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Starting-up:  
How to setup the initial conditions for a 

Molecular Dynamic Simulation 



The initial configuration 

In molecular dynamic simulations it is necessary to design a 
starting configuration for the first simulation 

-  Initial molecular positions and orientations 
-  Initial velocities and angular velocities 

For the first run, it is important to choose a configuration that can relax 
quickly to the structure and velocity distribution appropriate to the fluid 

This period of equilibration must be monitored carefully, since the 
disapperance of the initial structure might be quite slow 



The initial configuration:                                    
more usual approach, start from a lattice 

Almost any lattice is suitable. 
Historically, the face-centered cubic structure has been the starting configuration  

The lattice spacing is chosen so the appropriate liquid state density is obtained 

During the course of the simulation, the lattice structure will disappear, 
to be replaced by a typical liquid structure 

This process of “melting” can be enhanced by giving each molecule a 
small random displacement from its initial lattice point   



The initial configuration:                                    
more usual approach, start from a lattice 

Almost any lattice is suitable. 
Historically, the face-centered cubic structure has been the starting configuration  

A supercell is constructed repeating the conventional cubic unit cell of the FCC 
lattice        times along each direction  

The number of atoms in the simulation box,      , is an integer of the 
form                   , where       is the number of FCC unit cells in each direction 



Units for the density 

For systems consisting of just one type of atom or molecule, it is sensible to 
use the mass of the molecule as a fundamental unit  

With this convention: 
-  Particle momenta and velocities become numerically identical 
-  Forces and accelerations become numerically identical 

In systems interacting via a Lennard-Jones potential, the 
density is oftenly quoted in reduced units 

Assuming an FCC lattice (4 atoms in the conventional cubic), and                , 
then we can compute the lattice constant from the reduced density 

And then, the lattice constant will 
come in the same units as the ones 

used to determine  



Units for the length of the supercell 

If the lattice constant of the conventional cubic unit cell of an FCC lattice is    , 
then the length of the side of the supercell is  

However, the implementation of the periodic boundary conditions and the 
calculation of minimum image distances is simplified by the use of reduced units: 

the length of the box is taken to define the fundamental unit of length of the 
simulation,   

In particular, the atomic coordinates can be defined using this unit of length, so 
nominally they will be in the range  



Implementation of a fcc lattice 

The simulation box is a unit cube centred at 
the origin 
 
The number of atoms in the simulation box,  
is an integer of the form                 , where     
is the number of FCC unit cells in each 
direction 
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C ** CALCULATE THE SIDE OF THE UNIT CELL (CELL VECTOR OF UNITY SIZE) **

CELL = 1.0 / REAL ( NC )

C ** BUILD THE UNIT CELL **

C ** SUBLATTICE A **

RX(1) = 0.0

RY(1) = 0.0

RZ(1) = 0.0

C ** SUBLATTICE B **

RX(2) = CELL2

RY(2) = CELL2

RZ(2) = 0.0

C ** SUBLATTICE C **

RX(3) = 0.0

RY(3) = CELL2

RZ(3) = CELL2

C ** SUBLATTICE D **

RX(4) = CELL2

RY(4) = 0.0

RZ(4) = CELL2

C ** CONSTRUCT THE LATTICE FROM THE UNIT CELL **

M = 0

DO 99 IZ = 1, NC

DO 98 IY = 1, NC

DO 97 IX = 1, NC

DO 96 IREF = 1, 4

RX(IREF+M) = RX(IREF) + CELL * REAL ( IX - 1 )

RY(IREF+M) = RY(IREF) + CELL * REAL ( IY - 1 )

RZ(IREF+M) = RZ(IREF) + CELL * REAL ( IZ - 1 )

96 CONTINUE

M = M + 4

97 ENDDO

98 ENDDO

99 ENDDO

C ** SHIFT CENTRE OF BOX TO THE ORIGIN **

DO 100 I = 1, N

RX(I) = RX(I) - 0.5

RY(I) = RY(I) - 0.5

RZ(I) = RZ(I) - 0.5

100 ENDDO



Initial velocities 

For a molecular dynamic simulation, the initial velocities 
of all the molecules must be specified 

It is usual to choose random velocities, with magnitudes 
conforming to the required temperature, corrected so that  

there is no overall momentum 

The distribution of molecular speeds is given by  

Probability density for 
velocity component 

Similar equations apply for the y and z velocities 

For a derivation of this expression, 
read Feynman lectures on Physics, 

Volume 1, Chapter 40-4 



Normal distributions 

The normal distribution with mean         and variance        
is defined  as 

A random number        generated from this distribution is related to a number      
generated from the normal distribution with zero mean and unit variance by  

The Maxwell-Boltzmann distribution is a normal distribution with  

If we take the mass of the atoms or molecules as  



Flowchart in the generation of random numbers 
Generate a random number distribution uniformly between [0 and 1] 



Implementation of random numbers 
uniformly distributed between 0 and 1  
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REAL FUNCTION RANF ( DUMMY )

C *******************************************************************

C ** RETURNS A UNIFORM RANDOM VARIATE IN THE RANGE 0 TO 1. **

C ** **

C ** *************** **

C ** ** WARNING ** **

C ** *************** **

C ** **

C ** GOOD RANDOM NUMBER GENERATORS ARE MACHINE SPECIFIC. **

C ** PLEASE USE THE ONE RECOMMENDED FOR YOUR MACHINE. **

C *******************************************************************

INTEGER L, C, M

PARAMETER ( L = 1029, C = 221591, M = 1048576 )

INTEGER SEED

REAL DUMMY

SAVE SEED

DATA SEED / 0 /

C *******************************************************************

SEED = MOD ( SEED * L + C, M )

RANF = REAL ( SEED ) / M

RETURN

END



Flowchart in the generation of random numbers 
Generate a random number distribution uniformly between [0 and 1] 

From this, generate random numers following a normal (Gaussian) 
distribution with zero mean and unit variance 



Implementation of random numbers 
following a Gaussian distribution  
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REAL FUNCTION GAUSS ( DUMMY )

C *******************************************************************

C ** RANDOM VARIATE FROM THE STANDARD NORMAL DISTRIBUTION. **

C ** **

C ** THE DISTRIBUTION IS GAUSSIAN WITH ZERO MEAN AND UNIT VARIANCE.**

C ** **

C ** REFERENCE: **

C ** **

C ** KNUTH D, THE ART OF COMPUTER PROGRAMMING, (2ND EDITION **

C ** ADDISON-WESLEY), 1978 **

C ** **

C ** ROUTINE REFERENCED: **

C ** **

C ** REAL FUNCTION RANF ( DUMMY ) **

C ** RETURNS A UNIFORM RANDOM VARIATE ON THE RANGE ZERO TO ONE **

C *******************************************************************

REAL A1, A3, A5, A7, A9

PARAMETER ( A1 = 3.949846138, A3 = 0.252408784 )

PARAMETER ( A5 = 0.076542912, A7 = 0.008355968 )

PARAMETER ( A9 = 0.029899776 )

REAL SUM, R, R2

REAL RANF, DUMMY

INTEGER I

C *******************************************************************

SUM = 0.0

DO 10 I = 1, 12

SUM = SUM + RANF ( DUMMY )

10 ENDDO

R = ( SUM - 6.0 ) / 4.0

R2 = R * R

GAUSS = (((( A9 * R2 + A7 ) * R2 + A5 ) * R2 + A3 ) * R2 +A1 )

: * R

RETURN

END

REAL FUNCTION RANF ( DUMMY )

C *******************************************************************

C ** RETURNS A UNIFORM RANDOM VARIATE IN THE RANGE 0 TO 1. **

C ** **

C ** *************** **

C ** ** WARNING ** **

C ** *************** **

C ** **

C ** GOOD RANDOM NUMBER GENERATORS ARE MACHINE SPECIFIC. **

C ** PLEASE USE THE ONE RECOMMENDED FOR YOUR MACHINE. **



Flowchart in the generation of random numbers 
Generate a random number distribution uniformly between [0 and 1] 

From this, generate random numers following a normal (Gaussian) 
distribution with zero mean and unit variance 

A random number        generated from this distribution is related to a number      
generated from the normal distribution with zero mean and unit variance by  

The Maxwell-Boltzmann distribution is a normal distribution with  

If we take the mass of the atoms or molecules as  



Implementation of the initial velocities 
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C *******************************************************************

C ** TRANSLATIONAL VELOCITIES FROM MAXWELL-BOLTZMANN DISTRIBUTION **

C ** **

C ** THE DISTRIBUTION IS DETERMINED BY TEMPERATURE AND (UNIT) MASS.**

C ** THIS ROUTINE IS GENERAL, AND CAN BE USED FOR ATOMS, LINEAR **

C ** MOLECULES, AND NON-LINEAR MOLECULES. **

C ** **

C ** ROUTINE REFERENCED: **

C ** **

C ** REAL FUNCTION GAUSS ( DUMMY ) **

C ** RETURNS A UNIFORM RANDOM NORMAL VARIATE FROM A **

C ** DISTRIBUTION WITH ZERO MEAN AND UNIT VARIANCE. **

C *******************************************************************

RTEMP = SQRT ( TEMP )

DO 100 I = 1, N

VX(I) = RTEMP * GAUSS ( DUMMY )

VY(I) = RTEMP * GAUSS ( DUMMY )

VZ(I) = RTEMP * GAUSS ( DUMMY )

100 ENDDO

C ** REMOVE NET MOMENTUM **

SUMX = 0.0

SUMY = 0.0

SUMZ = 0.0

DO 200 I = 1, N

SUMX = SUMX + VX(I)

SUMY = SUMY + VY(I)

SUMZ = SUMZ + VZ(I)

200 ENDDO

SUMX = SUMX / REAL ( N )

SUMY = SUMY / REAL ( N )

SUMZ = SUMZ / REAL ( N )

DO 300 I = 1, N

VX(I) = VX(I) - SUMX

VY(I) = VY(I) - SUMY

VZ(I) = VZ(I) - SUMZ

300 ENDDO



Units of temperature and velocity 

The temperature is usually given in reduced units 

(remember that       is usually tabulated as             , in K) 

In this system of units, the velocities are given in units of 
square root of the temperature 



Typical system sizes 

The size of the system is limited by the: 
 - available storage on the host computer 
 - speed of execution of the program 

Special techniques may reduce this dependency to            , 
 but the force /energy loop almost inevitably dictates the overall speed.   

The double loop used to evaluate the forces or the potential energy 
is proportional to  



Boundary conditions 



How can we simulate an infinite periodic solid? 
Periodic (Born-von Karman) boundary conditions 

We should expect that the bulk properties to be unaffected by the 
presence of its surface. 

A natural choice to emphasize the inconsequence of the surface 
by disposing of it altogether Supercell + 

Born-von Karman boundary conditions 



Periodic (Born-von Karman) boundary conditions 

The box is replicated throughout space to form an infinite lattice 

In the course of the simulation, as a molecule 
moves in the original box, its periodic image 
in each of the neighboring boxes moves in 
exactly the same way 

Thus, as a molecule leaves the central box, 
one of its images will enter through the 
opposite face 

There are no walls at the boundary of the 
central box, and no surface molecules. This 
box simply forms a convenient axis system 
for measuring the coordinates of the       
molecules 

The density in the central box is conserved 

It is not necessary to store the coordinates of 
all the images in a simulation, just the 
molecules in the central box 



Periodic (Born-von Karman) boundary conditions: 
influence on the properties 

It is important to ask if the properties of a small, infinitely periodic, 
system and the macroscopic system which it represents are the same 

For a fluid of Lennard-Jones atoms, it should 
be possible to perform a simulation in a 
cubic box of side  

without a particle being able to “sense” the 
symmetry of the periodic lattice 



Periodic (Born-von Karman) boundary conditions: 
drawbacks and benefits 

-  Inhibits the occurrence of long-wave 
length fluctuations. For a cube of 
side     , the periodicity will suppress 
any density wave with a wave length 
greater than      . 

 
 
-  Be careful in the simulation of phase 

transitions where the range of 
critical fluctuations is macroscopic, 
and of phonons in solids. 

Drawbacks 

-  Common experience in simulation 
work is that periodic boundary 
conditions have little effect on the 
equilibrium of thermodynamic 
properties and structures of fluids: 

 - away from phase transitions 
  - where the interactions are 

 short-range 

Benefits 

If the resources are available, it is always sensible to increase the number 
of molecules (and the box size, so as to maintain constant density) and 

rerun the simulations 



Periodic (Born-von Karman) boundary conditions 
and external potentials 

If such a potential is present: 
 - it must have the same periodicity as the simulation box 

or 
 - the periodic boundary conditions must be abandoned 

Up to now, we have assumed that there is no external potential 
(i.e. no             term in the expansion of the potential energy) 



Periodic (Born-von Karman) boundary conditions 
in 2D and 1D 

In the study of surfaces (2D) 

In some cases, it is not appropriate to employ periodic boundary 
conditions in each of the three coordinate directions 

In the study of wires or tubes (1D) 

The system is periodic only 
in the planes parallel to the 

surface layer 

The system is periodic only 
along the direction of the 

wire or tube 



Calculating properties of systems subject to 
periodic boundary conditions 

Heart of a Molecular Dynamic or Monte Carlo program: 
 - calculation of the potential energy of a particular configuration 
 - in Molecular Dynamics, compute the forces acting on all molecules 

We must include interactions between molecule 1 
and every other molecule (or periodic image)  

This is an infinite number of terms!! 
Impossible to calculate in practice!! 

For a short-range potential energy function, we must restrict this 
summation by making an approximation 

How would we compute these for molecule 1 



Cutting the interactions beyond a given radius to 
compute the potential energy and forces 

The largest contribution to the potential and forces comes from neighbours 
close to the molecule of interest, and for short-range forces we normally apply 

a spherical cutoff 

Molecules 2 and 4E contribute to the force on 1, 
since their centers lie inside the cutoff 
Molecules 3E and 5F do not contribute 

That means: 

In a cubic simulation box of side      , the 
number of neighbours explicitly  considered is 

reduced by a factor of approximately   

The introduction of a spherical cutoff should be a small perturbation, and the 
cutoff distance should be sufficiently large to ensure this.  

Typical distance in a Lennard-Jones system:  



Difficulties in defining a consistent POTENTIAL in  
MD method with the truncation of the interatomic pot 

The function          used in a simulation contains a discontinuity at               : 
Whenever a pair of molecules crosses this boundary, the total energy will not 

be conserved 

We can avoid this by shifting the potential function by an amount  

The small addition term is constant for any pair interaction, 
and does not affect the forces 

However, its contribution to the total energy varies from time step to time step, 
since the total number of pairs within cutoff range varies  



Difficulties in defining a consistent FORCE in the MD 
method with the truncation of the interatomic potent 

The force between a pair of molecules is still discontinuous at  

For a Lennard-Jones case, the force is given by 

And the magnitude of the discontinuity is               for   

It can cause instability in the numerical solution of the differential equations. 
To avoid this difficulty, a “shifted force potential” has been introduced 

The discontinuity now appears in the gradient of the force, not in the force itself 



Difficulties in defining a consistent FORCE in the MD 
method with the truncation of the interatomic potent 

The difference between the shifted-force potential and the original one means 
that the simulation no longer corresponds to the desired model liquid 

 
However, the thermodynamic properties with the unshifted potential can be 

recovered using a simple perturbation scheme 

146 SOME TRICKS OF THE TRADE 

law. However, there is a further problem. The force between a pair of 
molecules is still discontinuous at rij = r,. For example, in the Lennard-Jones 
case, the force is given by eqn (5.3) for rij < r, but is zero for rij > r, The 
magnitude of the discontinuity is 0.039~0-' for r, = 2.50. It can cause 
instability in the numerical solution of the differential equations. To avoid this 
difficulty, a number of workers have used a 'shifted-force potential' [Stoddard 
and Ford 1973; Streett, Tildesley, and Saville 1978a; Nicolas et al. 1979; 
Powles et al. 19821. A small linear term is added to the potential, so that its 
derivative is zero at the cutoff distance 

The discontinuity now appears in the gradient of the force, not in the force 
itself. The shifted-force potential for the Lennard-Jones case is shown in Fig. 
5.3. The force goes smoothly to zero at the cutoff r,, removing problems in 
energy conservation and any numerical instability in the equations of motion. 
Making the additional term quadratic [Stoddard and Ford 19733 avoids 
taking a square root. Of course, the difference between the shifted-force 
potential and the original potential means that the simulation no longer 
corresponds to the desired model liquid. However, the thermodynamic 
properties of a fluid of particles interacting with the unshifted potential can be 
recovered from the shifted-force potential simulation results, using a simple 
perturbation scheme Wicolas et al. 1979; Powles 1984bl. 

Fig. 5.3 Magnitude of the pair potential (solid line) and force (dashed line) for (a) the Lennard- 
Jones potential and (b) its shifted-force modification. 

5.3 Neighbour lists 

In the inner loops of the MD and MC programs, we consider a molecule i and 
loop over all molecules j to calculate the minimum image separations. If 



Computer code for periodic boundaries 

As the simulation proceeds, these molecules move about the 
infinite periodic system.  

Let us assume that, initially, the      molecules in the simulation lie within a 
cubic box of side       , with the origin at its centre. 

When a molecule leaves the box by crossing one of the 
boundaries, it is usual to switch the attention to the image 

molecule entering the box, simply adding or subtracting     from 
the appropriate coordinate 



Computer code for periodic boundaries 
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SUBROUTINE FOLD ( N, RX, RY, RZ )

C *******************************************************************
C ** SUBROUTINE TO FOLD TRAJECTORIES IN PERIODIC BOUNDARIES. **
C ** **
C ** THE FOLDING ROUTINE IS SIMPLY THE USUAL APPLICATION OF **
C ** BOUNDARY CONDITIONS. WE TAKE THE UNIT CUBE AS AN EXAMPLE. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF MOLECULES **
C ** REAL RX(N),RY(N),RZ(N) MOLECULAR POSITIONS **
C ** **
C ** USAGE: **
C ** **
C ** THE ROUTINE IS CALLED FOR EVERY CONFIGURATION GENERATED IN A **
C ** SIMULATION. **
C *******************************************************************

INTEGER N
REAL RX(N), RY(N), RZ(N)

INTEGER I
C *******************************************************************

C
C The function ANINT(X) returns the nearest integer to X,
C converting the result back to type REAL:
C ANINT(-0.49) has the value 0.0
C ANINT(-0.51) has the value -1.0
C
C In this example, we are using reduced units,
C where the length of the box is taken to define the fundamental unit
C of length in the simulation
C

DO 100 I = 1, N
RX(I) = RX(I) - ANINT ( RX(I) )
RY(I) = RY(I) - ANINT ( RY(I) )
RZ(I) = RZ(I) - ANINT ( RZ(I) )

100 ENDDO

RETURN
END



Loops in Molecular Dynamic (MD) and 
Monte Carlo (MC) programs 

Loop on all the molecules (from                    )  

For a given molecule     , loop over all molecules      to calculate the 
minimum image separation 

If molecules are separated by distances smaller than the potential cutoff  

Compute potential energy and forces 

If molecules are separated by distances greater than the potential cutoff  

Skip to the end of the inner loop, avoiding expensive calculations 

Time required to examine all pair separations is proportional to  



Neighbour lists: improving the speed of a program 
Inner loops of the MD and MC programs scale proportional to  

Verlet: maintain a list of the neighbours of a particular molecule, which is 
updated at intervals 

Between updates, the program does not check through all 
the molecules, but just those appearing on the list 

The number of pais separations explicitly considered is reduced. 
This saves time in: 

-  Looping through  
-  Minimum imaging,  
-  Calculating  
-  Checking against the cutoff 



The Verlet neighbour list 

SOME TRICKS OF THE TRADE 

Fig. 5.4 The cutoff sphere, and its skin, around a molecule 1. Molecules 2,3,4,5, and 6 are on the 
list of molecule 1; molecule 7 is not. Only molecules 2,3, and 4 are within the range of the potential 
at the time the list is constructed. 

the cycle is repeated. The algorithm is successful because the skin around rc is 
chosen to be thick enough so that between reconstructions a molecule, such as 
7 in Fig. 5.4, which is not on the list of molecule 1, cannot penetrate through the 
skin into the important rc sphere. Molecules such as 3 and 4 can move in and 
out of this sphere, but since they are on the list of molecule 1, they are always 
considered regardless, until the list is next updated. 

The interval between updates of the table is often fixed at the beginning of 
the program, and intervals of 10-20 steps are quite common. An important 
refinement allows the program to update the neighbour list automatically. 
When the list is constructed, a vector for each molecule is set to zero. At 
subsequent steps, the vector is incremented with the displacement of each 
molecule. Thus it stores the total displacement for each molecule since the last 
update. When the sum of the magnitudes of the two largest displacements 
exceeds r, - r,, the neighbour list should be updzted again [Fincham and 
Ralston 1981; Thompson 19831. The code for automatic updating of the 
neighbour list is given on microfiche F.19. 

The list sphere radius, rl , is a parameter that we are free to choose. As r, is 
increased, the frequency of updates of the neighbour list will decrease. 
However, with a large list, the efficiency of the non-update steps will decrease. 
This balance has been examined by Thompson [I9831 for MD simulations of 
256 and 500 Lennard-Jones atoms. Simulations at p* = 0.8, T* = 0.76, were 
run for 1000 time steps; rc was fixed at 2.50, and rl varied. The results are given 
in Table 5.1. A list cutoff of about 2.70 would provide substantial speed 

The potential cutoff sphere, of radius       , around a particular molecule is 
surrounded by a “skin”, to give a larger sphere of radius  

At first step, a list is constructed of all the 
neighbours of each molecule, for which 
the pair separation is within  

These neighbours are stored in a large 
one-dimensional array, LIST 
The dimension of LIST is roughly  

At the same time, a second indexing array of size     , POINT, is constructed: 
 
-  POINT (I) points to the position in the array LIST where the first neighbour 

of molecule I can be found. 
-  Since POINT(I+1) points to the first neighbour of molecule I+1, then 

POINT(I+1)-1 points to the last neighbour of molecule I.  
-  Thus, using POINT, we can readily identify the part of the last LIST array 

which contains neighbours of I.   



The Verlet neighbour list 
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Fig. 5.4 The cutoff sphere, and its skin, around a molecule 1. Molecules 2,3,4,5, and 6 are on the 
list of molecule 1; molecule 7 is not. Only molecules 2,3, and 4 are within the range of the potential 
at the time the list is constructed. 

the cycle is repeated. The algorithm is successful because the skin around rc is 
chosen to be thick enough so that between reconstructions a molecule, such as 
7 in Fig. 5.4, which is not on the list of molecule 1, cannot penetrate through the 
skin into the important rc sphere. Molecules such as 3 and 4 can move in and 
out of this sphere, but since they are on the list of molecule 1, they are always 
considered regardless, until the list is next updated. 

The interval between updates of the table is often fixed at the beginning of 
the program, and intervals of 10-20 steps are quite common. An important 
refinement allows the program to update the neighbour list automatically. 
When the list is constructed, a vector for each molecule is set to zero. At 
subsequent steps, the vector is incremented with the displacement of each 
molecule. Thus it stores the total displacement for each molecule since the last 
update. When the sum of the magnitudes of the two largest displacements 
exceeds r, - r,, the neighbour list should be updzted again [Fincham and 
Ralston 1981; Thompson 19831. The code for automatic updating of the 
neighbour list is given on microfiche F.19. 

The list sphere radius, rl , is a parameter that we are free to choose. As r, is 
increased, the frequency of updates of the neighbour list will decrease. 
However, with a large list, the efficiency of the non-update steps will decrease. 
This balance has been examined by Thompson [I9831 for MD simulations of 
256 and 500 Lennard-Jones atoms. Simulations at p* = 0.8, T* = 0.76, were 
run for 1000 time steps; rc was fixed at 2.50, and rl varied. The results are given 
in Table 5.1. A list cutoff of about 2.70 would provide substantial speed 

Over the next few steps, the list is used in force/energy evaluation routine 

For each molecule I, the program identifies the neighbours J, by running 
over LIST from point to POINT(I) to POINT(I+1)-1 

It is essential to check that POINT(I+1) is actually greater then POINT(I). If it 
is not the case, then molecule I has no neighbours 

From time to time, the neighbour list is reconstructed and the cycle is repeated.  
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Fig. 5.4 The cutoff sphere, and its skin, around a molecule 1. Molecules 2,3,4,5, and 6 are on the 
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the cycle is repeated. The algorithm is successful because the skin around rc is 
chosen to be thick enough so that between reconstructions a molecule, such as 
7 in Fig. 5.4, which is not on the list of molecule 1, cannot penetrate through the 
skin into the important rc sphere. Molecules such as 3 and 4 can move in and 
out of this sphere, but since they are on the list of molecule 1, they are always 
considered regardless, until the list is next updated. 

The interval between updates of the table is often fixed at the beginning of 
the program, and intervals of 10-20 steps are quite common. An important 
refinement allows the program to update the neighbour list automatically. 
When the list is constructed, a vector for each molecule is set to zero. At 
subsequent steps, the vector is incremented with the displacement of each 
molecule. Thus it stores the total displacement for each molecule since the last 
update. When the sum of the magnitudes of the two largest displacements 
exceeds r, - r,, the neighbour list should be updzted again [Fincham and 
Ralston 1981; Thompson 19831. The code for automatic updating of the 
neighbour list is given on microfiche F.19. 

The list sphere radius, rl , is a parameter that we are free to choose. As r, is 
increased, the frequency of updates of the neighbour list will decrease. 
However, with a large list, the efficiency of the non-update steps will decrease. 
This balance has been examined by Thompson [I9831 for MD simulations of 
256 and 500 Lennard-Jones atoms. Simulations at p* = 0.8, T* = 0.76, were 
run for 1000 time steps; rc was fixed at 2.50, and rl varied. The results are given 
in Table 5.1. A list cutoff of about 2.70 would provide substantial speed 

Over the next few steps, the list is used in force/energy evaluation routine 

For each molecule I, the program identifies the neighbours J, by running 
over LIST from point to POINT(I) to POINT(I+1)-1 

It is essential to check that POINT(I+1) is actually greater then POINT(I). If it 
is not the case, then molecule I has no neighbours 

From time to time, the neighbour list is reconstructed and the cycle is repeated.  
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the cycle is repeated. The algorithm is successful because the skin around rc is 
chosen to be thick enough so that between reconstructions a molecule, such as 
7 in Fig. 5.4, which is not on the list of molecule 1, cannot penetrate through the 
skin into the important rc sphere. Molecules such as 3 and 4 can move in and 
out of this sphere, but since they are on the list of molecule 1, they are always 
considered regardless, until the list is next updated. 

The interval between updates of the table is often fixed at the beginning of 
the program, and intervals of 10-20 steps are quite common. An important 
refinement allows the program to update the neighbour list automatically. 
When the list is constructed, a vector for each molecule is set to zero. At 
subsequent steps, the vector is incremented with the displacement of each 
molecule. Thus it stores the total displacement for each molecule since the last 
update. When the sum of the magnitudes of the two largest displacements 
exceeds r, - r,, the neighbour list should be updzted again [Fincham and 
Ralston 1981; Thompson 19831. The code for automatic updating of the 
neighbour list is given on microfiche F.19. 

The list sphere radius, rl , is a parameter that we are free to choose. As r, is 
increased, the frequency of updates of the neighbour list will decrease. 
However, with a large list, the efficiency of the non-update steps will decrease. 
This balance has been examined by Thompson [I9831 for MD simulations of 
256 and 500 Lennard-Jones atoms. Simulations at p* = 0.8, T* = 0.76, were 
run for 1000 time steps; rc was fixed at 2.50, and rl varied. The results are given 
in Table 5.1. A list cutoff of about 2.70 would provide substantial speed 

Molecules, such as 3 and 4 can move in and out of this sphere, but since 
they are on the list of molecule 1, they are always considered until the list is 

next updated. 

The algorithm is successful if the skin around       is chosen to be thick enough so 
that between reconstructions: 

A molecule, such as 7, which is not on the list of molecule 1, cannot 
penetrate through the skin into the important      sphere 



Parameters of the Verlet neighbour list: 
the interval between updates 

Intervals of 10-20 steps are quite common 

Often fixed at the beginning of the program 

An important refinement: allow the program to update the list automatically: 
 

 - When the list is constructed, a vector for each molecule is set to zero 
 

 - At subsequent steps, the vector is incremented with the displacement of 
each molecule. 
 

 - Thus, it stores, the displacement of each molecule since the last update 
 

 - When the sum of the magnitudes of the two largest displacements 
exceeds               , the neighbour list should be updated again 



Is a parameter that we are free to choose 

However, with a large list, the efficiency of the non-updated steps will decrease 

As       is increased, the frequency of updates of the neighbour list will decrease 

Parameters of the Verlet neighbour list: 
the list sphere radius 
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Table 5.1 Time saving using a Verlet neighbour list 
[Thompson 19831. 

Timeb 
List Updatea 

Radius interval N = 256 N = 5 0 0  

no list - 3.33 10.00 
2.60 5.78 2.24 4.93 
2.70 12.50 2.17 4.55 
2.90 26.32 2.28 4.5 1 
3.10 43.48 2.47 4.79 
3.43 83.33 2.89 - 
3.50 100.00 - 5.86 

-- 

'Update interval is the average number of steps between updates. 
It is essentially independent of system size. 
bTime is CPU time per step, in seconds. The runs were 
performed on a PDP 11 170. 

increases for both systems, but for systems of size N x 500 and larger, the 
improvement is dramatic. As the size of the system becomes larger, the size of 
the LIST array grows, approximately cc N. If storage is a priority, then a 
binary representation of the list can be employed [O'Shea 19831. Each bit in a 
two-dimensional array represents a pair of molecules i and j. This bit is set to 1 
if the molecules are neighbours, and zero otherwise. The array is used to check 
for neighbours at subsequent steps, and is revised at suitable intervals. For a 
system of 256 molecules, a conventional neighbour list would require 
approximately 64 x 256 words; on a 16-bit machine, the binary array reduces 
this to 8 x 256 words. 

In the MC method, the array POINT has a size N + 1 rather than N ,  since 
the index I runs over all N atoms rather than N - 1 as in MD. In addition, the 
array LIST is roughly twice as large in MC as in a corresponding MD 
program. In the MD technique, the list for a particular molecule i contains 
only the molecules j with an index greater than i, since in this method we use 
Newton's third law to calculate the force on j from i at the same time as the 
force on i from j. In the MC method particles i and j are moved independently 
and the list must contain separately the information that i is a neighbour of j 
and j a neighbour of i. In this case the binary representation discussed by 
O'Shea [I9831 is particularly useful. 

5.3.2 Cell structures and linked lists 

As the size of the system increases towards 1000 molecules, the conventional 
neighbour list becomes too large to store easily, and the logical testing of every 

The larger the system,  
the more dramatic the improvement 



Algorithm to compute the Verlet neighbour list 
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

RLSTSQ = RLIST * RLIST

NLIST = 0

DO 100 I = 1, N - 1

POINT(I) = NLIST + 1

RXI = RX(I)

RYI = RY(I)

RZI = RZ(I)

DO 99 J = I + 1, N

RXIJ = RXI - RX(J)

RYIJ = RYI - RY(J)

RZIJ = RZI - RZ(J)

RXIJ = RXIJ - ANINT ( RXIJ )

RYIJ = RYIJ - ANINT ( RYIJ )

RZIJ = RZIJ - ANINT ( RZIJ )

RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ

IF ( RIJSQ .LT. RLSTSQ ) THEN

NLIST = NLIST + 1

LIST(NLIST) = J

ENDIF

99 ENDDO

100 ENDDO

POINT(N) = NLIST + 1



Algorithm to check whether the 
update of the list is required 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE CHECK ( RCUT, RLIST, UPDATE )

COMMON / BLOCK1 / RX, RY, RZ, FX, FY, FZ

COMMON / BLOCK3 / RX0, RY0, RZ0

C *******************************************************************

C ** DECIDES WHETHER THE LIST NEEDS TO BE RECONSTRUCTED. **

C ** **

C ** PRINCIPAL VARIABLES: **

C ** **

C ** REAL RX(N),RY(N),RZ(N) ATOM POSITIONS **

C ** REAL RX0(N),RY0(N),RZ0(N) COORDINATES AT LAST UPDATE **

C ** REAL RLIST RADIUS OF VERLET LIST **

C ** REAL RCUT CUTOFF DISTANCE FOR FORCES **

C ** REAL DISPMX LARGEST DISPLACEMENT **

C ** INTEGER N NUMBER OF ATOMS **

C ** LOGICAL UPDATE IF TRUE THE LIST IS UPDATED **

C ** **

C ** USAGE: **

C ** **

C ** CHECK IS CALLED TO SET UPDATE BEFORE EVERY CALL TO FORCE. **

C *******************************************************************

INTEGER N

PARAMETER ( N = 108 )

REAL RX(N), RY(N), RZ(N), FX(N), FY(N), FZ(N)

REAL RX0(N), RY0(N), RZ0(N)

REAL RCUT, RLIST

LOGICAL UPDATE

REAL DISPMX

INTEGER I

C *******************************************************************

C ** CALCULATE MAXIMUM DISPLACEMENT SINCE LAST UPDATE **

DISPMX = 0.0

DO 30 I = 1, N

DISPMX = MAX ( ABS ( RX(I) - RX0(I) ), DISPMX )

DISPMX = MAX ( ABS ( RY(I) - RY0(I) ), DISPMX )

DISPMX = MAX ( ABS ( RZ(I) - RZ0(I) ), DISPMX )

30 CONTINUE

C ** A CONSERVATIVE TEST OF THE LIST SKIN CROSSING **

DISPMX = 2.0 * SQRT ( 3.0 * DISPMX ** 2 )

UPDATE = ( DISPMX .GT. ( RLIST - RCUT ) )

RETURN

END



Algorithm to save the list for future checkings 2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

SUBROUTINE SAVE

COMMON / BLOCK1 / RX, RY, RZ, FX, FY, FZ

COMMON / BLOCK3 / RX0, RY0, RZ0

C *******************************************************************

C ** SAVES CURRENT CONFIGURATION FOR FUTURE CHECKING. **

C ** **

C ** PRINCIPAL VARIABLES: **

C ** **

C ** REAL RX(N),RY(N),RZ(N) ATOM POSITIONS **

C ** REAL RX0(N),RY0(N),RZ0(N) STORAGE LOCATIONS FOR SAVE **

C ** INTEGER N NUMBER OF ATOMS **

C ** **

C ** USAGE: **

C ** **

C ** SAVE IS CALLED WHENEVER THE NEW VERLET LIST IS CONSTRUCTED. **

C *******************************************************************

INTEGER N

PARAMETER ( N = 108 )

REAL RX(N), RY(N), RZ(N), FX(N), FY(N), FZ(N)

REAL RX0(N), RY0(N), RZ0(N)

INTEGER I

C *******************************************************************

DO 100 I = 1, N

RX0(I) = RX(I)

RY0(I) = RY(I)

RZ0(I) = RZ(I)

100 CONTINUE

RETURN

END



Algorithm of the inner loop to compute 
forces and potential energy 

2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

DO 10 I = 1, N

FX(I) = 0.0

FY(I) = 0.0

FZ(I) = 0.0

10 ENDDO

V = 0.0

W = 0.0

C ** USE THE LIST TO FIND THE NEIGHBOURS **

DO 200 I = 1, N - 1

JBEG = POINT(I)

JEND = POINT(I+1) - 1

** CHECK THAT ATOM I HAS NEIGHBOURS **

IF( JBEG .LE. JEND ) THEN

RXI = RX(I)

RYI = RY(I)

RZI = RZ(I)

FXI = FX(I)

FYI = FY(I)

FZI = FZ(I)

DO 199 JNAB = JBEG, JEND

J = LIST(JNAB)

RXIJ = RXI - RX(J)

RYIJ = RYI - RY(J)

RZIJ = RZI - RZ(J)

RXIJ = RXIJ - ANINT( RXIJ )

RYIJ = RYIJ - ANINT( RYIJ )

RZIJ = RZIJ - ANINT( RZIJ )

RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ

IF ( RIJSQ .LT. RCUTSQ ) THEN

SR2 = SIGSQ / RIJSQ

SR6 = SR2 * SR2 * SR2

VIJ = SR6 * ( SR6 - 1.0 )

WIJ = SR6 * ( SR6 - 0.5 )

V = V + VIJ

W = W + WIJ

FIJ = WIJ / RIJSQ

FXIJ = RXIJ * FIJ

FYIJ = RYIJ * FIJ

FZIJ = RZIJ * FIJ

FXI = FXI + FXIJ

FYI = FYI + FYIJ

FZI = FZI + FZIJ

FX(J) = FX(J) - FXIJ

FY(J) = FY(J) - FYIJ

FZ(J) = FZ(J) - FZIJ

ENDIF

199 ENDDO

FX(I) = FXI

FY(I) = FYI

FZ(I) = FZI

ENDIF

200 ENDDO

V = 4.0 * V

W = 48.0 * W / 3.0

DO 300 I = 1, N

3

FX(I) = 48.0 * FX(I)

FY(I) = 48.0 * FY(I)

FZ(I) = 48.0 * FZ(I)

300 ENDDO



Long range forces 

By definition, a long range force is defined as one in which the spatial interaction 
falls off no faster than        where     is the dimensionality of the system 

Charge-charge interaction between ions 

Dipole-dipole interaction between molecules 

Their range is greater than half the box length for a typical simulation 

Impractical 
Computational cost scales as      , i.e. as   

Brute force solution: increase the length of the central box       to 
hundrehts of nanometers, so that the screening by neighbours would 

diminish the effective range of the potentials 



Statement of the problem when dealing 
with long-range forces  

Ion 1 interacts with ions 2, 2A, 2B, 
and all the other images of 2  

     and      are the charges 

For simplicity, we are ommiting 
all the factors  

The sum over     is the sum over 
all simple cubic lattice points,                 
with                    integers 

The prime indicates that we omit          for  



Ion 1 interacts with ions 2, 2A, 2B, 
and all the other images of 2  

For long-range potentials, this sum is 
conditionally convergent, i. e. the 

results depends on the order in which 
we add up terms 

As we shall see below, the Ewald method 
evaluate this energy by transforming it into 

summations that converges not only 
rapidly but also absolutely 

Statement of the problem when dealing 
with long-range forces  



The infinite sum is conditionally convergent 

For long-range potentials, this sum is conditionally convergent, 
i. e. the results depends on the order in which we add up terms 

Natural choice:  
Take boxes in order of their proximity to the central box 

First term 

Second term 

As we add further terms to the sum, we are building 
up our infinite system in  roughly spherical layers 

HOW TO HANDLE LONG-RANGE FORCES 157 

long-range potentials, this sum is conditionally convergent, i.e. the result 
depends on the order in which we add up the terms. A natural choice is to take 
boxes in order of their proximity to the central box. The unit cells are added in 
sequence: the first term has ) 0 )  = 0, i.e. o = (0,0,0); the second term, In 1 = L, 
comprises the six boxes centred at o = ( f. L, 0, O), (0, f L, 0), (0, 0, f L); etc. As 
we add further terms to the sum, we are building up our infinite system in 
roughly spherical layers (see Fig. 5.7). When we adopt this approach, we 
must specify the nature of the medium surrounding the sphere, in particular its 
relative permittivity (dielectric constant) E,. The results for a sphere sur- 
rounded by a good conductor such as a metal (E, = oo) and for a sphere 
surrounded by vacuum (E, = 1) are different [de Leeuw, Perram, and Smith 
19801. 

Fig. 5.7 Building up the sphere of simulation boxes. We illustrate a very small system of two ion 
pairs for simplicity. The shaded region represents the external dielectric continuum of relative 
permittivity E ,  

This equation applies in the limit of a very large sphere of boxes. In the 
vacuum, the sphere has a dipolar layer on its surface: the last term in eqn (5.18) 
cancels this. For the sphere in a conductor there is no such layer. The Ewald 
method is a way of efficiently calculating V" (E, = a ) .  Equation (5.18) enables 
us to use the Ewald sum in a simulation where the large sphere is in a vacuum, if 
this is more convenient. The mathematical details of the method are given by 
de Leeuw et al. [I9801 and Heyes [1981]. Here we concentrate on the physical 

In vacuum, the sphere has a dipolar layer on its surface, 
and there would be a jump in the potential energy 
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This equation applies in the limit of a very large sphere of boxes. In the 
vacuum, the sphere has a dipolar layer on its surface: the last term in eqn (5.18) 
cancels this. For the sphere in a conductor there is no such layer. The Ewald 
method is a way of efficiently calculating V" (E, = a ) .  Equation (5.18) enables 
us to use the Ewald sum in a simulation where the large sphere is in a vacuum, if 
this is more convenient. The mathematical details of the method are given by 
de Leeuw et al. [I9801 and Heyes [1981]. Here we concentrate on the physical 

We must specify the nature of the medium 
surrounding the sphere, in particular, its 

dieletric permittivity (the dielectric constant) 

Good conductor 
(perfect metal) 

For a sphere in a conductor, there is no such 
layer (al the surface charges are screened) 

The infinite sum is conditionally convergent 
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This equation applies in the limit of a very large sphere of boxes. In the 
vacuum, the sphere has a dipolar layer on its surface: the last term in eqn (5.18) 
cancels this. For the sphere in a conductor there is no such layer. The Ewald 
method is a way of efficiently calculating V" (E, = a ) .  Equation (5.18) enables 
us to use the Ewald sum in a simulation where the large sphere is in a vacuum, if 
this is more convenient. The mathematical details of the method are given by 
de Leeuw et al. [I9801 and Heyes [1981]. Here we concentrate on the physical 

We must specify the nature of the medium 
surrounding the sphere, in particular, its 

dieletric permittivity (the dielectric constant) 

Vacuum 

In vacuum, the sphere has a dipolar layer 
on its surface 

The infinite sum is conditionally convergent 

For a sphere, the depolarization factor  

And the associated energy 
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This equation applies in the limit of a very large sphere of boxes. In the 
vacuum, the sphere has a dipolar layer on its surface: the last term in eqn (5.18) 
cancels this. For the sphere in a conductor there is no such layer. The Ewald 
method is a way of efficiently calculating V" (E, = a ) .  Equation (5.18) enables 
us to use the Ewald sum in a simulation where the large sphere is in a vacuum, if 
this is more convenient. The mathematical details of the method are given by 
de Leeuw et al. [I9801 and Heyes [1981]. Here we concentrate on the physical 

We must specify the nature of the medium 
surrounding the sphere, in particular, its 

dieletric permittivity (the dielectric constant) 

Good conductor 
(perfect metal) 

Vacuum 

In vacuum, the sphere has a dipolar layer 
on its surface 

Equation applies in the limit 
of very large sphere boxes 

The infinite sum is conditionally convergent 

For a sphere in a conductor, there is no such 
layer (al the surface charges are screened) 



Splitting the charge distribution 
In the original problem, the charge distributions are described by delta functions. 

We can split it into two terms, adding a subtracting a Gaussian distribution 

Determines the width of the distribution 

Position relative to the center of the dist 

158 SOME TRICKS O F  THE T R A D E  

ideas. At any point during the simulation, the distribution of charges in the 
central cell constitutes the unit cell for a neutral lattice which extends 
throughout space. In the Ewald method, each point charge is surrounded by a 
charge distribution of equal magnitude and opposite sign, which spreads out 
radially from the charge. This distribution is conveniently taken to be 
Gaussian 

pf (r) = z i ~ 3  exp(- ~ ~ r ~ ) / n ~ ' ~  (5.19) 

where the arbitrary parameter K determines the width of the distribution, and r 
is the position relative to the centre of the distribution. This extra distribution 
acts like an ionic atmosphere, to screen the interaction between neighbouring 
charges. The screened interactions are now short-ranged, and the total 
screened potential is calculated by summing over all the molecules in the 
central cube and all their images in the real space lattice of image boxes. This is 
illustrated in Fig. 5.8(a). 

Fig. 5.8 Charge distribution in the Ewald sum. (a) Original point charges plus screening 
distribution. (b) Cancelling distribution. 

A charge distribution of the same sign as the original charge, and the same 
shape as the distribution pf (r) is also added (see Fig. 5.8(b)). This cancelling 
distribution reduces the overall potential to that due to the original set of 
charges. The cancelling distribution is summed in reciprocal space. In other 

In what we call  
Each point charge is surrounded by a charge distribution of equal magnitude and 

opposite sign, which spreads out radially from the charge. 



The screened charge density produces a short-range singular 
potential that can be summed in real space 
Each point charge is surrounded by a charge distribution of equal magnitude and 

opposite sign, which spreads out radially from the charge. 
The distribution is conveniently taken to be Gaussian 

Determines the width of the distribution 

Position relative to the center of the dist 

This distribution acts like an ionic atmosphere to screen the interaction between 
neighboring charges, that are now short ranged and singular 

The total screened potential is calculated by summing over all the molecules in 
the central cube and all their images in the real space lattice of image boxes 
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A charge distribution of the same sign as the original charge, and the same 
shape as the distribution pf (r) is also added (see Fig. 5.8(b)). This cancelling 
distribution reduces the overall potential to that due to the original set of 
charges. The cancelling distribution is summed in reciprocal space. In other 



The cancelling distribution produces a long-range no-singular 
potential that can be summed in reciprocal space  

A charge distribution of the same sign as the original charge, 
and the same shape distribution            is also added 

This cancelling distribution reduces the overall potential to that 
due to the original set of charges  

The contribution from this cancelling charges is summed in 
reciprocal space 
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A charge distribution of the same sign as the original charge, and the same 
shape as the distribution pf (r) is also added (see Fig. 5.8(b)). This cancelling 
distribution reduces the overall potential to that due to the original set of 
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The Ewald sum: a technique for efficiently summing the 
interaction between an ion an all it periodic images  

The final potential energy will contain a sum in real space plus a 
reciprocal space sum minus a self-energy term plus the surface term 

Is the complementary error function 

Falls to zero with increasing  
If       is chosen to be large enough, the only terms 
which contributes to the sum in real space is that with    
             (the first term reduces to the minimum image)  

A complete derivation can be found in the excellent notes by H. Lee and W. Cai 
http://micro.stanford.edu/mediawiki/images/4/46/Ewald_notes.pdf  



The Ewald sum: a technique for efficiently summing the 
interaction between an ion an all it periodic images  

The final potential energy will contain a sum in real space plus a 
reciprocal space sum minus a self-energy term plus the surface term 

Sum over reciprocal lattice vectors  

A large value of      corresponds to a shape distribution of charge, so 
we need to include many terms in the      point summation to model it. 



Extension of the Ewald sum to dipolar system 

Sum on      and    are for dipoles in the central box 
Factor               is omitted  

is replaced by 


