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The initial configuration

In molecular dynamic simulations it is necessary to design a
starting configuration for the first simulation

- Initial molecular positions and orientations
- Initial velocities and angular velocities

For the first run, it is important to choose a configuration that can relax
quickly to the structure and velocity distribution appropriate to the fluid




The initial configuration:
more usual approach, start from a lattice

Almost any lattice is suitable.
Historically, the face-centered cubic structure has been the starting configuration

The lattice spacing is chosen so the appropriate liquid state density is obtained

During the course of the simulation, the lattice structure will disappear,
to be replaced by a typical liquid structure

This process of “melting” can be enhanced by giving each molecule a
small random displacement from its initial lattice point




The initial configuration:
more usual approach, start from a lattice

Almost any lattice is suitable.
Historically, the face-centered cubic structure has been the starting configuration

A supercell is constructed repeating the conventional cubic unit cell of the FCC
lattice V. times along each direction

The number of atoms in the simulation box, /V, is an integer of the
form N = 4N?, where N is the number of FCC unit cells in each direction




Units for the density

For systems consisting of just one type of atom or molecule, it is sensible to
use the mass of the molecule as a fundamental unit

m,; = 1 dimensionless

With this convention:
- Particle momenta and velocities become numerically identical
- Forces and accelerations become numerically identical

In systems interacting via a Lennard-Jones potential, the
density is oftenly quoted in reduced units

p* = po® (dimensionless)

Assuming an FCC lattice (4 atoms in the conventional cubic),and m, = 1,
then we can compute the lattice constant from the reduced density

o 4 ( 4 ) 1/3 And then, the lattice constant will
o

p*

P="3 = 3 =0a= come in the same units as the ones
o a used to determine O




Units for the length of the supercell

If the lattice constant of the conventional cubic unit cell of an FCC lattice is (1,
then the length of the side of the supercellis . = NV a

However, the implementation of the periodic boundary conditions and the
calculation of minimum image distances is simplified by the use of reduced units:

L =1

In particular, the atomic coordinates can be defined using this unit of length, so
nominally they will be in the range




Implementation of a fcc lattice

CALCULATE THE SIDE OF THE UNIT CELL (CELL VECTOR OF UNITY SIZE) **
CELL = 1.0 / REAL ( NC )

BUILD THE UNIT CELL **

SUBLATTICE A **
RX(1) .

RY(1)
RZ(1)

SUBLATTICE B **
RX(2) = CELL2
RY(2) CELL2
RZ(2) 0.0

SUBLATTICE C *x*
RX(3) = 0.0

RY(3) CELL2
RZ(3) CELL2

The simulation box is a unit cube centred at
RX(4) = CELL2 the origin

RY(4) 0.0
RZ(4) CELL2

CONSTRUCT THE LATTICE FROM THE UNIT CELL *x*

The number of atoms in the simulation box, \V
0 9 12 - 1, e is an integer of the form N = 4N’ where N,

DO 98 IY =1, NC

%" 00 96 ThE = 1, 4 is the number of FCC unit cells in each
RX(IREF+M) = RX(IREF) + CELL * REAL ( IX - 1) direction

RY (IREF+M) = RY(IREF) CELL * REAL ( IY - 1)
RZ(IREF+M) = RZ(IREF) CELL * REAL ( IZ - 1)

CONTINUE
M=M+ 4

ENDDO
ENDDO
ENDDO

SHIFT CENTRE OF BOX TO THE ORIGIN

DO 100 I
RX(I) = RX(I) - 0.5
RY(I) = RY(I) - 0.5
RZ(I) = RZ(I) - 0.5

ENDDO

1, N




Initial velocities

For a molecular dynamic simulation, the initial velocities
of all the molecules must be specified

It is usual to choose random velocities, with magnitudes
conforming to the required temperature, corrected so that
there is no overall momentum

nY
1=1

The distribution of molecular speeds is given by

9
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Probability density for
velocity component

Similar equations apply for the y and z velocities




Normal distributions

The normal distribution with mean <:l:‘> and variance (72
is defined as

L (z — (@))°

— e — — XN <TrT <X
p(x) e 53

A random number (:/ generated from this distribution is related to a number C
generated from the normal distribution with zero mean and unit variance by

/

(' = (2) + ¢

The Maxwell-Boltzmann distribution is a normal distribution with

1 N m;
o2r  \ 27kgT

If we take the mass of the atoms or molecules as m; = 1

O — \/ kBT




Flowchart in the generation of random numbers

Generate a random number distribution uniformly between [0 and 1]




Implementation of random numbers
uniformly distributed between 0 and 1

REAL FUNCTION RANF ( DUMMY )

Sk 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 5k 3k 5k Sk >k 3k 3k 5k >k Sk 3k ok 5k Sk 5k ok Sk k >k 5k Sk 5k 3k 3k sk >k 5k 3k >k 3k Sk 5k >k Sk k ok 5k Sk sk >k 5k Sk 5k 5k 5k 5k >k 3k k >k 5k Sk >k k 5k
** RETURNS A UNIFORM RANDOM VARIATE IN THE RANGE O TO 1. ok
k% k%
k% 3k 3k >k 5k 3k 5k >k 5k 5k k 5k >k ok 5k %k k%
*%k *% WARNING = *%k
k% 3k 3k >k 3k Sk 3k >k 5k 5k 5k %k >k ok ok >k k%
k% k%
** GOOD RANDOM NUMBER GENERATORS ARE MACHINE SPECIFIC. %
** PLEASE USE THE ONE RECOMMENDED FOR YOUR MACHINE. *k
Sk 3k 3k 3k 3k 3k 3k >k ok 3k 3k 3k >k ok K 3k >k 3k Sk sk >k Sk 3k ok 3k Sk 5k ok Sk 3k >k 5k Sk >k ok Sk sk >k Sk 3k >k 3k Sk 5k >k 3k 3k >k 3k Sk sk >k 5k k >k ok 5k 5k >k 3k k >k 5k Sk %k k 5k

C
C
C
C
C
C
C
C
C
C

INTEGER L, C, M
PARAMETER ( L = 1029, C = 221591, M = 1048576 )

INTEGER SEED
REAL DUMMY
SAVE SEED
DATA SEED / 0 /

>k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 5k 5k 5k >k 3k >k >k >k >k %k >k >k >k 5k 5k %k %k >k >k >k %k >k >k >k >k 5k 5k %k %k >k >k >k %k %k >k K > >k >k %k %k %k >k >k *k *k *k *k Xk

SEED = MOD ( SEED * L + C, M)
RANF = REAL ( SEED ) / M

RETURN
END




Flowchart in the generation of random numbers

Generate a random number distribution uniformly between [0 and 1]

From this, generate random numers following a normal (Gaussian)
distribution with zero mean and unit variance




Implementation of random numbers
following a Gaussian distribution

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

REAL FUNCTION GAUSS ( DUMMY )

3k >k 3K 3k 3k 3k 3k K >k 3K 3k 3k 3k 5k %k 5k 3k 3k 5k %k >k 3k 5k %k 3K 3k 3k 3k >k 3K 5k 5k >k >k 3k 3k 5k %k 3k 3k 5k >k >k 3k 3k %k >k >k 3k 3k %k %k 3K >k 3k %k %k >k 3k %k %k % >k %k k K Xk

*k
*%
*k
*k
*k
*k
*k
*k
*k
*k
*k
*k
*k

RANDOM VARIATE FROM THE STANDARD NORMAL DISTRIBUTION. *k
THE DISTRIBUTION IS GAUSSIAN WITH ZERO MEAN AND UNIT VARIANCE.
REFERENCE:

KNUTH D, THE ART OF COMPUTER PROGRAMMING, (2ND EDITION
ADDISON-WESLEY), 1978

ROUTINE REFERENCED:

REAL FUNCTION RANF ( DUMMY )
RETURNS A UNIFORM RANDOM VARIATE ON THE RANGE ZERO TO ONE

3k 3k 3K 3k 3k 3k 3k %k %k 3K 3k 3k 3k 5k 5k >k 3k 3k 5k %k 3k 3k 3k %k 3K 3k 3k 3k K 5K 5k 5k 5k >k 3k 3k 5k 5K 5K 3k 5k %k %k 3k 3k %k %k 5k 3k 3k %k %k 3K 3k 3k %k % >k 3k %k Xk K >k 3k kK kX

REAL Al, A3, A5, A7, A9

PARAMETER ( Al = 3.949846138, A3 = 0.252408784 )
PARAMETER ( A5 = 0.076542912, A7 = 0.008355968 )
PARAMETER ( A9 = 0.029899776 )

REAL SUM, R, R2
REAL RANF, DUMMY
INTEGER I

>k >k 3k 3k 3k 3k 5k >k >k 3k 5k 3k 5k >k >k >k 3k 3k %k >k >k 3k 5k >k 3k >k 3k 5k >k >k >k 5k >k >k >k 3k 5k >k >k >k >k >k >k >k 3k %k >k >k 3k >k >k >k >k >k 3k %k >k >k 3k %k %k > >k %k *k *k Xk

SUM = 0.0

DO 10 I =1, 12
SUM = SUM + RANF ( DUMMY )
ENDDO

R =(SUM-6.0)/4.0
R2 =R * R

GAUSS = ((((C A9 * R2 + A7 ) * R2 + A5 ) * R2 + A3 ) * R2 +Al1 )
* R

RETURN
END




Flowchart in the generation of random numbers

Generate a random number distribution uniformly between [0 and 1]

From this, generate random numers following a normal (Gaussian)
distribution with zero mean and unit variance

p(x) : exp(—(x_<x>)> —00 < & < 00

o\ 2 202

A random number (:/ generated from this distribution is related to a number C
generated from the normal distribution with zero mean and unit variance by

/

¢ = (x)+0¢

The Maxwell-Boltzmann distribution is a normal distribution with

1 N m;
o2r  \ 27kgT

If we take the mass of the atoms or molecules as m,; = 1

O — \/ kBT




Implementation of the initial velocities

sk ok ok ok ok o ok ok o ok K ok ok ok ok ok ok ok o ok ok oK ok ok o ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok o ok K ok ok o ok ok ok K ok ok ok Kk ok oK
** TRANSLATIONAL VELOCITIES FROM MAXWELL-BOLTZMANN DISTRIBUTION

*x

** THE DISTRIBUTION IS DETERMINED BY TEMPERATURE AND (UNIT) MASS.
*x THIS ROUTINE IS GENERAL, AND CAN BE USED FOR ATOMS, LINEAR

**x MOLECULES, AND NON-LINEAR MOLECULES.

*x

**x ROUTINE REFERENCED:

*x

** REAL FUNCTION GAUSS ( DUMMY )

*k RETURNS A UNIFORM RANDOM NORMAL VARIATE FROM A

*K DISTRIBUTION WITH ZERO MEAN AND UNIT VARIANCE.

sk ok ok ok ok ok ok ok o ok ok o ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok sk o ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok

oNoNoNoNoNoNoNoNoNoNoNeoNe!

RTEMP = SQRT ( TEMP )

DO 100 I =1, N
VX(I) = RTEMP * GAUSS ( DUMMY )
VY (D) RTEMP * GAUSS ( DUMMY )
VZ(I) = RTEMP * GAUSS ( DUMMY )
ENDDO

REMOVE NET MOMENTUM *3x*

SUMX =
SUMY =
SUMZ =

DO 200 I =1, N
SUMX = SUMX + VX(I)
SUMY = SUMY + VY(I)
SUMZ = SUMZ + VZ(I)

ENDDO

SUMX = SUMX / REAL ( N )
SUMY = SUMY / REAL ( N )
SUMZ = SUMZ / REAL ( N )

DO 300 I =1, N
VX(I) VX(I) - SUMX
VY (I) VY(I) - SUMY
VZ(I) = VZ(I) - SUMZ
ENDDO




Units of temperature and velocity

The temperature is usually given in reduced units

kgT T

T —
3 e/kg

(adimensional)

(remember that & is usually tabulated as €/kB , in K)

In this system of units, the velocities are given in units of
square root of the temperature




Typical system sizes

The size of the system is limited by the:
- available storage on the host computer
- speed of execution of the program

The double loop used to evaluate the forces or the potential energy
is proportional to V2

Special techniques may reduce this dependency to O(N) ,
but the force /energy loop almost inevitably dictates the overall speed.




Boundary conditions

Box of Atoms

(What Next? Periodic/All Faces) (Periodic/4 Faces)

Liquid/Vapor Adsorbed Layer

C I
Vva

AN\ \\\\\\\ :
|

J I WA YRR

Substrate

(Pericdic/4 Faces) (Periodic/4 Faces)

FIG. 1. Pictonial representations for vanous boundary conditions to simu-
late different physical situations.




How can we simulate an infinite periodic solid?
Periodic (Born-von Karman) boundary conditions

We should expect that the bulk properties to be unaffected by the
presence of its surface.

A natural choice to emphasize the inconsequence of the surface
by disposing of it altogether

Supercell +

* Born-von Karman boundary conditions




Periodic (Born-von Karman) boundary conditions

The box is replicated throughout space to form an infinite lattice

In the course of the simulation, as a molecule
moves in the original box, its periodic image
in each of the neighboring boxes moves in
exactly the same way

Thus, as a molecule leaves the central box,
one of its images will enter through the
opposite face

There are no walls at the boundary of the
central box, and no surface molecules. This
box simply forms a convenient axis system
for measuring the coordinates of the [V
molecules

The density in the central box is conserved

It is not necessary to store the coordinates of
all the images in a simulation, just the
molecules in the central box




Periodic (Born-von Karman) boundary conditions:
influence on the properties

It is important to ask if the properties of a small, infinitely periodic,
system and the macroscopic system which it represents are the same

For a fluid of Lennard-Jones atoms, it should
be possible to perform a simulation in a
cubic box of side

L ~ 60

without a particle being able to “sense” the
symmetry of the periodic lattice




Periodic (Born-von Karman) boundary conditions:
drawbacks and benefits

Inhibits the occurrence of long-wave
length fluctuations. For a cube of
side [, , the periodicity will suppress
any density wave with a wave length
greater than L .

Be careful in the simulation of phase
transitions where the range of
critical fluctuations is macroscopic,
and of phonons in solids.

Common experience in simulation

work is that periodic boundary

conditions have little effect on the

equilibrium of thermodynamic

properties and structures of fluids:
- away from phase transitions
- where the interactions are
short-range




Periodic (Born-von Karman) boundary conditions
and external potentials

Up to now, we have assumed that there is no external potential
(i.e. no v (7;) term in the expansion of the potential energy)

If such a potential is present:
- it must have the same periodicity as the simulation box
or
- the periodic boundary conditions must be abandoned




Periodic (Born-von Karman) boundary conditions
in 2D and 1D

In some cases, it is not appropriate to employ periodic boundary
conditions in each of the three coordinate directions

In the study of surfaces (2D) In the study of wires or tubes (1D)




Calculating properties of systems subject to
periodic boundary conditions

Heart of a Molecular Dynamic or Monte Carlo program:
- calculation of the potential energy of a particular configuration
- in Molecular Dynamics, compute the forces acting on all molecules

We must include interactions between molecule 1
and every other molecule (or periodic image)

For a short-range potential energy function, we must restrict this
summation by making an approximation




Cutting the interactions beyond a given radius to
compute the potential energy and forces

The largest contribution to the potential and forces comes from neighbours
close to the molecule of interest, and for short-range forces we normally apply
a spherical cutoff

That means:

In a cubic simulation box of side [ , the
number of neighbours explicitly considered is

reduced by a factor of approximately
47T7“§’

3L3

The introduction of a spherical cutoff should be a small perturbation, and the
cutoff distance should be sufficiently large to ensure this.
Typical distance in a Lennard-Jones system: r. = 2.50




Difficulties in defining a consistent POTENTIAL in
MD method with the truncation of the interatomic pot

The function v(r;;) used in a simulation contains a discontinuity at "ij = 7c:
Whenever a pair of molecules crosses this boundary, the total energy will not
be conserved

We can avoid this by shifting the potential function by an amount v, = v(r.)

WS (ri;) = { v(Tii) — Ve Ty < T

0 Ti; > Te

The small addition term is constant for any pair interaction,
and does not affect the forces

However, its contribution to the total energy varies from time step to time step,
since the total number of pairs within cutoff range varies




Difficulties in defining a consistent FORCE in the MD
method with the truncation of the interatomic potent

The force between a pair of molecules is still discontinuous at 7i; — 7¢c

For a Lennard-Jones case, the force is given by
(

94 12 6

8 O- O- _). . . .

f.. — < ?“.2. 2 (rij) (Tz’j) {rzj TZ] S /rc
1) v

0 Tij > Te

N

And the magnitude of the discontinuity is 0.039i for r. =2.50
o

It can cause instability in the numerical solution of the differential equations.
To avoid this difficulty, a “shifted force potential”’ has been introduced

USF<TU> _ v(rij) — Ve — (f)m‘rc o= dinn Sl
0 Ti; > Tc

The discontinuity now appears in the gradient of the force, not in the force itself




Difficulties in defining a consistent FORCE in the MD
method with the truncation of the interatomic potent

=
~
bt
@)
o
S
Y

The difference between the shifted-force potential and the original one means
that the simulation no longer corresponds to the desired model liquid

However, the thermodynamic properties with the unshifted potential can be
recovered using a simple perturbation scheme




Computer code for periodic boundaries

Let us assume that, initially, the )\ molecules in the simulation lie within a
cubic box of side [ , with the origin at its centre.

As the simulation proceeds, these molecules move about the
infinite periodic system.

When a molecule leaves the box by crossing one of the
boundaries, it is usual to switch the attention to the image
molecule entering the box, simply adding or subtracting /, from
the appropriate coordinate




Computer code for periodic boundaries

SUBROUTINE FOLD ( N, RX, RY, RZ )

st ke e ok ok sk sk sk ok o ok sk sk sk sk sk ok o ok ok sk ok sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk ko ok ok ok sk sk sk ok sk ok ok ok ok ok sk ok ok k ok

** SUBROUTINE TO FOLD TRAJECTORIES IN PERIODIC BOUNDARIES.

*k

*x THE FOLDING ROUTINE IS SIMPLY THE USUAL APPLICATION OF

** BOUNDARY CONDITIONS. WE TAKE THE UNIT CUBE AS AN EXAMPLE.

* %

*% PRINCIPAL VARIABLES:

* %

** INTEGER N NUMBER OF MOLECULES

** REAL RX(N) ,RY(N) ,RZ(N) MOLECULAR POSITIONS

*%

**x USAGE:

*k

*x THE ROUTINE IS CALLED FOR EVERY CONFIGURATION GENERATED IN A

** STMULATION.

stk s o ok sk sk sk sk sk ok ok sk sk sk sk sk sk ko ok sk sksk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk ok ook ok sksk kok ok ok ok
INTEGER N
REAL RX(N), RY(N), RZ(N)

oNoNoNoNoNoNoNoNoNoNoNoNoNoNoNe!

INTEGER I
stk ok sk sk sk ok ok sk ok sk sk sk ok skok ok ok sk sk skesk sk sk sk sk ok sk ok ko sk sk sk sk sk sk sk sk kok ok ok sk sk sk sk skok sk ok kok sk sksk kok ok ok ok ok

Q

The function ANINT(X) returns the nearest integer to X,
converting the result back to type REAL:

ANINT(-0.49) has the value 0.0

ANINT(-0.51) has the value -1.0

In this example, we are using reduced units,
where the length of the box is taken to define the fundamental unit
of length in the simulation

oNoNoNo NN NONONO N

DO 100 I = 1, N
RX(I) = RX(I) - ANINT ( RX(I) )
RY(I) = RY(I) - ANINT ( RY(I) )
RZ(I) = RZ(I) - ANINT ( RZ(I) )
ENDDO

RETURN
END




Loops in Molecular Dynamic (MD) and
Monte Carlo (MC) programs

(from1 <;< N)

For a given molecule 7 , j to calculate the
minimum image separation?’;;

If molecules are separated by distances smaller than the potential cutoff

TijSTc

If molecules are separated by distances greater than the potential cutoff

Ti; > Tc

Time required to examine all pair separations is proportional to N?




Neighbour lists: improving the speed of a program

Inner loops of the MD and MC programs scale proportional to V2

Verlet: maintain a list of the neighbours of a particular molecule, which is
updated at intervals

Between updates, the program does not check through all
the molecules, but just those appearing on the list

The number of pais separations explicitly considered is reduced.
This saves time in:
Looping through 7
Minimum imaging,
Calculating 1,
Checking against the cutoff




The Verlet neighbour list

The potential cutoff sphere, of radius 7°. , around a particular molecule is
surrounded by a “skin”, to give a larger sphere of radius 77

At first step, a list is constructed of all the
neighbours of each molecule, for which
the pair separation is within 77

These neighbours are stored in a large
one-dimensional array, LIST
The dimension of LIST is roughly 4773 pN/6

At the same time, a second indexing array of size }\/, POINT, is constructed:

POINT (I) points to the position in the array LIST where the first neighbour
of molecule | can be found.

Since POINT(I+1) points to the first neighbour of molecule I+1, then
POINT(I+1)-1 points to the last neighbour of molecule I.

Thus, using POINT, we can readily identify the part of the last LIST array
which contains neighbours of I.




The Verlet neighbour list

Over the next few steps, the list is used in force/energy evaluation routine

For each molecule |, the program identifies the neighbours J, by running
over LIST from point to POINT(l) to POINT(1+1)-1

It is essential to check that POINT(I+1) is actually greater then POINT(I). If it
is not the case, then molecule | has no neighbours

From time to time, the neighbour list is reconstructed and the cycle is repeated.




The Verlet neighbour list

Over the next few steps, the list is used in force/energy evaluation routine

For each molecule |, the program identifies the neighbours J, by running
over LIST from point to POINT(l) to POINT(1+1)-1

It is essential to check that POINT(I+1) is actually greater then POINT(I). If it
is not the case, then molecule | has no neighbours

From time to time, the neighbour list is reconstructed and the cycle is repeated.




The Verlet neighbour list

The algorithm is successful if the skin around 7'¢ is chosen to be thick enough so
that between reconstructions:

A molecule, such as 7, which is not on the list of molecule 1, cannot
penetrate through the skin into the important 1. sphere

Molecules, such as 3 and 4 can move in and out of this sphere, but since
they are on the list of molecule 1, they are always considered until the list is
next updated.




Parameters of the Verlet neighbour list:
the interval between updates

Often fixed at the beginning of the program

Intervals of 10-20 steps are quite common

An important refinement: allow the program to update the list automatically:
- When the list is constructed, a vector for each molecule is set to zero

- At subsequent steps, the vector is incremented with the displacement of
each molecule.

- Thus, it stores, the displacement of each molecule since the last update

- When the sum of the magnitudes of the two largest displacements
exceeds 7' — 7’7, the neighbour list should be updated again




Parameters of the Verlet neighbour list:
the list sphere radius 77

Is a parameter that we are free to choose

As 7] is increased, the frequency of updates of the neighbour list will decrease

However, with a large list, the efficiency of the non-updated steps will decrease

Table 5.1 Time saving using a Verlet neighbour list
[Thompson 1983].

Time®
List Update® _
Radius interval N =256 N = 500

no list — 333 10.00

2.60 5.78 224 4.93
2.70 12.50 217 4.55 The Iarger the syStem’

200 - 2632 . 228 451 the more dramatic the improvement
3.10 4348 247 479
343 83.33 2.89 s —
3.50 100.00 — 5.86
*Update interval is the average number of steps between updates.
It is essentially independent of system size.
*Time is CPU time per step, in seconds. The runs were
performed on a PDP 11/70.




Algorithm to compute the Verlet neighbour list

RLSTSQ = RLIST * RLIST
NLIST = 0
DO 100 I =1, N - 1
POINT(I) = NLIST + 1
RXI RX(I)
RYI RY(I)
RZI RZ(I)
D099 J=I+1, N
RXIJ RXI - RX(J)
RYIJ RYI - RY(J)
RZIJ RZI - RZ(J)
RXIJ RXIJ - ANINT ( RXIJ )
RYIJ RYIJ - ANINT ( RYIJ )
RZIJ RZIJ - ANINT ( RZIJ )
RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ
IF ( RIJSQ .LT. RLSTSQ ) THEN

NLIST = NLIST + 1
LIST(NLIST) = J

ENDIF
ENDDO

ENDDO
POINT(N) = NLIST + 1




Algorithm to check whether the
update of the list is required

SUBROUTINE CHECK ( RCUT, RLIST, UPDATE )

COMMON / BLOCK1 / RX, RY, RZ, FX, FY, FZ
COMMON / BLOCK3 / RX0, RYO, RZO

sk ok ok o sk ok ok ok o ok ok o sk ok o ok o sk o ok ok ok sk ok ok ok ok o sk ook ok ok ok ok ok ok sk ok ok ok ok ok ok ok o sk sk sk ok ok sk ok ok ok ook ok
** DECIDES WHETHER THE LIST NEEDS TO BE RECONSTRUCTED. *ok
*k *%
** PRINCIPAL VARIABLES: ok
* *%
** REAL RX(N) ,RY(N) ,RZ (N) ATOM POSITIONS

*x REAL RXO(N) ,RYO(N) ,RZO(N) COORDINATES AT LAST UPDATE

*x REAL RLIST RADIUS OF VERLET LIST

**% REAL RCUT CUTOFF DISTANCE FOR FORCES

*x REAL DISPMX LARGEST DISPLACEMENT

** INTEGER N NUMBER OF ATOMS

*x LOGICAL UPDATE IF TRUE THE LIST IS UPDATED

*k

*x USAGE:

*k

** CHECK IS CALLED TO SET UPDATE BEFORE EVERY CALL TO FORCE.

ok ok ok ok KoK oK ok oK ok oK oK oK oK KoK oK ok oK ok K oK ook ok Kok o oK oK ok oK ok oK ook ok K ok ook ok oK ok ok ok ok ok ok ok ok

[sNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo Ne]

INTEGER N
PARAMETER ( N = 108 )

REAL
REAL
REAL
LOGICAL UPDATE

REAL DISPMX
INTEGER I

sk ok sk ok ok 3k 3k 3K ok ok ok ok ok k ok sk sk sk sk ok ok sk sk ok ok ok sk sk ok ok ok 3k ok ok ok 3k 3K ok oK oK 3K oK oK oK oK oK ok oK ok ok ok ok ok ok ok ok k ok ok ok ok sk ok sk sk sk sk
*% CALCULATE MAXIMUM DISPLACEMENT SINCE LAST UPDATE *x
DISPMX = 0.0
DO30I=1,N
DISPMX = MAX ( ABS ( RX(I) - RXO(I) ), DISPMX )
DISPMX = MAX ( ABS ( RY(I) - RYO(I) ), DISPMX )
DISPMX = MAX ( ABS ( RZ(I) - RZO(I) ), DISPMX )

CONTINUE

A CONSERVATIVE TEST OF THE LIST SKIN CROSSING *x*

DISPMX = 2.0 * SQRT ( 3.0 * DISPMX ** 2 )

UPDATE ( DISPMX .GT. ( RLIST - RCUT ) )

RETURN
END




Algorithm to save the list for future checkings

SUBROUTINE SAVE

COMMON / BLOCK1 / RX, RY, RZ, FX, FY, FZ
COMMON / BLOCK3 / RX0, RYO, RZO
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*% SAVES CURRENT CONFIGURATION FOR FUTURE CHECKING. *%
*ok *k
** PRINCIPAL VARIABLES: *ok
*ok Kok
*% REAL RX(N) ,RY(N) ,RZ(N) ATOM POSITIONS

*% REAL RXO(N) ,RYO(N) ,RZO(N) STORAGE LOCATIONS FOR SAVE

*% INTEGER N NUMBER OF ATOMS

*k

*% USAGE:

*%

*% SAVE IS CALLED WHENEVER THE NEW VERLET LIST IS CONSTRUCTED.
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C
C
C
C
C
C
C
C
C
C
C
C
C

INTEGER N
PARAMETER ( N = 108 )

REAL RX(N), RY(N), RZ(N), FX(N), FY(N), FZ(N)
REAL RXO(N), RYO(N), RZO(N)

INTEGER I
3k 5k 3k 3k 3k 3k >k >k 5k 5k 5k 5k 5k >k >k 5k 5k 5k 5k 5k 5k 5k 5k 5k >k >k 5k 5k 5k >k >k >k 5k 5k 3k >k %k 5k >k 5k %k >k 5k %k %k >k 5k %k %k %k 5k 5k >k >k 5k 5k >k >k >k >k >k >k >k >k >k >k %k
DO 100 I =1, N
RX0(I) = RX(D)
RYO(I) = RY(D)
RZO(I) = RZ(I)

CONTINUE

RETURN
END




Algorithm of the inner loop to compute
forces and potential energy

V=0.0
W=0.0
*% USE THE LIST TO FIND THE NEIGHBOURS s*x*
DO 200 I =1, N -1
JBEG = POINT(I)
JEND = POINT(I+1) - 1
CHECK THAT ATOM I HAS NEIGHBOURS *x
IF( JBEG .LE. JEND ) THEN
RXI = RX(I)
RYI RY(I)
RZI RZ(I)
FXI FX(I)
FYI = FY(I)
FZI = FZ(I)
DO 199 JNAB = JBEG, JEND
J = LIST(JNAB)
RXIJ = RXI - RX(J)
RYIJ RYI - RY(J)
RZIJ RZI - RZ(J)
RXIJ RXIJ - ANINT( RXIJ )
RYIJ RYIJ - ANINT( RYIJ )
RZIJ RZIJ - ANINT( RZIJ )
RIJSQ = RXIJ * RXIJ + RYIJ % RYIJ + RZIJ * RZIJ
IF ( RIJSQ .LT. RCUTSQ ) THEN
SR2 = SIGSQ / RIJSQ
SR6 = SR2 * SR2 * SR2
VIJ SR6 * ( SR6 - 1.0 )
WIJ SR6 * ( SR6 - 0.5 )
v vV + VIJ
W W+ WIJ
WIJ / RIJSQ
RXIJ * FIJ
RYIJ * FIJ
RZIJ * FIJ
FXI + FXIJ
= FYI + FYIJ
FZI + FZIJ
FX(J) - FXIJ
FY(J) - FYIJ
FZ(J) - FZI1J




Long range forces

By definition, a long range force is defined as one in which the spatial interaction
falls off no faster than »—¢ where (] is the dimensionality of the system

’UZZ (T) ~ 7“_1

v (r) ~ S

Their range is greater than half the box length for a typical simulation

Brute force solution: increase the length of the central box [, to
hundrehts of nanometers, so that the screening by neighbours would
diminish the effective range of the potentials

Impractical




Statement of the problem when dealing
with long-range forces

lon 1 interacts with ions 2, 2,, 2,

and all the other images of 2

<; and <; are the charges

For simplicity, we are ommiting
all the factors 47¢

The sum over 7; is the sum over
all simple cubic lattice points, 7 = (n,L,n,L,n,L)
with 1., n,, N, integers

The prime indicates that we omit: = j for 17 = ()




Statement of the problem when dealing
with long-range forces

lon 1 interacts with ions 2, 2,, 2,
and all the other images of 2

For long-range potentials, this sum is
conditionally convergent, i. e. the
results depends on the order in which
we add up terms

As we shall see below, the Ewald method
evaluate this energy by transforming it into
summations that converges not only
rapidly but also absolutely




The infinite sum is conditionally convergent

For long-range potentials, this sum is conditionally convergent,
i. e. the results depends on the order in which we add up terms

Natural choice:
Take boxes in order of their proximity to the central box

7] =0 = (0,0,0)

Second term |i| =L 7= (£L,0,0),(0,£L,0),(0,0,%+L)

As we add further terms to the sum, we are building
up our infinite system in roughly spherical layers

In vacuum, the sphere has a dipolar layer on its surface,
and there would be a jump in the potential energy




The infinite sum is conditionally convergent

1 N sz
2z __ / ey
R PRIDB B

—

it i=1 j=1

We must specify the nature of the medium
surrounding the sphere, in particular, its
dieletric permittivity (the dielectric constant) < s

For a sphere in a conductor, there is no such
layer (al the surface charges are screened)




The infinite sum is conditionally convergent

Y’Y? -

n lel|rlj+n|

We must specify the nature of the medium
surrounding the sphere, in particular, its
dieletric permittivity (the dielectric constant) < s

es =1

In vacuum, the sphere has a dipolar layer
on its surface

Eq = —4mnP

1
For a sphere, the depolarization factor » = -

And the associated energy

N o\ 2 N
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The infinite sum is conditionally convergent

Y’Y? -

n lel|rlj+n|

We must specify the nature of the medium
surrounding the sphere, in particular, its
dieletric permittivity (the dielectric constant) < s

gs =1

For a sphere in a conductor, there is no such In vacuum, the sphere has a dipolar layer
layer (al the surface charges are screened) on its surface

V..(e.=00)=YV 2;7;|> Equation applies in the limit
ZZ( ’ ) Zz( 3L3 ‘ Z ' ‘ of very large sphere boxes




Splitting the charge distribution

In the original problem, the charge distributions are described by delta functions.
We can split it into two terms, adding a subtracting a Gaussian distribution

3 K, Determines the width of the distribution
Zi K

—

pi(F) = —35 &xp (=K1’

¥ Position relative to the center of the dist

= ()

In what we call 2" (7)
Each point charge is surrounded by a charge distribution of
, Which spreads out radially from the charge.




The screened charge density produces a short-range singular
potential that can be summed in real space

Each point charge is surrounded by a charge distribution of
, Which spreads out radially from the charge.

The distribution is conveniently taken to be Gaussian

K, Determines the width of the distribution

. ZKS

2 2
pzz(/r> 3/2 eXp (_I{ r ) . __ : _
n - Position relative to the center of the dist

pi(F) = 20(F — %) + pi (7)) — pi(7)
= [2:0(7 — 73) — pi (7)] + p (7)
= " (F) + p,>"8(7)

This distribution acts like an ionic atmosphere to screen the interaction between
neighboring charges, that are now short ranged and singular

The total screened potential is calculated by summing over all the molecules in
the central cube and all their images in the real space lattice of image boxes




The cancelling distribution produces a long-range no-singular
potential that can be summed in reciprocal space

A charge distribution of the same sign as the original charge,
and the same shape distribution p; (7) is also added

This cancelling distribution reduces the overall potential to that
due to the original set of charges

The contribution from this cancelling charges is summed in
reciprocal space




The Ewald sum: a technique for efficiently summing the
interaction between an ion an all it periodic images

The final potential energy will contain a sum in real space plus a
reciprocal space sum minus a self-energy term plus the surface term

fe(k|r;
V¥(es =1) = Sj szer (|7 + 1)

’T’L] + 7|

|7|=0

L




The Ewald sum: a technique for efficiently summing the
interaction between an ion an all it periodic images

The final potential energy will contain a sum in real space plus a
reciprocal space sum minus a self-energy term plus the surface term

erfc(k|r; + 1))

735 + 7|

2 7
(2

K




Extension of the Ewald sum to dipolar system

Z; is replaced by ji; - V7

Sum on ; and J are for dipoles in the central box
Factor 1/(4r¢,) is omitted

B(r) = exfe(xr) /r* + (3’;) exp(—r2r2) /12

O(r) = 3erfe(kr) /15 + (27’;) (




