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Equations of motion for atomic systems 

Classical equation of motion for a system of       molecules 
interacting via a potential   

The most fundamental form: the Lagrangian equation of motion 

Where the Lagrangian function                is defined in terms of the 
kinetic and potential energies, and is considered to be a function of 

the generalized coordinates       and their time derivatives 



Equations of motion for atomic systems in 
cartesian coordinates 

Classical equation of motion for a system of       molecules 
interacting via a potential   

If we consider a system of atoms with Cartesian coordinates      , 
and the usual definitions of the kinetic and potential energies  

Then, the equation of motion transforms into 

where         is the mass of atom    and the force on that atom is given by  



Equations of motion for atomic systems in 
cartesian coordinates 

Classical equation of motion for a system of       molecules 
interacting via a potential   

This equation also aplies to the center of mass motion of a molecule, 
with the force begin the total external force acting on it 



Hamilton’s equation of motion in 
cartesian coordinates 

For a derivation of these expressions, 
read Goldstein, Chapter 8  



Hamilton or Lagrange equations of motion  

Hamilton’s equations Lagrange’s equation 

To compute the center of mass trajectories involves solving… 

A system of 3N second order 
differential equations 

Or an equivalent set of 6N     
first-order differential equations  
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Conservation laws 

Assuming that        and       do not depend explicitly on time, so that   

Then, the total derivative of the Hamiltonian with respect to time 

From the Hamilton’s equation of motion 

The Hamiltonian is a constant of motion 

Independent of the existence of an external potential  

Essential condition: 
No explicitly time dependent or 
velocity dependent force acting 



The equations are time reversible 

By changing the signs of all the velocities and momenta, 
we will cause the molecules to retrace their trajectories. 

If the equations of motion are solved correctly, the 
computer-generated trajectories will also have this property 



Standard method to solve ordinary differential equations: 
the finite difference approach 

Given molecular positions, velocities, and other dynamic 
information at a time  

We attempt to obtain the position, velocities, etc. at a later time              , 
to a sufficient degree of accuracy  

The choice of the time interval        will depend on the 
method of solution, but       will be significantly smaller than 
the typical time taken for a molecule to travel its own length  

The equations are solved on a step by step basis 

Notes: 



Many different algorithms within the 
finite different methodology 

Predictor-corrector algorithm 



If the classical trajectory is continuous, then an estimate of 
the positions, velocities, accelerations at             can be 
obtained by a Taylor expansion about time  

      stands for “predicted” 

stands for the complete set of positions 

stands for the complete set of velocities 

stands for the complete set of accelerations 

stands for the complete set of third 
derivatives of the position 

We store four “vectors” per atom:  



If the classical trajectory is continuous, then an estimate of 
the positions, velocities, accelerations at             can be 
obtained by a Taylor expansion about time  

      stands for “predicted” 

If we truncate the expansion retaining the terms given above 

We have achieved our goal of 
approximately advancing the 

values of the dynamical quantites 
from one time step to the next 

We will not generate correct 
trajectories as time advances 

because we have not introduced 
the equations of motion 



The equations of motion are introduced 
through the correction step 

From the new predicted positions                  we can compute the forces 
at time            , and hence correct accelerations  

The correct accelerations can be compared with the predicted 
accelerations to estimate the size of the error in the prediction step 

This errors, and the results of the predictor step, are fed into the corrector step 

These positions, velocities,  etc. are better approximations to the 
true positions, velocities, etc.  



“Best choices” (leading to optimum stability and accuracy 
of the trajectories) for the coefficients                    
discussed by Gear  

Different values of the coefficients are required if we include more (or 
fewer) position derivatives in our scheme 

The coefficients also depend upon the order of the differential equation 
being solved (second order in our case) 

T H E  GEAR PREDICTOR-CORRECTOR 34 1 

Table E.l Gear corrector coeficients for ajirst-order equation 

Values CO C I C2 C3 C4 C5 

Table E.2 Gear corrector coeficients for a second-order equation 

Values Co CI C2 C3 C4 Cs 

3 0 1 1 
4 116 516 1 113 
5 19/120 314 1 112 1/12 
6 3/20 251/360 1 11/18 116 1/60 

For a second-order equation 

we have Ar = r:- r i  where re is the predicted value and r',is obtained by substituting rg 
into the equation of motion. The coefficients for a second-order equation are given in 
Table E.2. 

For second-order equations of the form 

in which the first derivatives also appear on the right, the coefficients co should be 
replaced by 19/90 in the five-value method and by 3/16 in the six-value method, 
respectively. The coefficients given above for the second-order three-value method are 
actually those corresponding to the velocity Verlet algorithm discussed in Section 3.3.1, 
which we have formally fitted into the Gear scheme. 

In Chapter 3 we have argued that the Verlet methods are generally simpler and 
exhibit better energy conservation than the Gear algorithms, for straightforward MD 
simulation of atomic systems. The situation is slightly different when rotational motion 
is involved, or when some of the special techniques described in Chapters 7-9 are used. 
In these cases, the velocities often appear on the right of the equations of motion. It is 
frequently possible to adapt one of the Verlet/leap-frog methods to solve these 
differential equations (and some examples appear in the text) but it is probably more 
convenient to use one of the general-purpose Gear algorithms. A first-order Gear 
method based on all six vectors (positions and momenta) may be used. In this case, time 
derivatives of all these quantities should be stored. Alternatively, the momenta may be 

If the positions, velocities, accelerations, etc. are unscaled, factors 
involving the time scaled are required (see algorithm below) 



Implementation of Gear’s predictor-corrector algorithm 
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I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE PREDIC ( DT )

C *******************************************************************
C ** PREDICTOR ROUTINE **
C ** **
C ** IN TIMESTEP-SCALED VARIABLES THE PREDICTOR IS THE PASCAL **
C ** TRIANGLE MATRIX. IN UNSCALED VARIABLES IT IS A TAYLOR SERIES **
C ** **
C ** USAGE: **
C ** **
C ** PREDIC IS CALLED TO ADVANCE THE COORDINATES, VELOCITIES ETC. **
C ** BY ONE TIMESTEP DT, PRIOR TO FORCE EVALUATION. **
C *******************************************************************

INTEGER N
PARAMETER ( N = 108 )

REAL DT
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL AX(N), AY(N), AZ(N)
REAL BX(N), BY(N), BZ(N)
REAL CX(N), CY(N), CZ(N)
REAL FX(N), FY(N), FZ(N)

INTEGER I
REAL C1, C2, C3, C4

C *******************************************************************

! Compute the coefficients for the Taylor expansion
C1 = DT
C2 = C1 * DT / 2.0
C3 = C2 * DT / 3.0
C4 = C3 * DT / 4.0

! Loop over all the atoms in the system
DO 100 I = 1, N

! Predict the new positions
! A Taylor expansion up to fourth order is done
! That means that we have to store upto five arrays per atom

RX(I) = RX(I) + C1*VX(I) + C2*AX(I) + C3*BX(I) + C4*CX(I)
RY(I) = RY(I) + C1*VY(I) + C2*AY(I) + C3*BY(I) + C4*CY(I)
RZ(I) = RZ(I) + C1*VZ(I) + C2*AZ(I) + C3*BZ(I) + C4*CZ(I)

! Predict the new velocities
VX(I) = VX(I) + C1*AX(I) + C2*BX(I) + C3*CX(I)
VY(I) = VY(I) + C1*AY(I) + C2*BY(I) + C3*CY(I)
VZ(I) = VZ(I) + C1*AZ(I) + C2*BZ(I) + C3*CZ(I)

! Predict the new accelerations
AX(I) = AX(I) + C1*BX(I) + C2*CX(I)
AY(I) = AY(I) + C1*BY(I) + C2*CY(I)
AZ(I) = AZ(I) + C1*BZ(I) + C2*CZ(I)

! Predict the new third derivatives of the positions
BX(I) = BX(I) + C1*CX(I)
BY(I) = BY(I) + C1*CY(I)
BZ(I) = BZ(I) + C1*CZ(I)

100 ENDDO
RETURN
END

The predictor part 
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I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE CORREC ( DT, M, K )
C *******************************************************************
C ** CORRECTOR ROUTINE **
C ** **
C ** CORRECTS POSITIONS, VELOCITIES ETC. AFTER FORCE EVALUATION. **
C ** IN TIMESTEP-SCALED VARIABLES THE NUMERICAL COEFFICIENTS ARE **
C ** GIVEN BY GEAR (REF ABOVE): 19/120, 3/4, 1, 1/2, 1/12. **
C ** IN UNSCALED FORM THESE MUST BE MULTIPLIED BY FACTORS **
C ** INVOLVING THE TIMESTEP AS SHOWN HERE. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** REAL M ATOMIC MASS **
C ** REAL K KINETIC ENERGY PER ATOM **
C ** REAL GEAR0,GEAR1,GEAR2,GEAR3 GEAR COEFFICIENTS **
C ** **
C ** USAGE: **
C ** **
C ** IT IS ASSUMED THAT INTERMOLECULAR FORCES HAVE BEEN CALCULATED **
C ** AND STORED IN FX,FY,FZ. CORREC SIMPLY APPLIES THE CORRECTOR **
C ** EQUATIONS BASED ON THE DIFFERENCES BETWEEN PREDICTED AND **
C ** EVALUATED ACCELERATIONS. IT ALSO CALCULATES KINETIC ENERGY. **
C *******************************************************************

INTEGER N
PARAMETER ( N = 108)
REAL DT
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL AX(N), AY(N), AZ(N)
REAL BX(N), BY(N), BZ(N)
REAL CX(N), CY(N), CZ(N)
REAL FX(N), FY(N), FZ(N)
REAL M, K

INTEGER I
REAL AXI, AYI, AZI
REAL CORRX, CORRY, CORRZ
REAL C1, C2, C3, C4
REAL CR, CV, CB, CC
REAL GEAR0, GEAR1, GEAR3, GEAR4
PARAMETER ( GEAR0 = 19.0 / 120.0, GEAR1 = 3.0 / 4.0,

: GEAR3 = 1.0 / 2.0, GEAR4 = 1.0 / 12.0 )

C *******************************************************************
C1 = DT
C2 = C1 * DT / 2.0
C3 = C2 * DT / 3.0
C4 = C3 * DT / 4.0

CR = GEAR0 * C2
CV = GEAR1 * C2 / C1
CB = GEAR3 * C2 / C3
CC = GEAR4 * C2 / C4

Implementation of Gear’s predictor-corrector algorithm 

The corrector part 
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K = 0.0
! Loop over all the atoms in the system

DO 100 I = 1, N
! Compute the correct accelerations

AXI = FX(I) / M
AYI = FY(I) / M
AZI = FZ(I) / M

! Compare with the predicted accelerations to estimate
! the size of the errors

CORRX = AXI - AX(I)
CORRY = AYI - AY(I)
CORRZ = AZI - AZ(I)

! Correct the positions.
!

RX(I) = RX(I) + CR * CORRX
RY(I) = RY(I) + CR * CORRY
RZ(I) = RZ(I) + CR * CORRZ

! Correct the velocities.
VX(I) = VX(I) + CV * CORRX
VY(I) = VY(I) + CV * CORRY
VZ(I) = VZ(I) + CV * CORRZ

! Correct the accelerations.
AX(I) = AXI
AY(I) = AYI
AZ(I) = AZI

! Correct the third derivative of the positions.
BX(I) = BX(I) + CB * CORRX
BY(I) = BY(I) + CB * CORRY
BZ(I) = BZ(I) + CB * CORRZ

! Correct the fourth derivative of the positions.
CX(I) = CX(I) + CC * CORRX
CY(I) = CY(I) + CC * CORRY
CZ(I) = CZ(I) + CC * CORRZ

! Compute the corrected kinetic energy
K = K + VX(I) ** 2 + VY(I) ** 2 + VZ(I) ** 2

100 ENDDO
K = 0.5 * M * K
RETURN
END



The corrector step might be iterated till convergence 

However, each iteration requires a computation of the forces from 
particle positions  (the most time-consuming part of the simulation) 
⇒ A large number of corrector iterations would be very expensive. 

Normally one (occasionally two) corrector steps are carried out 

New correct accelerations are computed from the positions        and 
compared with the current values of        , so as to further refine the 

positions, velocities, etc. 

In many applications this iteration is key to obtaining an accurate 
solution 



General step of a stepwise Molecular Dynamics simulation 

Predict the positions, velocities, accelerations, etc. at a time            ,        
using the current values of these quantities 

Evaluate the forces, and hence the accelerations                                            
from the new positions 

Correct the predicted positions, velocities, accelerations, etc. using the 
new accelerations 

Calculate any variable of interest, such as the energy, virial, order 
parameters, ready for the accumulation of time averages, before 

returning to the first point for the next step 



Desirable qualities for a successful simulation algorithm 

It should be fast and require little memory 

It should permit the use of long time step  

It should duplicate the classical trajectory as closely as possible 

It should satisfy the known conservation laws for energy and 
momentum, and be time reversible 

It should be simple in form and easy to program 

Since the most time consuming part is the evaluation of the force, 
the raw speed of the integration algorithm is not so important 

Far more important to employ a long time step. In this way, a given 
period of simulation time can be covered in a modest number of steps  

Involve the storage of only a few coordinates, velocitites,… 
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The accuracy and stability of a simulation algorithm may 
be tested comparing the result with analytical simple 
models (Harmonic oscillator, for instance) 

Any approximate method of solution will dutifully follow the 
classical trajectory indefinetely 

Any two trajectories which are 
initially very close will 

eventually diverge from one 
another exponentially with time 

Small differences in the 
initial conditions 

Any small perturbation, even the tiny 
error associated with finite precision 

arithmetic, will tend to cause a 
computer-generated trajectory to 

diverge from the true classical 
trajectory with which it is initially 

coincident 

Small numerical errors 



The accuracy and stability of a simulation algorithm may 
be tested comparing the result with analytical simple 
models (Harmonic oscillator, for instance) 

Any approximate method of solution will dutifully follow the 
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Any two trajectories which are 
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FINITE DIFFERENCE METHODS 

(b) 

time steps 
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Fig. 3.1 The divergence of trajectories in molecular dynamics. Atoms interacting through the 
potential vRU (r), eqn (1.10a), were used, and a dense fluid state was simulated (p* = 0.6, 
T* = 1.05, bt* = 0.005). Thecurvesarelabelled with theinitial displacement in units of a. (a) Ar 
is the phase space separation between perturbed and reference trajectories. (b) AX/X is the 
percentage difference in kinetic energies. 

kinetic energies remain very close for a period whose length depends on the 
size of the initial perturbation; after this point the differences become 
noticeable very rapidly. Presumably, both the reference trajectory and the 
perturbed trajectory are diverging from the true solution of Newton's 
equations. 

Clearly, no integration algorithm will provide an essentially exact solution 
for a very long time. Fortunately, we do not need to do this. Remember that 
molecular dynamics serves two roles. Firstly, we need essentially exact 
solutions of the equations of motion for times comparable with the correlation 
times of interest, so that we may accurately calculate time correlation 
functions. Secondly, we use the method to generate states sampled from the 
microcanonical ensemble. We do not need exact classical trajectories to do this, 
but must lay great emphasis on energy conservation as being of primary 
importance for this reason. Momentum conservation is also important, but 
this can usually be easily arranged. The point is that the particle trajectories 
must stay on the appropriate constant-energy hypersurface in phase space, 
otherwise correct ensemble averages will not be generated. Energy conser- 
vation is degraded as the time step is increased, and so all simulations involve a 
trade-off between economy and accuracy: a good algorithm permits a large 
time step to be used while preserving acceptable energy conservation. Other 

Divergence of trajectories in 
molecular dynamics 

Reference simulation 

Perturbed simulation 

Molecules 
perturbed from the 
initial positions at 

t=0 by  

As the time proceeds, other mechanical 
quantites become statistically uncorrelated 



The accuracy and stability of a simulation algorithm may 
be tested comparing the result with analytical simple 
models (Harmonic oscillator, for instance) 

Any approximate method of solution will dutifully follow the 
classical trajectory indefinetely 

No integration algorithm will provide an essentially 
exact solution for a very long time 

But this is not really required… What we need are: 

Exact solutions of the equations of 
motion for times comparable with the 

correlation times of interest, so we 
can calculate time correlation 

functions 

The method has to generate states 
sampled from the microcanonical 

ensemble. The emphasis has to be 
given to the energy conservation. 

The particles trajectories must stay 
on the appropriate constant-energy 

hypersurfaces in phase space to 
generate correct ensemble averages 



Energy conservation is degraded as time step is increased 

All simulations involve a trade-off between  

ECONOMY 

ACCURACY 

A good algorithm permits a large time step to be used 
while preserving acceptable energy conservation 



Parameters that determine the size of  

•  Shape of the potential energy curves 

•  Typical particle velocities 

Shorter time steps are used at high-temperatures, for light 
molecules, and for rapidly varying potential functions 



The Verlet algorithm method of integrating the 
equations of motion: description of the algorithm 

Direct solution of the second-order equations 

Method based on: 

 - the positions  

 - the accelerations 

 - the positions from the previous step  

A Taylor expansion of the positions around t 

Adding the two equations 



The Verlet algorithm method of integrating the 
equations of motion: some remarks 

The velocities are not needed to compute the trajectories, but they are useful 
for estimating the kinetic energy (and the total energy). 

They can be computed a posteriori using                                                                       
[           can only be computed once                  is known] 

Remark 1 

Remark 2 

Whereas the errors to compute the positions are of the order of   

The velocities are subject to errors of the order of  



The Verlet algorithm method of integrating the 
equations of motion: some remarks 

The Verlet algorithm is properly centered:                 and                   
play symmetrical roles. 

The Verlet algorithm is time reversible 

Remark 3 

Remark 4 

The advancement of positions takes place all in one go,  
rather than in two stages as in the predictor-corrector algorithm. 



The Verlet algorithm method of integrating the 
equations of motion: some remarks 

F I N I T E  D I F F E R E N C E  M E T H O D S  79 

symmetrical roles in eqn (3.14)), making it time-reversible. Thirdly, the 
advancement of positions takes place all in one go, rather than in two stages as 
in the predictor-corrector example. This means that the algorithm is coded 
differently from the standard predictor-corrector (given on microfiche F.2). 
Assume that we have available the current and old positions. The current 
accelerations are evaluated in the force loop as usual. Then, the coordinates 
are advanced in the following way. 

SUMVSQ = 0.0 
SUMVX = 0.0 
SUMVY = 0.0 
SUMVZ = 0.0 

RXNEWI = 2.0 * RX(1) - RXOLD(I) + DTSQ * AX(I) 
RYNEWI = 2.0 * RY(1) - RYOLD(I) + DTSQ * AY(I) 
RZNEWI = 2.0 * RZ(1) - RZOLD(1) + DTSQ * Az(I) 
VXI = ( M E W 1  - RxOLD(I) ) / DT2 
W I  = ( RYNEWI - RYOLD(I) ) / DT2 
VZ I = ( RZNEWI - RZOLD(I) ) / DT2 
SUMVSQ = SUMVSQ + VXI ** 2 + W I  ** 2 + VZI ** 2 
SUMVX = SUMVX + VXI 
SUMW = S U M V Y + W I  
SUMVZ = SUMVZ +VZI 
RXOLD(1) = RX(1) 
RYOLD(1) = RY(1) 
RZOLD(1) = RZ(1) 
RX(1) = RXNEWI 
RY( I) = RYNEWI 
RZ(I) = RZNEWI 

100 CONTINUE 

The variables DTSQ and DT2 store, respectively, 6t2 and 26t. Note the use 
of temporary variables RXNEWI, RYNEWI and RZNEWI to store the new 
positions within the loop. This is necessary because the current values must be 
transferred over to the 'old' position variables before being overwritten with 
the new values. This shuffling operation takes place in the last six statements 
within the loop. Note also that the calculation of kinetic energy (from 
SUMVSQ) and total linear momentum (from SUMVX, SUMVY and 
SUMVZ), is included in the loop, since this is the only moment at which both 
r (t  + 6t) and r (t - 6 t) are available to compute velocities. Following the 
particle move, we are ready to evaluate the forces for the next step. The overall 
scheme is illustrated in Fig. 3.2. 

As we can see, the Verlet method requires essentially 9N words of storage, 
making it very compact, and it is simple to program. The algorithm is exactly 
reversible in time and, given conservative forces, is guaranteed to conserve 
linear momentum. The method has been shown to have excellent energy- 
conserving properties even with long time steps. As an example, for 
simulations of liquid argon near the triple point, RMS energy fluctuations of 
the order 0.01 per cent of the potential well depth are observed using 

•  Let us assume that we have available current (RX) and old (RXOLD).  
 
•  The current accelerations (AX) are evaluated in the force loop as usual. 
 
•  Then, the coordinates are advanced in the following way 
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•  Let us assume that we have available current (RX) and old (RXOLD).  
 
•  The current accelerations (AX) are evaluated in the force loop as usual. 
 
•  Then, the coordinates are advanced in the following way 

Use of temporary variables (RXNEWI) to 
store the new positions.  

 
This is necessary because the current 
values must be transferred to the “old” 
positions before being overwritten with 

the new variables. 

The calculation of kinetic energy 
(SUMVSQ) and the total linear momentum 

(SUMVX) is included in the loop, since 
this is the only moment at which              

and                are known. 



The Verlet algorithm method of integrating the 
equations of motion: overall scheme 

Known the positions at t, we 
compute the forces (and 

therefore the accelerations at t) 

Then, we apply the Verlet 
algorithm equations to 

compute the new positions 

…and we repeat the process 
computing the forces (and therefore 

the accelerations at               ) 



The method has been shown to have excellent energy 
conserving properties even in long time steps 

The algorithm is exactly reversible in time, and, given conservative 
forces, is guaranteed to conserve linear momentum and energy 

The Verlet algorithm requires 9N words of storage (RX, RXOLD, AX, 
and the corresponding for the y and z coordinates) 

The Verlet algorithm method of integrating the 
equations of motion: advantages 



The Verlet algorithm method of integrating the 
equations of motion: drawbacks 

It may introduce some numerical imprecision 

The handling of velocities is rather awkward 

A small term of order             … 

…is added to a difference of large terms, of order  



The half-step “leap-frog” scheme tackles the 
deficiencies of the Verlet algorithm 

Method based on: 

 - the positions  

 - the accelerations 

 - the mid-step velocities  

Algorithm 



The velocity equation is implemented first, 
and the velocities leap over the coordinates 

…and we repeat the process 
computing the new velocities at                

Scheme of the half-step “leap-frog” algorithm 

Known the new positions, we compute the 
forces and therefore the accelerations… 

At a given t, we can compute the velocities, required to calculate the total energy 

Then, we apply the leap-frog algorithm 
to compute the new positions 



The half-step “leap-frog” scheme: 
advantages and disadvantages 

At no stage do we take the difference of two large quantities to obtain a 
small value, minimizing loss of precision on a computer 

Elimination of velocities from the leap-frog equations, the method is 
algebraically equivalent to Verlet’s algorithm 

Advantages 

Disadvantages 

Still do not handle the velocities in a complete satisfactory way 



The velocity Verlet algorithm: 
algorithm and advantages 

Minimizes rounds-off errors 

Stores the positions, velocities, and accelerations at the same time t 

Advantages 

The Verlet algorithm can be recovered by eliminating the velocities 

Algorithm 



Scheme of the velocity Verlet algorithm 

Known the new positions, we compute the 
forces and therefore the accelerations at 

time  

The velocities at mid step are computed 
using 

The velocity move is completed 

Known the positions, velocities and 
accelerations at t, we compute the 

new positions at  
At this point the kinetic 

energy is available 

The potential energy has 
been evaluated in the force 

loop 



The velocity Verlet algorithm: advantages 

The method uses 9N words of storage 

Numerically stable 

Very simple 



The velocity Verlet algorithm:  
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE MOVEA ( DT, M )

COMMON / BLOCK1 / RX, RY, RZ, VX, VY, VZ, FX, FY, FZ

C *******************************************************************
C ** FIRST PART OF VELOCITY VERLET ALGORITHM **
C ** **
C ** USAGE: **
C ** **
C ** THE FIRST PART OF THE ALGORITHM IS A TAYLOR SERIES WHICH **
C ** ADVANCES POSITIONS FROM T TO T + DT AND VELOCITIES FROM **
C ** T TO T + DT/2. AFTER THIS, THE FORCE ROUTINE IS CALLED. **
C *******************************************************************

INTEGER N
PARAMETER ( N = 108 )

REAL DT, M
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL FX(N), FY(N), FZ(N)

INTEGER I
REAL DT2, DTSQ2

C *******************************************************************

DT2 = DT / 2.0
DTSQ2 = DT * DT2

DO 100 I = 1, N
! The new positions at time (t + delta t) are calculated

RX(I) = RX(I) + DT * VX(I) + DTSQ2 * FX(I) / M
RY(I) = RY(I) + DT * VY(I) + DTSQ2 * FY(I) / M
RZ(I) = RZ(I) + DT * VZ(I) + DTSQ2 * FZ(I) / M

! The velocities at mid-step are computed
VX(I) = VX(I) + DT2 * FX(I) / M
VY(I) = VY(I) + DT2 * FY(I) / M
VZ(I) = VZ(I) + DT2 * FZ(I) / M

100 ENDDO

RETURN
END



The velocity Verlet algorithm:  
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE MOVEB ( DT, M, K )

COMMON / BLOCK1 / RX, RY, RZ, VX, VY, VZ, FX, FY, FZ

C *******************************************************************
C ** SECOND PART OF VELOCITY VERLET ALGORITHM **
C ** **
C ** USAGE: **
C ** **
C ** THE SECOND PART OF THE ALGORITHM ADVANCES VELOCITIES FROM **
C ** T + DT/2 TO T + DT. THIS ASSUMES THAT FORCES HAVE BEEN **
C ** COMPUTED IN THE FORCE ROUTINE AND STORED IN FX, FY, FZ. **
C *******************************************************************

INTEGER N
PARAMETER ( N = 108 )

REAL DT, M, K
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL FX(N), FY(N), FZ(N)

INTEGER I
REAL DT2

C *******************************************************************

DT2 = DT / 2.0

K = 0.0

DO 200 I = 1, N
! Advances velocities from (t + \delta t/2) to (t + \delta t)

VX(I) = VX(I) + DT2 * FX(I) / M
VY(I) = VY(I) + DT2 * FY(I) / M
VZ(I) = VZ(I) + DT2 * FZ(I) / M

! Compute the kinetic energy
K = K + VX(I) ** 2 + VY(I) ** 2 + VZ(I) ** 2

200 ENDDO

K = 0.5 * M * K

RETURN
END



Is the code working?:                                                           
First check: the conservation laws are properly obeyed 

The energy should be “constant” 

In fact, small changes in energy will occur.  
For simple Lennard-Jones system, fluctuations of 1 part in 104 are generally 

considered to be acceptable 

Energy fluctuations might be reduced by decreasing the time step 

Suggestion to check accuracy: 

Several short runs should be undertaken, each starting from the 
same initial configuration and covering the same total time 

Each run should employ a different time step       
(different number of steps                        )  

The root mean square fluctuations for each run should be calculated 



Is the code working?:                                                           
First check: the conservation laws are properly obeyed 

Suggestion to check accuracy: 

Several short runs should be undertaken, each starting from the 
same initial configuration and covering the same total time 

Each run should employ a different time step       
(different number of steps                        )  

The root mean square fluctuations for each run should be calculated 

If the program is functioning correctly, the Verlet algorithm should give 
RMS fluctuations that are accurately proportional to  


