
Javier Junquera

Molecular dynamics in
different ensembles

Equations of motion for atomic systems

Classical equation of motion for a system of molecules
interacting via a potential

The most fundamental form: the Lagrangian equation of motion

Where the Lagrangian function is defined in terms of the
kinetic and potential energies, and is considered to be a function of

the generalized coordinates and their time derivatives

Equations of motion for atomic systems in
cartesian coordinates

Classical equation of motion for a system of molecules
interacting via a potential

If we consider a system of atoms with Cartesian coordinates ,
and the usual definitions of the kinetic and potential energies

Then, the equation of motion transforms into

where is the mass of atom and the force on that atom is given by

Equations of motion for atomic systems in
cartesian coordinates

Classical equation of motion for a system of molecules
interacting via a potential

This equation also aplies to the center of mass motion of a molecule,
with the force begin the total external force acting on it

Hamilton’s equation of motion in
cartesian coordinates

For a derivation of these expressions,
read Goldstein, Chapter 8

Hamilton or Lagrange equations of motion

Hamilton’s equations Lagrange’s equation

To compute the center of mass trajectories involves solving…

A system of 3N second order
differential equations

Or an equivalent set of 6N
first-order differential equations

Hamilton or Lagrange equations of motion

Hamilton’s equations Lagrange’s equation

To compute the center of mass trajectories involves solving…

A system of 3N second order
differential equations

Or an equivalent set of 6N
first-order differential equations

Conservation laws

Assuming that and do not depend explicitly on time, so that

Then, the total derivative of the Hamiltonian with respect to time

From the Hamilton’s equation of motion

The Hamiltonian is a constant of motion

Independent of the existence of an external potential

Essential condition:
No explicitly time dependent or
velocity dependent force acting

The equations are time reversible

By changing the signs of all the velocities and momenta,
we will cause the molecules to retrace their trajectories.

If the equations of motion are solved correctly, the
computer-generated trajectories will also have this property

Standard method to solve ordinary differential equations:
the finite difference approach

Given molecular positions, velocities, and other dynamic
information at a time

We attempt to obtain the position, velocities, etc. at a later time ,
to a sufficient degree of accuracy

The choice of the time interval will depend on the
method of solution, but will be significantly smaller than
the typical time taken for a molecule to travel its own length

The equations are solved on a step by step basis

Notes:

Many different algorithms within the
finite different methodology

Predictor-corrector algorithm

If the classical trajectory is continuous, then an estimate of
the positions, velocities, accelerations at can be
obtained by a Taylor expansion about time

 stands for “predicted”

stands for the complete set of positions

stands for the complete set of velocities

stands for the complete set of accelerations

stands for the complete set of third
derivatives of the position

We store four “vectors” per atom:

If the classical trajectory is continuous, then an estimate of
the positions, velocities, accelerations at can be
obtained by a Taylor expansion about time

 stands for “predicted”

If we truncate the expansion retaining the terms given above

We have achieved our goal of
approximately advancing the

values of the dynamical quantites
from one time step to the next

We will not generate correct
trajectories as time advances

because we have not introduced
the equations of motion

The equations of motion are introduced
through the correction step

From the new predicted positions we can compute the forces
at time , and hence correct accelerations

The correct accelerations can be compared with the predicted
accelerations to estimate the size of the error in the prediction step

This errors, and the results of the predictor step, are fed into the corrector step

These positions, velocities, etc. are better approximations to the
true positions, velocities, etc.

“Best choices” (leading to optimum stability and accuracy
of the trajectories) for the coefficients
discussed by Gear

Different values of the coefficients are required if we include more (or
fewer) position derivatives in our scheme

The coefficients also depend upon the order of the differential equation
being solved (second order in our case)

T H E GEAR PREDICTOR-CORRECTOR 34 1

Table E.l Gear corrector coeficients for ajirst-order equation

Values CO C I C2 C3 C4 C5

Table E.2 Gear corrector coeficients for a second-order equation

Values Co CI C2 C3 C4 Cs

3 0 1 1
4 116 516 1 113
5 19/120 314 1 112 1/12
6 3/20 251/360 1 11/18 116 1/60

For a second-order equation

we have Ar = r:- r i where re is the predicted value and r',is obtained by substituting rg
into the equation of motion. The coefficients for a second-order equation are given in
Table E.2.

For second-order equations of the form

in which the first derivatives also appear on the right, the coefficients co should be
replaced by 19/90 in the five-value method and by 3/16 in the six-value method,
respectively. The coefficients given above for the second-order three-value method are
actually those corresponding to the velocity Verlet algorithm discussed in Section 3.3.1,
which we have formally fitted into the Gear scheme.

In Chapter 3 we have argued that the Verlet methods are generally simpler and
exhibit better energy conservation than the Gear algorithms, for straightforward MD
simulation of atomic systems. The situation is slightly different when rotational motion
is involved, or when some of the special techniques described in Chapters 7-9 are used.
In these cases, the velocities often appear on the right of the equations of motion. It is
frequently possible to adapt one of the Verlet/leap-frog methods to solve these
differential equations (and some examples appear in the text) but it is probably more
convenient to use one of the general-purpose Gear algorithms. A first-order Gear
method based on all six vectors (positions and momenta) may be used. In this case, time
derivatives of all these quantities should be stored. Alternatively, the momenta may be

If the positions, velocities, accelerations, etc. are unscaled, factors
involving the time scaled are required (see algorithm below)

Implementation of Gear’s predictor-corrector algorithm
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE PREDIC (DT)

C ***
C ** PREDICTOR ROUTINE **
C ** **
C ** IN TIMESTEP-SCALED VARIABLES THE PREDICTOR IS THE PASCAL **
C ** TRIANGLE MATRIX. IN UNSCALED VARIABLES IT IS A TAYLOR SERIES **
C ** **
C ** USAGE: **
C ** **
C ** PREDIC IS CALLED TO ADVANCE THE COORDINATES, VELOCITIES ETC. **
C ** BY ONE TIMESTEP DT, PRIOR TO FORCE EVALUATION. **
C ***

INTEGER N
PARAMETER (N = 108)

REAL DT
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL AX(N), AY(N), AZ(N)
REAL BX(N), BY(N), BZ(N)
REAL CX(N), CY(N), CZ(N)
REAL FX(N), FY(N), FZ(N)

INTEGER I
REAL C1, C2, C3, C4

C ***

! Compute the coefficients for the Taylor expansion
C1 = DT
C2 = C1 * DT / 2.0
C3 = C2 * DT / 3.0
C4 = C3 * DT / 4.0

! Loop over all the atoms in the system
DO 100 I = 1, N

! Predict the new positions
! A Taylor expansion up to fourth order is done
! That means that we have to store upto five arrays per atom

RX(I) = RX(I) + C1*VX(I) + C2*AX(I) + C3*BX(I) + C4*CX(I)
RY(I) = RY(I) + C1*VY(I) + C2*AY(I) + C3*BY(I) + C4*CY(I)
RZ(I) = RZ(I) + C1*VZ(I) + C2*AZ(I) + C3*BZ(I) + C4*CZ(I)

! Predict the new velocities
VX(I) = VX(I) + C1*AX(I) + C2*BX(I) + C3*CX(I)
VY(I) = VY(I) + C1*AY(I) + C2*BY(I) + C3*CY(I)
VZ(I) = VZ(I) + C1*AZ(I) + C2*BZ(I) + C3*CZ(I)

! Predict the new accelerations
AX(I) = AX(I) + C1*BX(I) + C2*CX(I)
AY(I) = AY(I) + C1*BY(I) + C2*CY(I)
AZ(I) = AZ(I) + C1*BZ(I) + C2*CZ(I)

! Predict the new third derivatives of the positions
BX(I) = BX(I) + C1*CX(I)
BY(I) = BY(I) + C1*CY(I)
BZ(I) = BZ(I) + C1*CZ(I)

100 ENDDO
RETURN
END

The predictor part

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE CORREC (DT, M, K)
C ***
C ** CORRECTOR ROUTINE **
C ** **
C ** CORRECTS POSITIONS, VELOCITIES ETC. AFTER FORCE EVALUATION. **
C ** IN TIMESTEP-SCALED VARIABLES THE NUMERICAL COEFFICIENTS ARE **
C ** GIVEN BY GEAR (REF ABOVE): 19/120, 3/4, 1, 1/2, 1/12. **
C ** IN UNSCALED FORM THESE MUST BE MULTIPLIED BY FACTORS **
C ** INVOLVING THE TIMESTEP AS SHOWN HERE. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** REAL M ATOMIC MASS **
C ** REAL K KINETIC ENERGY PER ATOM **
C ** REAL GEAR0,GEAR1,GEAR2,GEAR3 GEAR COEFFICIENTS **
C ** **
C ** USAGE: **
C ** **
C ** IT IS ASSUMED THAT INTERMOLECULAR FORCES HAVE BEEN CALCULATED **
C ** AND STORED IN FX,FY,FZ. CORREC SIMPLY APPLIES THE CORRECTOR **
C ** EQUATIONS BASED ON THE DIFFERENCES BETWEEN PREDICTED AND **
C ** EVALUATED ACCELERATIONS. IT ALSO CALCULATES KINETIC ENERGY. **
C ***

INTEGER N
PARAMETER (N = 108)
REAL DT
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL AX(N), AY(N), AZ(N)
REAL BX(N), BY(N), BZ(N)
REAL CX(N), CY(N), CZ(N)
REAL FX(N), FY(N), FZ(N)
REAL M, K

INTEGER I
REAL AXI, AYI, AZI
REAL CORRX, CORRY, CORRZ
REAL C1, C2, C3, C4
REAL CR, CV, CB, CC
REAL GEAR0, GEAR1, GEAR3, GEAR4
PARAMETER (GEAR0 = 19.0 / 120.0, GEAR1 = 3.0 / 4.0,

: GEAR3 = 1.0 / 2.0, GEAR4 = 1.0 / 12.0)

C ***
C1 = DT
C2 = C1 * DT / 2.0
C3 = C2 * DT / 3.0
C4 = C3 * DT / 4.0

CR = GEAR0 * C2
CV = GEAR1 * C2 / C1
CB = GEAR3 * C2 / C3
CC = GEAR4 * C2 / C4

Implementation of Gear’s predictor-corrector algorithm

The corrector part

3

K = 0.0
! Loop over all the atoms in the system

DO 100 I = 1, N
! Compute the correct accelerations

AXI = FX(I) / M
AYI = FY(I) / M
AZI = FZ(I) / M

! Compare with the predicted accelerations to estimate
! the size of the errors

CORRX = AXI - AX(I)
CORRY = AYI - AY(I)
CORRZ = AZI - AZ(I)

! Correct the positions.
!

RX(I) = RX(I) + CR * CORRX
RY(I) = RY(I) + CR * CORRY
RZ(I) = RZ(I) + CR * CORRZ

! Correct the velocities.
VX(I) = VX(I) + CV * CORRX
VY(I) = VY(I) + CV * CORRY
VZ(I) = VZ(I) + CV * CORRZ

! Correct the accelerations.
AX(I) = AXI
AY(I) = AYI
AZ(I) = AZI

! Correct the third derivative of the positions.
BX(I) = BX(I) + CB * CORRX
BY(I) = BY(I) + CB * CORRY
BZ(I) = BZ(I) + CB * CORRZ

! Correct the fourth derivative of the positions.
CX(I) = CX(I) + CC * CORRX
CY(I) = CY(I) + CC * CORRY
CZ(I) = CZ(I) + CC * CORRZ

! Compute the corrected kinetic energy
K = K + VX(I) ** 2 + VY(I) ** 2 + VZ(I) ** 2

100 ENDDO
K = 0.5 * M * K
RETURN
END

The corrector step might be iterated till convergence

However, each iteration requires a computation of the forces from
particle positions (the most time-consuming part of the simulation)
⇒ A large number of corrector iterations would be very expensive.

Normally one (occasionally two) corrector steps are carried out

New correct accelerations are computed from the positions and
compared with the current values of , so as to further refine the

positions, velocities, etc.

In many applications this iteration is key to obtaining an accurate
solution

General step of a stepwise Molecular Dynamics simulation

Predict the positions, velocities, accelerations, etc. at a time ,
using the current values of these quantities

Evaluate the forces, and hence the accelerations
from the new positions

Correct the predicted positions, velocities, accelerations, etc. using the
new accelerations

Calculate any variable of interest, such as the energy, virial, order
parameters, ready for the accumulation of time averages, before

returning to the first point for the next step

Desirable qualities for a successful simulation algorithm

It should be fast and require little memory

It should permit the use of long time step

It should duplicate the classical trajectory as closely as possible

It should satisfy the known conservation laws for energy and
momentum, and be time reversible

It should be simple in form and easy to program

Since the most time consuming part is the evaluation of the force,
the raw speed of the integration algorithm is not so important

Far more important to employ a long time step. In this way, a given
period of simulation time can be covered in a modest number of steps

Involve the storage of only a few coordinates, velocitites,…

Desirable qualities for a successful simulation algorithm

It should be fast and require little memory

It should permit the use of long time step

It should duplicate the classical trajectory as closely as possible

It should satisfy the known conservation laws for energy and
momentum, and be time reversible

It should be simple in form and easy to program

Since the most time consuming part is the evaluation of the force,
the raw speed of the integration algorithm is not so important

Far more important to employ a long time step. In this way, a given
period of simulation time can be covered in a modest number of steps

Involve the storage of only a few coordinates, velocitites,…

The accuracy and stability of a simulation algorithm may
be tested comparing the result with analytical simple
models (Harmonic oscillator, for instance)

Any approximate method of solution will dutifully follow the
classical trajectory indefinetely

Any two trajectories which are
initially very close will

eventually diverge from one
another exponentially with time

Small differences in the
initial conditions

Any small perturbation, even the tiny
error associated with finite precision

arithmetic, will tend to cause a
computer-generated trajectory to

diverge from the true classical
trajectory with which it is initially

coincident

Small numerical errors

The accuracy and stability of a simulation algorithm may
be tested comparing the result with analytical simple
models (Harmonic oscillator, for instance)

Any approximate method of solution will dutifully follow the
classical trajectory indefinetely

Any two trajectories which are
initially very close will

eventually diverge from one
another exponentially with time

Small differences in the
initial conditions

FINITE DIFFERENCE METHODS

(b)

time steps

time steps ; o/+

Fig. 3.1 The divergence of trajectories in molecular dynamics. Atoms interacting through the
potential vRU (r), eqn (1.10a), were used, and a dense fluid state was simulated (p* = 0.6,
T* = 1.05, bt* = 0.005). Thecurvesarelabelled with theinitial displacement in units of a. (a) Ar
is the phase space separation between perturbed and reference trajectories. (b) AX/X is the
percentage difference in kinetic energies.

kinetic energies remain very close for a period whose length depends on the
size of the initial perturbation; after this point the differences become
noticeable very rapidly. Presumably, both the reference trajectory and the
perturbed trajectory are diverging from the true solution of Newton's
equations.

Clearly, no integration algorithm will provide an essentially exact solution
for a very long time. Fortunately, we do not need to do this. Remember that
molecular dynamics serves two roles. Firstly, we need essentially exact
solutions of the equations of motion for times comparable with the correlation
times of interest, so that we may accurately calculate time correlation
functions. Secondly, we use the method to generate states sampled from the
microcanonical ensemble. We do not need exact classical trajectories to do this,
but must lay great emphasis on energy conservation as being of primary
importance for this reason. Momentum conservation is also important, but
this can usually be easily arranged. The point is that the particle trajectories
must stay on the appropriate constant-energy hypersurface in phase space,
otherwise correct ensemble averages will not be generated. Energy conser-
vation is degraded as the time step is increased, and so all simulations involve a
trade-off between economy and accuracy: a good algorithm permits a large
time step to be used while preserving acceptable energy conservation. Other

Divergence of trajectories in
molecular dynamics

Reference simulation

Perturbed simulation

Molecules
perturbed from the
initial positions at

t=0 by

As the time proceeds, other mechanical
quantites become statistically uncorrelated

The accuracy and stability of a simulation algorithm may
be tested comparing the result with analytical simple
models (Harmonic oscillator, for instance)

Any approximate method of solution will dutifully follow the
classical trajectory indefinetely

No integration algorithm will provide an essentially
exact solution for a very long time

But this is not really required… What we need are:

Exact solutions of the equations of
motion for times comparable with the

correlation times of interest, so we
can calculate time correlation

functions

The method has to generate states
sampled from the microcanonical

ensemble. The emphasis has to be
given to the energy conservation.

The particles trajectories must stay
on the appropriate constant-energy

hypersurfaces in phase space to
generate correct ensemble averages

Energy conservation is degraded as time step is increased

All simulations involve a trade-off between

ECONOMY

ACCURACY

A good algorithm permits a large time step to be used
while preserving acceptable energy conservation

Parameters that determine the size of

•  Shape of the potential energy curves

•  Typical particle velocities

Shorter time steps are used at high-temperatures, for light
molecules, and for rapidly varying potential functions

The Verlet algorithm method of integrating the
equations of motion: description of the algorithm

Direct solution of the second-order equations

Method based on:

 - the positions

 - the accelerations

 - the positions from the previous step

A Taylor expansion of the positions around t

Adding the two equations

The Verlet algorithm method of integrating the
equations of motion: some remarks

The velocities are not needed to compute the trajectories, but they are useful
for estimating the kinetic energy (and the total energy).

They can be computed a posteriori using
[can only be computed once is known]

Remark 1

Remark 2

Whereas the errors to compute the positions are of the order of

The velocities are subject to errors of the order of

The Verlet algorithm method of integrating the
equations of motion: some remarks

The Verlet algorithm is properly centered: and
play symmetrical roles.

The Verlet algorithm is time reversible

Remark 3

Remark 4

The advancement of positions takes place all in one go,
rather than in two stages as in the predictor-corrector algorithm.

The Verlet algorithm method of integrating the
equations of motion: some remarks

F I N I T E D I F F E R E N C E M E T H O D S 79

symmetrical roles in eqn (3.14)), making it time-reversible. Thirdly, the
advancement of positions takes place all in one go, rather than in two stages as
in the predictor-corrector example. This means that the algorithm is coded
differently from the standard predictor-corrector (given on microfiche F.2).
Assume that we have available the current and old positions. The current
accelerations are evaluated in the force loop as usual. Then, the coordinates
are advanced in the following way.

SUMVSQ = 0.0
SUMVX = 0.0
SUMVY = 0.0
SUMVZ = 0.0

RXNEWI = 2.0 * RX(1) - RXOLD(I) + DTSQ * AX(I)
RYNEWI = 2.0 * RY(1) - RYOLD(I) + DTSQ * AY(I)
RZNEWI = 2.0 * RZ(1) - RZOLD(1) + DTSQ * Az(I)
VXI = (M E W 1 - RxOLD(I)) / DT2
W I = (RYNEWI - RYOLD(I)) / DT2
VZ I = (RZNEWI - RZOLD(I)) / DT2
SUMVSQ = SUMVSQ + VXI ** 2 + W I ** 2 + VZI ** 2
SUMVX = SUMVX + VXI
SUMW = S U M V Y + W I
SUMVZ = SUMVZ +VZI
RXOLD(1) = RX(1)
RYOLD(1) = RY(1)
RZOLD(1) = RZ(1)
RX(1) = RXNEWI
RY(I) = RYNEWI
RZ(I) = RZNEWI

100 CONTINUE

The variables DTSQ and DT2 store, respectively, 6t2 and 26t. Note the use
of temporary variables RXNEWI, RYNEWI and RZNEWI to store the new
positions within the loop. This is necessary because the current values must be
transferred over to the 'old' position variables before being overwritten with
the new values. This shuffling operation takes place in the last six statements
within the loop. Note also that the calculation of kinetic energy (from
SUMVSQ) and total linear momentum (from SUMVX, SUMVY and
SUMVZ), is included in the loop, since this is the only moment at which both
r (t + 6t) and r (t - 6 t) are available to compute velocities. Following the
particle move, we are ready to evaluate the forces for the next step. The overall
scheme is illustrated in Fig. 3.2.

As we can see, the Verlet method requires essentially 9N words of storage,
making it very compact, and it is simple to program. The algorithm is exactly
reversible in time and, given conservative forces, is guaranteed to conserve
linear momentum. The method has been shown to have excellent energy-
conserving properties even with long time steps. As an example, for
simulations of liquid argon near the triple point, RMS energy fluctuations of
the order 0.01 per cent of the potential well depth are observed using

•  Let us assume that we have available current (RX) and old (RXOLD).

•  The current accelerations (AX) are evaluated in the force loop as usual.

•  Then, the coordinates are advanced in the following way

The Verlet algorithm method of integrating the
equations of motion: some remarks

F I N I T E D I F F E R E N C E M E T H O D S 79

symmetrical roles in eqn (3.14)), making it time-reversible. Thirdly, the
advancement of positions takes place all in one go, rather than in two stages as
in the predictor-corrector example. This means that the algorithm is coded
differently from the standard predictor-corrector (given on microfiche F.2).
Assume that we have available the current and old positions. The current
accelerations are evaluated in the force loop as usual. Then, the coordinates
are advanced in the following way.

SUMVSQ = 0.0
SUMVX = 0.0
SUMVY = 0.0
SUMVZ = 0.0

RXNEWI = 2.0 * RX(1) - RXOLD(I) + DTSQ * AX(I)
RYNEWI = 2.0 * RY(1) - RYOLD(I) + DTSQ * AY(I)
RZNEWI = 2.0 * RZ(1) - RZOLD(1) + DTSQ * Az(I)
VXI = (M E W 1 - RxOLD(I)) / DT2
W I = (RYNEWI - RYOLD(I)) / DT2
VZ I = (RZNEWI - RZOLD(I)) / DT2
SUMVSQ = SUMVSQ + VXI ** 2 + W I ** 2 + VZI ** 2
SUMVX = SUMVX + VXI
SUMW = S U M V Y + W I
SUMVZ = SUMVZ +VZI
RXOLD(1) = RX(1)
RYOLD(1) = RY(1)
RZOLD(1) = RZ(1)
RX(1) = RXNEWI
RY(I) = RYNEWI
RZ(I) = RZNEWI

100 CONTINUE

The variables DTSQ and DT2 store, respectively, 6t2 and 26t. Note the use
of temporary variables RXNEWI, RYNEWI and RZNEWI to store the new
positions within the loop. This is necessary because the current values must be
transferred over to the 'old' position variables before being overwritten with
the new values. This shuffling operation takes place in the last six statements
within the loop. Note also that the calculation of kinetic energy (from
SUMVSQ) and total linear momentum (from SUMVX, SUMVY and
SUMVZ), is included in the loop, since this is the only moment at which both
r (t + 6t) and r (t - 6 t) are available to compute velocities. Following the
particle move, we are ready to evaluate the forces for the next step. The overall
scheme is illustrated in Fig. 3.2.

As we can see, the Verlet method requires essentially 9N words of storage,
making it very compact, and it is simple to program. The algorithm is exactly
reversible in time and, given conservative forces, is guaranteed to conserve
linear momentum. The method has been shown to have excellent energy-
conserving properties even with long time steps. As an example, for
simulations of liquid argon near the triple point, RMS energy fluctuations of
the order 0.01 per cent of the potential well depth are observed using

•  Let us assume that we have available current (RX) and old (RXOLD).

•  The current accelerations (AX) are evaluated in the force loop as usual.

•  Then, the coordinates are advanced in the following way

Use of temporary variables (RXNEWI) to
store the new positions.

This is necessary because the current
values must be transferred to the “old”
positions before being overwritten with

the new variables.

The calculation of kinetic energy
(SUMVSQ) and the total linear momentum

(SUMVX) is included in the loop, since
this is the only moment at which

and are known.

The Verlet algorithm method of integrating the
equations of motion: overall scheme

Known the positions at t, we
compute the forces (and

therefore the accelerations at t)

Then, we apply the Verlet
algorithm equations to

compute the new positions

…and we repeat the process
computing the forces (and therefore

the accelerations at)

The method has been shown to have excellent energy
conserving properties even in long time steps

The algorithm is exactly reversible in time, and, given conservative
forces, is guaranteed to conserve linear momentum and energy

The Verlet algorithm requires 9N words of storage (RX, RXOLD, AX,
and the corresponding for the y and z coordinates)

The Verlet algorithm method of integrating the
equations of motion: advantages

The Verlet algorithm method of integrating the
equations of motion: drawbacks

It may introduce some numerical imprecision

The handling of velocities is rather awkward

A small term of order …

…is added to a difference of large terms, of order

The half-step “leap-frog” scheme tackles the
deficiencies of the Verlet algorithm

Method based on:

 - the positions

 - the accelerations

 - the mid-step velocities

Algorithm

The velocity equation is implemented first,
and the velocities leap over the coordinates

…and we repeat the process
computing the new velocities at

Scheme of the half-step “leap-frog” algorithm

Known the new positions, we compute the
forces and therefore the accelerations…

At a given t, we can compute the velocities, required to calculate the total energy

Then, we apply the leap-frog algorithm
to compute the new positions

The half-step “leap-frog” scheme:
advantages and disadvantages

At no stage do we take the difference of two large quantities to obtain a
small value, minimizing loss of precision on a computer

Elimination of velocities from the leap-frog equations, the method is
algebraically equivalent to Verlet’s algorithm

Advantages

Disadvantages

Still do not handle the velocities in a complete satisfactory way

The velocity Verlet algorithm:
algorithm and advantages

Minimizes rounds-off errors

Stores the positions, velocities, and accelerations at the same time t

Advantages

The Verlet algorithm can be recovered by eliminating the velocities

Algorithm

Scheme of the velocity Verlet algorithm

Known the new positions, we compute the
forces and therefore the accelerations at

time

The velocities at mid step are computed
using

The velocity move is completed

Known the positions, velocities and
accelerations at t, we compute the

new positions at
At this point the kinetic

energy is available

The potential energy has
been evaluated in the force

loop

The velocity Verlet algorithm: advantages

The method uses 9N words of storage

Numerically stable

Very simple

The velocity Verlet algorithm:
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE MOVEA (DT, M)

COMMON / BLOCK1 / RX, RY, RZ, VX, VY, VZ, FX, FY, FZ

C ***
C ** FIRST PART OF VELOCITY VERLET ALGORITHM **
C ** **
C ** USAGE: **
C ** **
C ** THE FIRST PART OF THE ALGORITHM IS A TAYLOR SERIES WHICH **
C ** ADVANCES POSITIONS FROM T TO T + DT AND VELOCITIES FROM **
C ** T TO T + DT/2. AFTER THIS, THE FORCE ROUTINE IS CALLED. **
C ***

INTEGER N
PARAMETER (N = 108)

REAL DT, M
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL FX(N), FY(N), FZ(N)

INTEGER I
REAL DT2, DTSQ2

C ***

DT2 = DT / 2.0
DTSQ2 = DT * DT2

DO 100 I = 1, N
! The new positions at time (t + delta t) are calculated

RX(I) = RX(I) + DT * VX(I) + DTSQ2 * FX(I) / M
RY(I) = RY(I) + DT * VY(I) + DTSQ2 * FY(I) / M
RZ(I) = RZ(I) + DT * VZ(I) + DTSQ2 * FZ(I) / M

! The velocities at mid-step are computed
VX(I) = VX(I) + DT2 * FX(I) / M
VY(I) = VY(I) + DT2 * FY(I) / M
VZ(I) = VZ(I) + DT2 * FZ(I) / M

100 ENDDO

RETURN
END

The velocity Verlet algorithm:
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE MOVEB (DT, M, K)

COMMON / BLOCK1 / RX, RY, RZ, VX, VY, VZ, FX, FY, FZ

C ***
C ** SECOND PART OF VELOCITY VERLET ALGORITHM **
C ** **
C ** USAGE: **
C ** **
C ** THE SECOND PART OF THE ALGORITHM ADVANCES VELOCITIES FROM **
C ** T + DT/2 TO T + DT. THIS ASSUMES THAT FORCES HAVE BEEN **
C ** COMPUTED IN THE FORCE ROUTINE AND STORED IN FX, FY, FZ. **
C ***

INTEGER N
PARAMETER (N = 108)

REAL DT, M, K
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL FX(N), FY(N), FZ(N)

INTEGER I
REAL DT2

C ***

DT2 = DT / 2.0

K = 0.0

DO 200 I = 1, N
! Advances velocities from (t + \delta t/2) to (t + \delta t)

VX(I) = VX(I) + DT2 * FX(I) / M
VY(I) = VY(I) + DT2 * FY(I) / M
VZ(I) = VZ(I) + DT2 * FZ(I) / M

! Compute the kinetic energy
K = K + VX(I) ** 2 + VY(I) ** 2 + VZ(I) ** 2

200 ENDDO

K = 0.5 * M * K

RETURN
END

Is the code working?:
First check: the conservation laws are properly obeyed

The energy should be “constant”

In fact, small changes in energy will occur.
For simple Lennard-Jones system, fluctuations of 1 part in 104 are generally

considered to be acceptable

Energy fluctuations might be reduced by decreasing the time step

Suggestion to check accuracy:

Several short runs should be undertaken, each starting from the
same initial configuration and covering the same total time

Each run should employ a different time step
(different number of steps)

The root mean square fluctuations for each run should be calculated

Is the code working?:
First check: the conservation laws are properly obeyed

Suggestion to check accuracy:

Several short runs should be undertaken, each starting from the
same initial configuration and covering the same total time

Each run should employ a different time step
(different number of steps)

The root mean square fluctuations for each run should be calculated

If the program is functioning correctly, the Verlet algorithm should give
RMS fluctuations that are accurately proportional to

