macroscopic number 1023 

-  To infinite time 

We might be satisfied to average over: 
-  A system of the order of thousand of atoms  (length and size scale) 

-  Over a long but finite time           (time scale) 

That is what we do in MD simulations: 
The equations of motion is solved step 
by step a large number of steps  



Practical questions regarding the validity of the method 

Whether or not a sufficient region of 
phase space is explored by the system 
trajectory within a feasible amount of 

computer time 

Whether thermodynamic consistency 
can be attained between simulation 

with identical macroscopic parameters 
(density, energy,…) 

 but different initial conditions 

Such simulation runs are within the power of modern computers 



Ergodicity 

•  In MD we want to replace a full sampling on the appropriate statistical 
ensemble by a SINGLE very long trajectory.  

•  This is OK only if system is ergodic. 

•  Ergodic Hypothesis: a phase point for any isolated system passes in 
succession through every point compatible with the energy of the system 
before finally returning to its original position in phase space. This journey 
takes a Poincare cycle.  

•  In other words, Ergodic hypothesis: each state consistent with our 
knowledge is equally “likely”. 

–  Implies the average value does not depend on initial conditions. 
–   <A>time= <A>ensemble ,  so  <Atime> = (1/NMD) = ∑t=1,N At   is good 

estimator. 

•  Are systems in nature really ergodic? Not always!  
–  Non-ergodic examples are glasses, folding proteins (in practice) and 

harmonic crystals (in principle). 



Ergodicity 

              is the phase space density 



Different aspects of ergodicity 

•  The system relaxes on a “reasonable” time scale towards a 
unique equilibrium state (microcanonical state) 

 
•  Trajectories wander irregularly through the energy surface 

eventually sampling all of accesible phase space. 
  

•  Trajectories initially close together separate rapidily (Sensitivity 
to initial conditions). 

 
Ergodic behavior makes possible the use of 
statistical methods on MD of small system.  

 
Small round-off errors and other mathematical 

approximations should not matter. 



From J.M. Haile: MD Simulations 

Particle in a smooth/rough circle 



Simple thermodynamic averages: 
mechanical energy 

The kinetic, potential, and total energies might be calculated 
using the phase functions already seen 

Average of kinetic energy 
Sum of contribution from 

individual particle momenta 

Average of potential energy 
Sum over all pairs, triplets,… 

depending on the complexity of 
the potential energy function 



Simple thermodynamic averages:                                       
virial theorem in the form of “generalized equipartition” 



Simple thermodynamic averages:                                       
temperature 

Familiar equipartition energy: an average energy of             per degree of freedom 

Applying the previous formula to compute the 
average kinetic energy in the  atomic case 



Simple thermodynamic averages:                                       
instantaneous temperature 

We can define an “instantaneous kinetic energy function”          
from the momenta of the atoms at a given time step (not averaged) 

whose average is equal to  

For a system of     atoms subject to internal molecular constraints, 
the number of degrees of freedom will be                , where       is the 

total number of independent internal constraints 

In       we should include the fixed 
bond lengths, angles, or additional 
global constraints (on the center of 

mass motion, for instance) 



Simple thermodynamic averages:                                       
pressure 

Let us assume that we are using Cartesian coordinates, and 
we use the Hamilton’s equation of motion 



Simple thermodynamic averages:                                       
pressure 

Let us assume that we are using Cartesian coordinates, and 
we use the Hamilton’s equation of motion 

       represents the sum of 
internal molecular forces and 
external forces 



Simple thermodynamic averages:                                       
pressure 

The external forces are related to the external pressure. 
Considering the effect of the container walls on the system 

If we define the “internal virial”, where we now restrict our 
attention to the intermolecular forces, then  

So, finally 



Simple thermodynamic averages:                                       
instantaneous pressure 

As it happened with the temperature, we can define the 
instantaneous pressure function as 

whose average is simply  

This definition of the instantaneous pressure is not unique.               
For instance, for a constant temperature ensemble we can define 

Both definitions of the instantaneous pressure give the same       when 
averaged, but their fluctuations in any ensemble would be different 

Although the systems simulated we use periodic boundary conditions 
(and therefore there are no walls), the results are the same  



Simple thermodynamic averages:                                       
instantaneous pressure 

For pairwise interaction, we can express      in a form that is 
explicitly independent of the origin of coordinates 

The indices     and    are equivalent 

Newton’s third law                 is used to switch the force indices 

where 



Simple thermodynamic averages:                                       
instantaneous pressure 
In a simulation that uses periodic boundary condition, it is essential to use  

where the intermolecular pair virial function  

Like             is limited by the range of the interactions, and hence          should 
be a well behaved, ensemble-independent function in most cases 



Simple thermodynamic averages:                                       
number of molecules and volume 

Average number of particles Average number of particles 

Are easily evaluated in the simulation of ensembles in which these quantities vary, 
and derived functions such as the enthalpy are easily calculated from the above 



 
 

T Reservoir 

SYSTEM 

Simulate an “extended system”:  

 - the real system 

 - an external (virtual) system, acting as a heat reservoir 
The energy is allowed to flow dynamically from the reservoir to the system and 
back. The heat reservoir controls the temperature of the given system, i. e., the 
temperature fluctuates around a target value. 

The reservoir is simply included by an extra degree of freedom,    , 
with momentum  

Constant temperature molecular dynamics: 
the canonical ensemble 
A physical picture of a system corresponding to the canonical  ensemble     
Involves weak interactions between molecules of the system and the particles of a 

heat bath at a specific temperature 



Constant temperature molecular dynamics: 
variables of the Nose-Hoover thermostat 

 
 

T Reservoir 

SYSTEM 

The heat bath is considered as an integral part of the system by addition of 

 - an extra degree of freedom,  

 - an extra mometum,  

 - a “mass”,             , [dimensions: (energy) × (times)2] . This variable 
controls the rate of temperature fluctuations 



Constant temperature molecular dynamics:                                  
variables of the Nose-Hoover thermostat: the artificial variable  

 
 

T Reservoir 

SYSTEM 

The extra degree of freedom (artificial parameter) s, plays the role of a 
time scaling parameter. 

The time scale in the extended system,      , is scaled by the factor s 

Real time  Virtual time in the 
extended system  



Constant temperature molecular dynamics:                                  
variables of the Nose-Hoover thermostat: the artificial momentum  

 
 

T Reservoir 

SYSTEM 

The atomic coordinates are identical in both systems  

Atomic coordinates in 
the real system  

Atomic coordinates in 
the extended system  

Momentum in the 
extended system  

Momentum in the 
real system  



Constant temperature molecular dynamics:                                  
variables of the Nose-Hoover thermostat: the extended Lagrangian  

The Lagrangian of the extended system is   

Kinetic energy minus the potential 
energy of the real system 

Kinetic energy of 
the thermostat 

Extra 
potential 

The extra potential is chosen to ensure that the 
algorithm produces a canonical ensemble 

         Numbers of degree of freedom: 

 3N  

 3N-3 if the total momentum is fixed 

+1 because of the extra degree of freedom of the thermostat 



Constant temperature molecular dynamics:                                         
the Lagrangian equations for the Nose-Hoover thermostat 

The Lagrangian equations of motions are 



The Lagrangian equations of motions are 

Constant temperature molecular dynamics:                                         
the Lagrangian equations for the Nose-Hoover thermostat 



The Lagrangian equations of motions are 

Constant temperature molecular dynamics:                                         
the Lagrangian equations for the Nose-Hoover thermostat 

These equations sample a microcanonical ensemble in the extended system. 
The extended system Hamiltonian is conserved 

The equations of motion are solved using the standard predictor-corrector method 

However, the energy of the real system is not constant. Accompanying the 
fluctuations of s, heat transfers occur between the system and a heat bath, 

which regulate the system temperature. 



Constant temperature molecular dynamics:                                       
Choice of Q in the Nose-Hoover thermostat 

Too high Too low 

Slow energy flow between the 
system and the reservoir 

          regain conventional 
Molecular Dynamics 

Long lived weakly damping 
oscillations of energy occur, 

resulting in poor equilibration 


