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How to reach me

Javier Junquera
Ciencias de la Tierra y Fisica de la Materia Condensada
Facultad de Ciencias, Despacho 3-12
E-mail:

URL: http://personales.unican.es/junqueraj

In the web page, you can find:
- The program of the course
- Slides of the different lecture

- The code implementing the simulation of a
liquid interacting via a Lennard-Jones potential

Office hours:
- At the end of each lecture

- At any moment, under request by e-mail




Physical problem to be solved during this course

Given a set of |\ classical particles (atoms or molecules)

whose microscopic state may be specified in terms of:
- positions ¢
- momenta p;

and whose Hamiltonian may be written as the sum of kinetic and potential
energy functions of the set of coordinates and momenta of each molecule 2

—

— (q_)lvq_)%"') N)
IC(p) = kinetic energy
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H(G.5) = K(7) + V(@)

Solve numerically in the computer the equations of motion which governs
the time evolution of the system and all its mechanical properties

V(q) = potential energy




Physical problem to be solved during this course

In particular, we will simulate numerically the evolution with time of
N classical particles interacting via a two-body potential
(the Lennard-Jones potential)

Advantages

It allows to solve time dependent problems:

- Reactions

- Collisions

- Diffusion

- Growth

- Vibrations

- Fractures

- Radiation damage

Standard two-body effective pair potential

Well known parameters for many elements

Provides reasonable description of closed
shells atoms (such as inert gases)

It is more parallelizable than other
methods, such as Monte Carlo techniques

Disadvantages
More complex (differential equations)
Less adaptable
Ergodicity problems
It require forces




Note about the generalized coordinates

May be simply the set of cartesian coordinates 7; of each atom or nucleus in the
system

Sometimes it is more useful to treat the molecule as a rigid body.
In this case, ¢ will consist of:

- the 3

- together with a Q;

—

In any case, P stands for the appropriate set of conjugate momenta




Kinetic and potential energy functions

Usually the kinetic energy /C takes the form

T; molecular mass

()Y runs over the different (2,9, 2)
components of the momentum
of the molecule

The potential energy )’ contains the interesting information
regarding intermolecular interactions




Potential energy function of an atomic system

Consider a system containing /\V atoms.

The potential energy may be divided into terms depending on the coordinates
of individual, pairs, triplets, etc.

V= o)+ Y w0y > > v, )

i j>i i >0 k>j>i
¥

One body
potential

U1 (7_’;)

Particle interactions




The effective pair potential

The potential energy may be divided into terms depending on the coordinates
of individual, pairs, triplets, etc.

V=2 alf) Y D o)+ D Y uslf )

T J>t v g>1 kK>3>

The pairwise approximation gives a remarkably good description because the
average three body effects can be partially included by defining an “effective”

pair potential

2B Zvl Tz —l_zz rzg

T J>1

The pair potentials appearing in computer simulations are generally to be regarded as
effective pair potentials of this kind, representing many-body effects

A consequence of this approximation is that the effective pair potential needed to
reproduce experimental data may turn out to depend on the density, temperature, etc.
while the true two-body potential does not.




Types of bonds
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Types of simulations

What do we want regarding...?

The model:
-Realistic or more approximate

The energy:
-Prevalence of repulsion?
-Bonds are broken?

The scale:
-Atoms?
-Molecules?
-Continuum?




Example of ideal effective pair potentials

Phase Transition for a Hard
: Sphere System Studies in Molecular Dynamics. I. General Method*

B. J. ALpErR AND T. E. WAINWRIGHT
University of California Radiation Laboratory, Livermore, California
(Received August 12, 1957)

B. ]. AupEr axp T. E. WAINWRIGHT

Lawrence Radiation Laboratory, University of California, Livermore, California

J. Chem. Phys. 31, 459 (1959)

J. Chem. Phys. 27, 1208 (1957)
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~ The most general interaction potential which has so
far been used is the square-well potential, V|

. - o V=w
Discovery of non-trivial phase transitions, V="V,

not evident just looking the equations V=0

r<<oip
a1<r<oq
r>02,

©1 e (r) @, (r)

v>P(r) =¢ <%)V =ar™ " v>P(r) = ¢ (%)V =ar™ "

No attractive part The soft-sphere potential
becomes progressively

harder as v increases

No attractive part



It is useful to divide realistic potentials in separate
attractive and repulsive components

Attractive interaction
Van der Waals-London or fluctuating dipole interaction
Classical argument

Electric field produced by dipole 1 on position 2

L 3 (ﬁl : 7g12) TA12 _ ﬁl
7’)3
12

Instantaneous dipole induced by this field on 2

1

P2 = gl X —-
12

Potential energy of the dipole moment

Figure 3 Origin of the van der Waals interaction, according to a classical argument. At
one instant of time there is a dipo p; on atom 1. This produces an electrig

1
6
12
= _ Always attractive

E 12

field E at atom 2, which acquires an induced dipole moment p,. Diagrams are shown fo

—_
ﬁ
two times, f, and t,. The interaction is always attractive: the closer tihe atoms, the] U12 — _p2 * E12 m - E]?Q OC -

tighter the binding.

A
7“12 Is the unit vector directed from 1 to 2




It is useful to divide realistic potentials in separate
attractive and repulsive components

Attractive interaction

Hamiltonian for a system of two interacting oscillators

H="H;+ Hs + AHio

Where the perturbative term is the dipole-dipole interaction

D — 37 - D (7 D
AHis :Pl P2 (:; pl)(n P2)
12

From first-order perturbation theory, we can compute the change in energy

AE ~ Z | ¢nlEAO7;l12W0>‘




It is useful to divide realistic potentials in separate
attractive and repulsive components

Repulsive interaction

As the two atoms are brought together, their
charge distribution gradually overlaps,
changing the energy of the system.

The overlap energy is repulsive due to the

Pauli exclusion principle:
No two electrons can have all their
quantum numbers equal

When the charge of the two atoms overlap there is a tendency for electrons from atom B to
occupy in part states of atom A already occupied by electrons of atom A and viceversa.

Electron distribution of atoms with closed shells can overlap only if accompanied by a
partial promotion of electrons to higher unoccpied levels

Electron overlap increases the total energy of the system and gives a repulsive
contribution to the interaction




The repulsive interaction is exponential

Born-Mayer potential

a/(kJ/mol)
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It is useful to divide realistic potentials in separate
attractive and repulsive components

Buckingham potential

— Ae ™™ — Cr 6
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Because the exponential term converges to a constantas 7 — 0,
while the term diverges, the Buckingham potential “turns over” as
becomes small.

This may be problematic when dealing with a structure with very short
interatomic distances




It is useful to divide realistic potentials in separate
attractive and repulsive components

Lennard-Jones potential

P[0 @)

Energy (kJ/mol)

2.0 3.0
Distance (A)

The repulsive term has no theoretical justification.
It is used because it approximates the Pauli repulsion well, and
is more convenient due to the relative computational efficiency
of calculating r'? as the square of r5.




Comparison of effective two body potentials
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The Lennard-Jones potential

M =4|(7)" - (7)'

The well depth is often quoted as in units of temperature, T
where Lty is the Boltzmann’s constant B

For instance, to simulate liquid Argon, reasonable values are:

S ~120 K o~ 0.34 nm
ks

We must emphasize that these are not the values which
would apply to an isolated pair of argon atoms




The Lennard-Jones potential

P[0~ )

The well depth is often quoted as in units of temperature, T
where Lty is the Boltzmann’s constant B

Suitable energy and length parameters for interactions
between pairs of identical atoms in different molecules

Table 1.1. Atom-atom interaction parameters

Atom Source &/kg(K)

[Murad and Gubbins 1978] 8.6
He [Maitland et al. 1981] 10.2
[Tildesley and Madden 1981] 31.2
[Cheung and Powles 1975] 37.3
[English and Venables 1974] 61.6
[Singer et al. 1977] 52.8
[Maitland et al. 1981] 470 Interactions between unlike

Tildesl d Madden, 1981 183.0 - 0
ESilnngr?; ol 197?] i 173.5 atoms in different molecules

ngs;gf‘;‘t‘ e ‘;371;’]81] ;;?,g can be approximated by the

[Maitland et al. 1981] 164.0 Lorentz-Berthelot mixing rules
(for instance, in CS,)

1
ocsg = 5 [UCC + Oss] ECS = \/ECCESS




Is realistic the Lennard-Jones potential?

o -1 [(6)"- (2

Dashed line: 12-6 effective Lennard-Jones potential for liquid Ar
Solid line: Bobetic-Barker-Maitland-Smith pair potential for liquid Ar
(derived after considering a large quantity of experimental data)

v (r)kg (K)

Lennard-Jones

S A\ ttractive tail at large

Sl scparations, due to
correlation between
Steeply rising electron clouds
repulsive wall at surrounding the
short distances, <«<—— Optimal atoms.
due to non-bonded Responsible for
overlap between cohesion in
the electron clouds condensed phases




Separation of the Lennard-Jones potential into
attractive and repulsive components

v(r)

Steeply rising
repulsive wall at
short distances,

due to non-bonded
overlap between
the electron clouds

,URLJ( ) _

Attractive tail at large
separations, due to
correlation between
electron clouds
surrounding the
atoms.
Responsible for
cohesion in
condensed phases




Separation of the Lennard-Jones potential into
attractive and repulsive components: energy scales

repulsive

| attractive

| |
02 04 06 O08 L0 12

R,U—-.

Figure 6 Form of the Lennard-Jones potential (10) which describes the interactif)n of.two inert gas
atoms. The minimum occurs at Rlo = 2'° = 1.12. Notice how steep the curve is inside the mini-
mum, and how flat it is outside the minimum. The value of U at the minimum is —¢; and U = 0 at
R=o0.




Beyond the two body potential:
the Axilrod-Teller potential

V=D )+ Y Y vl i)+ Y Y > us(f 5, i)+

i j>i i >0 k>j>i

Axilrod-Teller potential:
Three body potential that results from a third-order perturbation correction to
the attractive Van der Waals-London dipersion interactions

1 + 3 cos 0; cos 0 cos 0y,

3.3 .3
TV ik ks

— =

03(7:;7 Tja Tk) =V




For ions or charged particles, the long range
Coulomb interaction has to be added

Ri%j

v (riy) = ATeors;
Lj

Where <i, <j are the charges of ions ; and 7,
and & is the permittivity of free space




How to deal with molecular systems

Solution
Treat the molecule as a rigid or semi-rigid unit with fixed bond-lengths
and, sometimes fixed bond and torsion angles

Bond vibrations are of very high frequency (difficult to handle in classical
simulations), but of low amplitude (unimportant for many liquid properties)

A diatomic molecule with a
strongly binding interatomic
potential energy surface can be
simulated by a dum-bell with a
Fig. 1.6 An atom-atom model of a diatorsic molecule. rigid interatomic bond




Interaction between nuclei and electronic
charge clouds of a pair of molecules

Complicated function if relative positions 7; and 7; and orientations (), and Qj

Interaction sites:
usually centered
more or less on the
position of the nuclei
in the real molecule

Fig. 1.6 An atom-atom model of a diatomic molecule.

Pairwise contributions from distinct sites (; in molecule ; at position ’F}a :
and site ) in molecule j at position Fib

ne,.. V(7 =22 v
Nitrogen, Fluorine,... (237 ab ab

typically considered as

two Lennard-Jones Pair potentlal acting 1. = |7

atoms separated by between I and )
fixed bond-lengths




Incorporate pole multipole moments at the center of
charge to improve molecular charge distribution

Might be equal to the known (isolated molecule) variable
o] §
May be “effective” values chosen to give better description of the
thermodynamic properties

Alternative
Use “partial charges” distributed in a “physically
reasonable way” around the molecule to reproduce
the known multipole moments

[=0.0549 nm~] Electrostatic part of the interaction
o] between might be modelled
using five partial charges placed along
the axis

(first non-vanishing moment: quadrupole)

For , a tetrahedral arrangement of
partial charges is appropriate

(first non-vanishing moment: octupole)




For large molecules, the complexity can be reduced
by fixing some internal degrees of freedom

Represent the molecule as a four-center
molecule with fixed bond-lengths and
bond-bending angles derived from known
experimental data

Whole group of atoms (CH; and CH,) are
condensed into spherically symmetric
effective “united atoms”

Interaction between such groups may be
represented by Lennard-Jones potential
with empirically chosen parameters

C,-C,, C,-C;, and C,;-C, bond lengths fixed

Trans-conformer
butane @ and @’angles fixed (can be done by
constraining the distances C,-C, and C,-C,

(vtorsion (¢)/ky) (K)

g

Just one internal degree of freedom is left
unconstrained: the rotation about C,-C, (the¢ angle)

For each molecule, an extra term in the
potential energy appears in the Hamiltonian v, (¢)




Reduced units

1.0 2.0
Distance (nm)

To know these critical points, should we
perform two different simulations for
essentially the same interatomic potential?

6/kB = 10.2 K
o= 0.228 nm

€/kB —119.8 K
c=0.341 nm

The functional form is the
same in both cases.
Only the parameters

change

If the simulation for He
predicts a phase
transition at TCHe

The same phase
transition will occur for
Ar, although at a different

temperature TCAY




The use of reduced units avoids the possible embarrasement
of conducting essentially duplicate simulations

The interatomic potential is completely specified by two parameters: ¢ and o

Take them as fundamental units for energy and length.
Units for other quantities (pressure, time, momentum,...) follow directly

density p* = pa’

temperature T*=kyT/e
energy E*=E/e

— Reduced units | pressure P*:= Po?/e
time t* = (¢/ma?) /%t
force f* =fo/c

torque ™ =1/e

Energy (K)

surface tension y* = ya?/e

The molecular dynamic simulation
is carried out only once.

The transformation from reduced

| . | . to other units, will be done

1'%. 20 afterwards, taking into account the
istance (nm)
real values of £ and o




Calculating the potential

C The potential energy will be stored in a variable V,
C which is zeroed initially
v = 0.0

Outer loop begins
DO 100 I =1, N -1

We assume that the coordinate vectors of our atoms

are stored in three FORTRAN arrays

RX(I), RY(I), and RZ(I),

with the particle index I

running from 1 to N (the number of particles)

RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)

Inner loop begins.
We take care to count each pair only once
D099 J=I+1,N

Temporary variables RXI, RYI, RZI are used

not to make a large number of array references in the inner loop
RXIJ = RXI - RX(J)

RYIJ = RYI - RY(JD)

RZIJ = RZI - RZ(J)

RIJSQ = RXIJ ** 2 + RYIJ ** 2 + RZIJ *x 2

For the Lennard-Jones potential, it is useful to
have precomputed the value of sigma”2,

which is stored in the variable SIGSQ

SR2 = SIGSQ / RIJSQ

SR6 = SR2 * SR2 * SR2

SR12 SR6 *x 2

\ =V + SR12 - SR6

ENDDO
ENDDO
The factor 4 x epsilon_0O, which appears in every pair potential term,
is multiplied only once, at the very end, rather than many times

within the crucial inner loop.

V =4.0 x EPSLON * V




lonic systems: the Born-Mayer potential

L qiq;
Vij(rij) = :

471'50 Tij

Repulsive interaction Coulomb
between electronic attraction
clouds

lonic radii

Rzﬁ\Rj>

P

A:AOeXp(

ri; — Ry — R; 1 qq;
Vij(rij) = Ao exp ( / J) _ - 49

P 47'('60 Tij

Two universal constants

Ao = 0.103 eV p=0.345 A

quilibrium
distance

Repulsive, Vg

Bonding energy
V(R,)

Total, V




lonic systems: the Born-Mayer potential.
Validity of the model

Model adequate only for very ionic molecules.
Vij(Ro)

 |In this model, ions are
considered spherical

Improvement: consider
possible deformations of their
charge distributions
(polarizabilities)

With these extra polarizability
terms, the errors in Vi;(Ro) are
smaller than 3%.




Shell model

Repulsion

UNPOLARIZED STATE
DIRECTION OF POLARIZING FIELD

POLARIZED STATE

@ Cores
X Shell Centers




Shell model: linear chain

Each unit cell of lattice parameter (]
contains two atoms:
One Cation of mass M and static charge +~7
One Anion of mass 77— and static charge —/

Spherical atomic shell of negligible mass and
charge —Y coupled to an ione core of charge +.X
and mass 771 _

Charge neutrality X — Y = —Z7

The cation is connected to the
anion through a string of force
constant f

The anion core and shell are
connected through a spring
of force constant L

Forthe ;7 —th cell, the
relative displacements of
the cation, ion core and
ion-shell are respectively

U+(j>au—<j)7 and U(])




Shell model

ABO, perovskite

The first force constant allows to
describe vibrations around an
equilibrium position

The second force constant, that
accounts for the polarizability of the
electronic cloud, acknowledges the

internal structure of the atom




Covalent model without bond breaking

B =" D, [1 - exp(—a(l — lo))]

Bond stretching —

By =) K (l-1)
- b

o
Interatomic distance —»

Fig. 3.2 Curves showing the
variation o

Bond bending Ey = Z Ky(0 — 6p)*

! Bond torsion Ey =V, cos(ng)

g Van der Waals j N — Z4gij [(@

Tij

1<J
Fig. 3.1 Pictorial representatio of
the terms included in a molecula )
mechanics force field. . 5
Hydrogen bridge Ew = » Aj; |( —

- ‘ /""..
i<j &

1 qig;
47'('8() Tij

Electrostatic Eq=)_

1<J




