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2. CONOCIMIENTOS PREVIOS

Se recomienda a los alumnos haber cursado las asignaturas 'Programación' (G40) y 'Herramientas computacionales en 
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3. COMPETENCIAS GENÉRICAS Y ESPECÍFICAS DEL PLAN DE ESTUDIOS TRABAJADAS EN LA ASIGNATURA
NivelCompetencias Genéricas

(Comunicación): que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público 
tanto especializado como no especializado.
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NivelCompetencias Específicas

(Herramientas): dominar el uso de las técnicas de computación necesarias en la aplicación de los modelos. 
Conocer los principios y técnicas de medida así como la instrumentación más relevante en los diferentes 
campos de la Física, y saber aplicarlos en el diseño y ejecución de un montaje instrumental completo en el 
laboratorio.
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(Ejecución): abordar la realización de proyectos científico-técnicos: planteamiento, selección de recursos, 
ejecución, análisis de resultados, presentación y discusión de los mismos.
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(Comunicación): saber presentar de forma adecuada, en castellano y en su caso en inglés, el estudio realizado 
de un problema físico, comenzando por la descripción del modelo utilizado e incluyendo los detalles 
matemáticos, numéricos e instrumentales y las referencias pertinentes a otros estudios.
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How to reach me 

Javier Junquera 
Ciencias de la Tierra y Física de la Materia Condensada 

Facultad de Ciencias, Despacho 3-12 

E-mail: javier.junquera@unican.es 

URL: http://personales.unican.es/junqueraj 

In the web page, you can find: 

 - The program of the course 

 - Slides of the different lecture 

 - The code implementing the simulation of a 
liquid interacting via a Lennard-Jones potential 

Office hours: 

 - At the end of each lecture 

 - At any moment, under request by e-mail 



Physical problem to be solved during this course 

Given a set of       classical particles (atoms or molecules) 

whose microscopic state may be specified in terms of: 
 - positions  
 - momenta Note that the classical description has to be 

adequate. If not we can not specify at the same time 
the coordinates and momenta of a given molecule 

Solve numerically in the computer the equations of motion which governs 
the time evolution of the system and all its mechanical properties 

and whose Hamiltonian may be written as the sum of kinetic and potential 
energy functions of the set of coordinates and momenta of each molecule  



Physical problem to be solved during this course 
In particular, we will simulate numerically the evolution with time of     

classical particles interacting via a two-body potential 
 (the Lennard-Jones potential) 

Why molecular dynamics? 
Advantages 

It allows to solve time dependent problems: 
 - Reactions 
 - Collisions 
 - Diffusion 
 - Growth 
 - Vibrations 
 - Fractures 
 - Radiation damage 
 - … 

It is more parallelizable than other 
methods, such as Monte Carlo techniques 

   
Disadvantages 

More complex (differential equations) 
Less adaptable 
Ergodicity problems 
It require forces 

Why Lennard-Jones potential? 

Standard two-body effective pair potential 
 
Well known parameters for many elements 
 
Provides reasonable description of closed 
shells  atoms (such as inert gases) 



Note about the generalized coordinates 

May be simply the set of cartesian coordinates     of each atom or nucleus in the 
system  

Sometimes it is more useful to treat the molecule as a rigid body. 
In this case,      will consist of: 

 - the Cartesian coordinates of the center of mass of each molecule  
 - together with a set of variables     that specify the molecular orientation  

In any case,      stands for the appropriate set of conjugate momenta 



Kinetic and potential energy functions  

molecular mass 

runs over the different                 
components of the momentum 
of the molecule   

The potential energy     contains the interesting information 
regarding intermolecular interactions 

Usually the kinetic energy      takes the form 



Potential energy function of an atomic system  

Consider a system containing      atoms. 
The potential energy may be divided into terms depending on the coordinates 

of individual, pairs, triplets, etc. 

One body potential 
Represents the effect 

of an external field 
(including, for 
example, the 

contained walls) 

Pair potential 
Depends only on the 
magnitude of the pair 

separation 

Three particle potential 
Significant at liquid densities. 
Rarely included in computer 

simulations (very time 
consuming on a computer) 

One body 
potential Particle interactions 

The notation              indicates a summation over all  
 
distinct pairs                  without containing any pair twice. 
The same care must be taken for triplets, etc. 

Expected to 
be small 



The effective pair potential 

The potential energy may be divided into terms depending on the coordinates 
of individual, pairs, triplets, etc. 

The pairwise approximation gives a remarkably good description because the 
average three body effects can be partially included by defining an “effective” 

pair potential 

A consequence of this approximation is that the effective pair potential needed to 
reproduce experimental data may turn out to depend on the density, temperature, etc. 

while the  true two-body potential does not. 

The pair potentials appearing in computer simulations are generally to be regarded as 
effective pair potentials of this kind, representing many-body effects 



Types of bonds Types of materials.Types of materials.

Ionic Covalent

Metal Molecular

Polarized atoms  

Ions    Bonds   Ions    Cations

   Valence electrons

Ions

Cations  Anions



Types of simulations 
What do we want regarding…? 

The model: 
 -Realistic or more approximate 

The energy: 
 -Prevalence of repulsion? 
 -Bonds are broken? 

The scale: 
 -Atoms? 
 -Molecules? 
 -Continuum? 



Example of ideal effective pair potentials 

Square-well potential 

MAGNETIC PROPERTIES OF SOME IRIDIUM COMPLEXES 459 

For the other compounds measured the spin-orbit 
coupling constants thus obtained are either unreason-
ably large or small. 

(CH3NH3hIrCI6, (C6H6NhIrCI6 and (<p4AshIrCI6 
display a rather peculiar magnetic behavior with 
moments considerably below the expected values over 
the whole temperature range investigated. No ex-

THE JOURNAL OF CHEMICAL PHYSICS 

planation of this behavior will be attempted in the 
present paper. 
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Studies in Molecular Dynamics. I. General Method* 

B. J. ALDER AND T. E. WAINWRIGHT 

Lawrence Radiation Laboratory, University of California, Livermore, California 

(Received February 19, 1959) 

is by which it is possible to calculate exactly the behavior of several hundred inter-
claSSical The of this many-body problem is carried out by an electronic computer 

which solves numencally the simultaneous equations of motion. The limitations of this numerical scheme 
are enum.erat:? and important steps in the program efficient on the computers are indicated. 
The. al?phcablhty ?f to the solutIOn of many problems in both equilibrium and nonequilibrium 
statistical mechamcs IS discussed. 

INTRODUCTION 

ONE of the great difficulties in the present day 
theoretical attempts to describe physical and 

chemical systems is the inadequate mathematical 
apparatus which has been available to solve the many-
body problem. Thus, although the properties of an 
isolated molecule are well established and the ele-
mentary processes which occur when two such mole-
cules interact are described by well-known laws the 
behavior of systems of many interacting 
cannot, in general, be dealt with theoretically in an 
exact way. Even a three-particle system presents great 
analytical difficulty. Since these difficulties are not 
conceptual but mathematical, high-speed computers 
are well suited to deal with them. 

To take explicitly into account the interaction of a 
fairly large number of particles involves either multi-
d.imensional integrals or high-order differential equa-
tIOns. These mathematical expressions can be reduced 
to manageable equations for dilute systems since, in 
that case, the behavior of the system can be conceived 
?f as succession of essentially unrelated binary 
mteractions. In the case of nondilute systems that is 
when the range of intermolecular forces is small 
compared to the average intermolecular distance 
analytical theories have been developed to 
mate the many-body problem in various ingenious ways. 

* Work was performed under auspices of the U. S. Atomic 
Energy Commission. 

The most common scheme is to let a representative 
particle experience the potential of the rest of the parti-
cles held fixed in an average position. This average 
potential can be obtained from a definite physical 
model or in a self-consistent way. The next better 
approximation in such a scheme would be to let two 
molecules move in the potential of the rest of the 
system. This procedure and several variations of it 
have indeed been worked out for various physical 
models. However, the calculations are so complicated 
that it is necessary to seek numerical solutions by 
means of automatic computers. It is interesting to note 
that to calculate the actual dynamics of the many-
particle system is, in some cases, not a greater problem 
than the calculations required for the models. 

One of the aims of the exact numerical solution is to 
compare the results with these analytical theories. 

are more clean-cut than comparisons 
WIth expenments on natural systems because it is 
possible to set up artificial many-particle systems with 
interactions which are both simple and exactly known 
and for which analytical theories are relatively easy 
to work out. Furthermore, much more detailed in-
forma.tio.n is from calculations of this type 
than It IS ever possIble to get from real experiments. 
?ince the. detailed history of the motion of each particle 
IS accessIble, such a calculation makes it possible to 
check analytical theories at various critical inter-
mediate points. Beyond determining which analytical 
schemes best approximate many-particle behavior, 
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distorted since the maximum size a crystallite can have 
would be, say, 500 particles. Equally serious is the 
necessity that this SOO-particle crystal solidifies not 
only in a given lattice type but also in a special orienta-
tion with respect to the boundary, affecting its proba-
bility of appearance. Thus the only way solids formed 
from a melt can differ is by a translational displacement. 
Evidence will be presented that in order to examine the 
properties of a heterogeneous system it is necessary to 
use many more particles than in the case of a single 
phase system. In the homogeneous solid region itself 
various lattice types can be studied to overcome 
the above mentioned difficulty and the one of lowest 
free energy determined. Examples of this have been 
worked out. 

Although small systems can represent an infinite 
system remarkably well, the statistical fluctuations of 
any property (the pressure, for example) must be 
examined. From the point of view of making most 
efficient use of computing time, these statistical 
fluctuations are best reduced by averaging a large 
number of calculations with a small system rather than 
making a smaller number of calculations in a large 
system. 

Both the Monte Carlo method and the dynamical 
method can have difficulty due to the slow convergence 
of the system to the equilibrium configuration. In the 
dynamical method, with presently available machines, 
it is practical to follow a small system of molecules for 
only about one millimicrosecond at low temperature 
(the order of a few hundred thousand collisions for a 
32-particle system). It is sometimes a worry whether 
a system is in equilibrium or whether it is in a meta-
stable state. This question can usually be resolved by 
starting the system in various initial configurations and 
observing whether the same final state is reached. 

Still another limitation on the method which is con-
nected with the smallness of the system, is that mole-
cules with long-range potentials cannot be adequately 
studied since the field of one molecule would extend 
outside the periodic box. This limitation could be 
probably overcome by introducing approximations 
similar to those used in analytical theories. That is, the 
particles could interact properly at short range but the 
long-range interactions could be replaced by an average 
potential. A direct numerical solution of the quantum-
mechanical many-body problem has not been at-
tempted. The present calculation is restricted, in its 
application to real systems, to those for which perturba-
tion theory from the classical equations is adequate. 

DESCRIPTION OF THE METHOD 

In order to follow the dynamics of a many-particle 
system with any sort of interaction potential, one could 
at any instant calculate the force on each particle by 
considering the influence of each of its neighbors. The 
trajectories could then be traced by allowing the 
particles to move under a constant force for a short-

time interval and then by recalculating a new force 
to apply for the next short-time interval, and so on. 
This method could also handle particles with aniso-
tropic potentials and with rotational and other degrees 
of freedom, provided that classical description is ade-
quate. The accuracy of such calculations would depend 
on the length of the time interval. Since it was desired 
in the present work to make no approximations in the 
calculations, a simple potential was chosen for which 
the force is truly constant (zero) for short-time inter-
vals during which the particles are allowed to move. 
Although it is feasible to deal with realistic potentials, it 
entails a considerable slowing down of the calculation 
and involves the problem of having to cope with re-
pulsive collisions where the forces the particles ex-
perience change very rapidly. 

The most general interaction potential which has so 
far been used is the square-well potential, V, 

V= 00 

V=Vo 
V=O 

r<<TI 

O"I<r<<T2 

r><T2, 

where r is the magnitude of the separation of the 
centers of a pair of molecules and <TI, <T2, and Vo are 
constants. The hard sphere potential is a special case. 
This interaction potential allows the sequence of events 
in a many-body system to be described by a series of 
two-body collisions. That is, since a particle does not 
experience any change in velocity except at the instant 
when it is separated from another particle by <TI or <T2, 

there will never, in a finite system, be more than two 
particles at a time whose velocities are changing. This 
potential has the qualitative features of a real molecular 
potential and still some elements of simplicity which 
make the analytical theories relatively easy to apply. 
Furthermore, it is possible to make theoretical exten-
sions of the results to more realistic potentials by 
perturbation techniques. It is important to develop 
such perturbation techniques in order to overcome one 
of the most severe limitations of numerical schemes, 
namely, that they are only valid for the specific case 
solved. 

In the dynamical calculation the molecules are all 
given initial velocities and positions. From then on, 
of course, the future behavior of the system is deter-
mined. Various initial conditions have been used but 
most frequently the molecules have been given equal 
initial kinetic energies with a random selection of the 
three direction cosines of the velocity and initial 
positions corresponding to a face-centered cubic lattice. 
For such a lattice the number of molecules will be 
multiples of 4 which is the number of lattice sites in a 
basic cube. The box at whose sides the periodic bound-
ary conditions are' applied has usually been taken to be 
a cube with edges of unit length so that the number of 
molecules typically used have been 32, 108, 256, and 
500; that is, 4n3• The specific volume of the system, v, 
compared to the close-packed specific volume, Vo, is 
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Soft sphere potential  
(ν=1) 

No attractive part 

Soft sphere potential  
(ν=12) 

The soft-sphere potential 
becomes progressively 
harder as ν increases  

 
No attractive part 

Hard-sphere potential 
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relatively free diffusion, while in the low g(u) states 
diffusion is much restricted. 

The conjecturel that some high-order virial coefficients 
might be negative is not necessarily supported by the 
present results, since only to the left of the apparent 
transition do the latter give lower pressures than the 
five-term virial expression. 

Some further investigation for both 32 molecule and 
larger systems will be made on the present calculators, 
but a satisfactory determination of the detailed behavior 
in the apparent transition region will require higher 
speed equipment. The possibility that a similar phe-
nomenon for hard spheres in two dimensions may have 
been missed in the original Monte Carlo calculationsl 

will also be investigated. 
* Work performed under the auspices of the U. S. Atomic 

Energy Commission. 
1 M. N. Rosenbluth and A. W. Rosenbluth, J. Chern. Phys. 22, 

881 (1954). 
2 Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, J. 

Chern. Phys. 21, 1087 (1953). 
3 B. J. Alder and T. Wainwright, J. Chern. Phys. 27,1208 (1957). 
4 W. W. Wood and F. R. Parker, J. Chern. Phys. 27, 720 (1957). 

This paper discusses the Monte Carlo method in some detail, as 
well as giving computational results for Lennard-Jones molecules. 

6 Kirkwood, Maun, and Alder, J. Chern. Phys. 18, 1040 (1950). 

Phase Transition for a Hard 
Sphere System 

B. J. ALDER AND T. E. WAINWRIGHT 

University of California Radiation LalJoratory, Livermore, California 
(Received August 12, 1957) 

A CALCULATION of molecular dynamic motion 
has been designed principally to study the re-

laxations accompanying various nonequilibrium phe-
nomena. The method consists of solving exactly (to the 
number of significant figures carried) the simultaneous 
classical equations of motion of several hundred par-
ticles by means of fast electronic computors. Some of the 
details as they relate to hard spheres and to particles 
having square well potentials of attraction have been 
described.l •2 The method has been used also to calculate 
equilibrium properties, particularly the equation of 
state of hard spheres where differences with previous 
Monte Carl03 results appeared. 

The calculation treats a system of particles in a 
rectangular box with periodic boundary conditions.4 

Initially, the particles are in an ordered lattice with 
velocities of equal magnitude but with random orienta-
tions. After a very short initial runl •2 the system reached 
the Maxwell-Boltzmann velocity distribution so that 
the pressure could thereafter be evaluated directly by 
means of the virial theorem, that is by the rate of change 
of the momentum of the colliding particles.l •2 The 
pressure has also been evaluated from the radial distri-
bution function.6 Agreement between the two methods 
is within the accuracy of the calculation. 

A 32-particle system in a cube and initially in a face-
centered cubic lattice proceeded at about 300 collisions 
an hour on the UNIVAC. For comparison a 96-particle 
system in a rectangular box and initially in a hexagonal 
arrangement has been calculated, however only at high 
densities so far. No differences in the pressures can be 
detected. It became apparent that some long runs were 
necessary at intermediate densities, accordingly the 
IBM-704 was utilized where, for 32 particles, an hour is 
required for 7000 collisions. Larger systems of 108, 256, 
and 500 particles can also conveniently be handled; in 
an hour 2000, 1000, and 500 collisions, respectively, can 
be calculated. The results for 256 and 500 particles are 
not now presented due to inadequate statistics. 

The equation of state shown in Fig. 1 of the ac-
companying paper6 for 32 and 108 particles is for the 
intermediate region of density, where disagreement was 
found with the previous Monte Carlo results. The 
volume, v, is given relative to the volume of close 
packing, Vo. Plotted also are the more extended Monte 
Carlo results; the agreement between these three sys-
tems is within the present accuracy of the pressure 
determination. This agreement provides an interesting 
confirmation of the postulates of statistical mechanics 
for this system. 

Figure 1 of the accompanying paper shows two 
separate and overlapping branches. In the overlapping 
region the system can, at a given density, exist in two 
states with considerably different pressures. As the 
calculation proceeds the pressure is seen to jump sud-
denly from one level to the other. A study of the posi-
tions of the particles reveals that as long as the system 
stays on the lower branch of the curve the particles are 
all confined to the narrow region in space determined by 
their neighbors, while on the upper branch of the curve 
the particles have acquired enough freedom to exchange 
with the surrounding particles. Since the spheres are 
originally in ordered positions, the system starts out on 
the lower branch; the first jump to the upper branch can 
require very many collisions. The trend, as expected, is 
that at higher densities more collisions are necessary for 
the first transition, however, there are large deviations. 
At vlvo= 1.60, 5000 collisions were required; at 1.55, 
25000; while at 1.54 only 400; at 1.535, 7000; at 1.53, 
75 000; and at 1.525, 95 000. Runs in excess of 200 000 
collisions at vivo of 1.55 and 1.53 have not shown any 
return to the lower branch, while at 1.525 the system has 
returned several times, however only for relatively few 
collisions. The lowest density at which the system did 
not jump to the upper curve is at 1.50, however the run 
extends only to 50 000 collisions and at that density it 
might take very many collisions before the appropriate 
fluctuation occurs for a molecule to escape from its 
neighborhood. For comparison, the first jump for 108 
particles occurred for vlvo= 1.55 and 1.60 at about 2000 
collisions. This is fewer collisions per particle than for 
the smaller system and is indicative of larger possible 
density fluctuations in larger systems. Apparently, the 
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Discovery of non-trivial phase transitions,  
not evident just looking the equations 



It is useful to divide realistic potentials in separate 
attractive and repulsive components 

Attractive interaction 
Van der Waals-London or fluctuating dipole interaction 

Classical argument 

J. D. Jackson 
Classical Electrodynamics (Chapter 4) 

John Wiley and Sons  

C. Kittel 
Introduction to Solid State Physics (3rd Edition) 

John Wiley and sons Electric field produced by dipole 1 on position 2 

Instantaneous dipole induced by this field on 2 

Potential energy of the dipole moment 

Is the unit vector directed from 1 to 2 

Always attractive 



It is useful to divide realistic potentials in separate 
attractive and repulsive components 

Attractive interaction 
Van der Waals-London or fluctuating dipole interaction 

Quantum argument 

C. Kittel 
Introduction to Solid State Physics (3rd Edition) 

John Wiley and sons 

Hamiltonian for a system of two interacting oscillators 

Where the perturbative term is the dipole-dipole interaction 

From first-order perturbation theory, we can compute the change in energy 



It is useful to divide realistic potentials in separate 
attractive and repulsive components 

Repulsive interaction 

As the two atoms are brought together, their 
charge distribution gradually overlaps, 

changing the energy of the system.  
The overlap energy is repulsive due to the 

Pauli exclusion principle:  
No two electrons can have all their 

quantum numbers equal 
When the charge of the two atoms overlap there is a tendency for electrons from atom B to 

occupy in part states of atom A already occupied by electrons of atom A and viceversa.  

Electron distribution of atoms with closed shells can overlap only if accompanied by a 
partial promotion of electrons to higher unoccpied levels  

 Electron overlap increases the total energy of the system and gives a repulsive 
contribution to the interaction 



The repulsive interaction is exponential 

Born-Mayer potential 



It is useful to divide realistic potentials in separate 
attractive and repulsive components 

 Buckingham potential 

Because the exponential term converges to a constant as              , 
while the  term diverges, the Buckingham potential “turns over” as  

becomes small.  
This may be problematic when dealing with a structure with very short 

interatomic distances 

F. Jensen 
Introduction to Computational Chemistry 

John Wiley and Sons  
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Figure 2.11 Comparison of Evdw functionals for the attractive part of the H2—He potential



It is useful to divide realistic potentials in separate 
attractive and repulsive components 

 Lennard-Jones potential 

The repulsive term has no theoretical justification.  
It is used because it approximates the Pauli repulsion well, and 
is more convenient due to the relative computational efficiency 

of calculating r12 as the square of r6. 

F. Jensen 
Introduction to Computational Chemistry 

John Wiley and Sons  
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Comparison of effective two body potentials  
 Buckingham potential 
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Lennard-Jones 

F. Jensen 
Introduction to Computational Chemistry 

John Wiley and Sons  

Morse 



The Lennard-Jones potential 

We must emphasize that these are not the values which 
would apply to an isolated pair of argon atoms 

For instance, to simulate liquid Argon, reasonable values are:  

The well depth is often quoted as in units of temperature, 
where       is the Boltzmann’s constant 



The Lennard-Jones potential 

The well depth is often quoted as in units of temperature, 
where       is the Boltzmann’s constant 

Suitable energy and length parameters for interactions 
between pairs of identical atoms in different molecules 

WARNING:  
The parameters are not 

designed to be transferable: 
the C atom parameters in CS2 

are quite different from the 
values appropriate to a C in 

graphite 

Interactions between unlike 
atoms in different molecules 
can be approximated by the 

Lorentz-Berthelot mixing rules 
(for instance, in CS2) 



Is realistic the Lennard-Jones potential? 

Dashed line: 12-6 effective Lennard-Jones potential for liquid Ar 
Solid line: Bobetic-Barker-Maitland-Smith pair potential for liquid Ar 

(derived after considering a large quantity of experimental data) 

Attractive tail at large 
separations, due to 
correlation between 

electron clouds 
surrounding the 

atoms. 
Responsible for 

cohesion in 
condensed phases 

Steeply rising 
repulsive wall at 
short distances, 

due to non-bonded 
overlap between 

the electron clouds 

Lennard-Jones 

Optimal 



Separation of the Lennard-Jones potential into 
attractive and repulsive components 

Steeply rising 
repulsive wall at 
short distances, 

due to non-bonded 
overlap between 

the electron clouds 

Attractive tail at large 
separations, due to 
correlation between 

electron clouds 
surrounding the 

atoms. 
Responsible for 

cohesion in 
condensed phases 



Separation of the Lennard-Jones potential into 
attractive and repulsive components: energy scales 

repulsive 

attractive 



Beyond the two body potential: 
the Axilrod-Teller potential 
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interaction is the third-order triple-dipole term (uDDD). The other terms collectively 

(uDDQ + uDQQ  + u QQQ + u DDD4) are the higher multipole contributions. 

The triple -dipole potential can be evaluated from the formula proposed by Axilrod 

and Teller [Axi43]: 

( )
( )3

coscoscos31

jkikij

kjiDDD
DDD rrr

v
u

θθθ+
=                                   (2.17) 

where the angles and intermolecular separations refer to a triangular configuration of 

atoms (see Figure 2.1) and where vDDD is the non-additive coefficient which can be 

estimated from observed oscillator strengths [Leo75]. 

 

 

Figure 2.1 Triplet configuration of atoms i, j and k . 
 

The contribution of the AT potential can be either negative or positive depending on 

the orientation adopted by the three atoms. The potential is positive for an acute 

triangular arrangement of atoms whereas it is negative for near linear geometries. The 

potential can be expected to make an overall repulsive contribution in a close-packed 

solid and in the liquid phase.  The r-3 terms indicate that the magnitude of the potential 

is very sensitive to intermolecular separation.  

Bell [Bel70] has derived the other multipolar non-additive third-order potentials: 

Axilrod-Teller potential: 
Three body potential that results from a third-order perturbation correction to 

the attractive Van der Waals-London dipersion interactions  



For ions or charged particles, the long range 
Coulomb interaction has to be added 

Where            are the charges of ions    and   ,      
and       is the permittivity of free space 



How to deal with molecular systems 

Solution 
Treat the molecule as a rigid or semi-rigid unit with fixed bond-lengths 

and, sometimes fixed bond and torsion angles 

Bond vibrations are of very high frequency (difficult to handle in classical 
simulations), but of low amplitude (unimportant for many liquid properties) 

A diatomic molecule with a 
strongly binding interatomic 

potential energy surface can be 
simulated by a dum-bell with a 

rigid interatomic bond 

Justification 

MODEL SYSTEMS A N D  INTERACTION POTENTIALS 13 

Fig. 1.6 An atom-atom model of a diatomic molecule. 

pairwise contributions from distinct sites a in molecule i ,  at position ria, and b 
in molecule j, at position rjb 

Here a, b take the values 1,2, vab is the pair potential acting between sites a and 
b, and rab is shorthand for the inter-site separation rab = Iris -',,,I. 

The interaction sites are usually centred, more or less, on the positions of the 
nuclei in the real molecule, so as to represent the basic effects of molecular 
'shape'. A very simple extension of the hard-sphere model is to consider a 
diatomic composed of two hard spheres fused together [Streett and Tildesley 
19761, but more realistic models involve continuous potentials. Thus, 
nitrogen, fluorine, chlorine etc. have been depicted as two 'Lennard-Jones 
atoms' separated by a fixed bond length [Barojas et al. 1973; Cheung and 
Powles 1975; Singer, Taylor, and Singer 19771. Similar approaches apply to 
polyatomic molecules. 

The description of the molecular charge distribution may be improved 
somewhat by incorporating point multipole moments at the centre of charge 
[Streett and Tildesley 19771. These multipoles may be equal to the known 
(isolated molecule) values, or may be 'effective' values chosen simply to yield a 
better description of the liquid structure and thermodynamic properties. It is 
now generally accepted that such a multipole expansion is not rapidly 
convergent. A promising alternative approach for ionic and polar systems, is to 
use a set of fictitious 'partial charges' distributed 'in a physically reasonable 
way' around the molecule so as to reproduce the known multipole moments 
[Murthy, O'Shea, and McDonald 19831, and a further refinement is to 



Interaction between nuclei and electronic 
charge clouds of a pair of molecules 
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Fig. 1.6 An atom-atom model of a diatomic molecule. 

pairwise contributions from distinct sites a in molecule i ,  at position ria, and b 
in molecule j, at position rjb 

Here a, b take the values 1,2, vab is the pair potential acting between sites a and 
b, and rab is shorthand for the inter-site separation rab = Iris -',,,I. 

The interaction sites are usually centred, more or less, on the positions of the 
nuclei in the real molecule, so as to represent the basic effects of molecular 
'shape'. A very simple extension of the hard-sphere model is to consider a 
diatomic composed of two hard spheres fused together [Streett and Tildesley 
19761, but more realistic models involve continuous potentials. Thus, 
nitrogen, fluorine, chlorine etc. have been depicted as two 'Lennard-Jones 
atoms' separated by a fixed bond length [Barojas et al. 1973; Cheung and 
Powles 1975; Singer, Taylor, and Singer 19771. Similar approaches apply to 
polyatomic molecules. 

The description of the molecular charge distribution may be improved 
somewhat by incorporating point multipole moments at the centre of charge 
[Streett and Tildesley 19771. These multipoles may be equal to the known 
(isolated molecule) values, or may be 'effective' values chosen simply to yield a 
better description of the liquid structure and thermodynamic properties. It is 
now generally accepted that such a multipole expansion is not rapidly 
convergent. A promising alternative approach for ionic and polar systems, is to 
use a set of fictitious 'partial charges' distributed 'in a physically reasonable 
way' around the molecule so as to reproduce the known multipole moments 
[Murthy, O'Shea, and McDonald 19831, and a further refinement is to 

Complicated function if relative positions      and     and orientations       and 

Pair potential acting 
between      and   

Simplified “atom-atom” or “site-site” approach 
Pairwise contributions from distinct sites      in molecule      at position       , 

and site     in molecule     at position     

Interaction sites: 
usually centered 

more or less on the 
position of the nuclei 
in the real molecule 

Nitrogen, Fluorine,… 
typically considered as 

two Lennard-Jones 
atoms separated by 
fixed bond-lengths 



Incorporate pole multipole moments at the center of 
charge to improve molecular charge distribution  

Might be equal to the known (isolated molecule) variable  
or 

May be “effective” values chosen to give better description of the 
thermodynamic properties 

Alternative 
Use “partial charges” distributed in a “physically 

reasonable way” around the molecule to reproduce 
the known multipole moments 

14 INTRODUCTION 

distribute fictitious multipoles in a similar way [Price, Stone, and Alderton 
19841. For example, the electrostatic part of the interaction between nitrogen 
molecules may be modelled using five partial charges placed along the axis, 
while, for methane, a tetrahedral arrangement of partial charges is appropri- 
ate. These are illustrated in Fig. 1.7. For the case of N,, the quadrupole 
moment Q is given by [Gray and Gubbins 19841 

Fig. 1.7 Partial charge models. (a) A five-charge model for N2. There is one charge at the bond 
centre, two at the positions of the nuclei, and two more displaced beyond the nuclei. Typical values 
are (in units of the magnitude of the electronic charge) z = +5.2366, z' = -4.0469, giving 
Q = - 4.67 x lo-*' Cm2 [Murthy et al. 19831. (b) A fivecharge model for CH,. There is one 
charge at the centre, and four others at the positions of the hydrogen nuclei. A typical value is 
z = 0.143 giving 0 = 5.77 x lo-'' Cm3 [Righini, Maki, and Klein 19811. 

Electrostatic part of the interaction 
between N2 molecule might be modelled 
using five partial charges placed along 

the axis 
 

(first non-vanishing moment: quadrupole) 
 

For methane, a tetrahedral arrangement of 
partial charges is appropriate 

 
(first non-vanishing moment: octupole) 



For large molecules, the complexity can be reduced 
by fixing some internal degrees of freedom 

MODEL SYSTEMS A N D  INTERACTION POTENTIALS 17 

Fig. 1.8 (a) A model of butane [Ryckaert and Bellemans 19751. (b) The torsional potential 
[Marechal and Ryckaert 19831. 

tions may even be restricted to nearest neighbours only [O'Shea 1978; NosC, 
Kataoka, Okada, and Yamamoto 1981). Ultimately, this leads us to the spin 
models of theoretical physics, as typified by the Heisenberg, Ising, and Potts 
models. These models are really attempts to deal with a simple quantum 

Model for butane: 
CH3-CH2-CH2-CH3 

Represent the molecule as a four-center 
molecule with fixed bond-lengths and 

bond-bending angles derived from known 
experimental data 

Whole group of atoms (CH3 and CH2) are 
condensed into spherically symmetric 

effective “united atoms” 

Interaction between such groups may be 
represented by Lennard-Jones potential 

with empirically chosen parameters 

C1-C2, C2-C3, and C3-C4 bond lengths fixed 

    and     angles fixed (can be done by 
constraining the distances C1-C3 and C2-C4 

Just one internal degree of freedom is left 
unconstrained: the rotation about C2-C3 (the    angle) 

For each molecule, an extra term in the 
potential energy appears in the Hamiltonian 

Trans-conformer 
butane 

Gauge 
conformations 



Reduced units 
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Lennard-Jones parameters: 
-  He:  
 
 
 
-  Ar: 
 

The functional form is the 
same in both cases.  
Only the parameters 

change 

If the simulation for He 
predicts a phase 

transition at 
 

The same phase 
transition will occur for 

Ar, although at a different 
temperature  

To know these critical points, should we 
perform two different simulations for 

essentially the same interatomic potential? 
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Reduced units

The use of reduced units avoids the possible embarrasement 
of conducting essentially duplicate simulations 

The interatomic potential is completely specified by two parameters: 

Take them as fundamental units for energy and length.  
Units for other quantities (pressure, time, momentum,…) follow directly 

The molecular dynamic simulation 
is carried out only once. 

The transformation from reduced 
to other units, will be done 

afterwards, taking into account the 
real values of  



Calculating the potential 
2

I. ENERGY FUNCTIONAL FOR A DIELECTRIC INSIDE AN ELECTRIC FIELD.

C The potential energy will be stored in a variable V,
C which is zeroed initially

V = 0.0

C Outer loop begins
DO 100 I = 1, N - 1

C We assume that the coordinate vectors of our atoms
C are stored in three FORTRAN arrays
C RX(I), RY(I), and RZ(I),
C with the particle index I
C running from 1 to N (the number of particles)

RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)

C Inner loop begins.
C We take care to count each pair only once

DO 99 J = I + 1, N

C Temporary variables RXI, RYI, RZI are used
C not to make a large number of array references in the inner loop

RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)

RIJSQ = RXIJ ** 2 + RYIJ ** 2 + RZIJ ** 2

C For the Lennard-Jones potential, it is useful to
C have precomputed the value of sigma^2,
C which is stored in the variable SIGSQ

SR2 = SIGSQ / RIJSQ
SR6 = SR2 * SR2 * SR2
SR12 = SR6 ** 2
V = V + SR12 - SR6

99 ENDDO

100 ENDDO

C The factor 4 x epsilon_0, which appears in every pair potential term,
C is multiplied only once, at the very end, rather than many times
C within the crucial inner loop.

V = 4.0 * EPSLON * V



Ionic systems: the Born-Mayer potential Ionic SystemsIonic Systems

“universal” constants

1st+2nd neighbors

Coulomb 
attraction 

Repulsive interaction 
between electronic 

clouds 
V 

R 

Repulsive, VR 

Coulomb, VC 

Total, V 

Equilibrium 
distance 

Ro 

Bonding energy 
V(Ro) 

Ionic radii 

Two universal constants 



Model adequate only for very ionic molecules.  
               differs less than 10% from the experimental value for NaCl 

•  In this model, ions are 
considered spherical 

•  Improvement: consider 
possible deformations of their 
charge distributions 
(polarizabilities)  

•  With these extra polarizability 
terms, the errors in            are 
smaller than 3%. 

- + R 

R→∞ + - 

Ionic systems: the Born-Mayer potential. 
Validity of the model 



Shell model Shell Model.Shell Model.



Shell model: linear chain 

Each unit cell of lattice parameter    
contains two atoms: 

One Cation of mass        and static charge 
One Anion of mass         and static charge 

Anion: 
Spherical atomic shell of negligible mass and 
charge        coupled to an ione core of charge       

and mass   

Charge neutrality 

The cation is connected to the 
anion through a string of force 

constant  

The anion core and shell are 
connected through a spring 
of force constant      

For the               cell, the 
relative displacements of 
the cation, ion core and 

ion-shell are respectively  

Courtesy of Ph. Ghosez,  
Troisime Cycle de la Physique en Suisse 

Romande  



Shell model 

ABO3 perovskite 

The first force constant allows to 
describe vibrations around an 

equilibrium position 

The second force constant, that 
accounts for the polarizability of the 
electronic cloud, acknowledges the 

internal structure of the atom 

Parameters can be fitted
 to experiment

Spring constant

Basic idea:  Vibrations 
around an equilibrium point

!(k)

These parameters 
can be fitted to 

experiment 



Covalent model without bond breaking  

Bond stretching 

Morse 
potential 

Harmonic 
potential 

Bond bending 

Bond torsion 

Covalent Bond. Bonding Potentials.Covalent Bond. Bonding Potentials.

Bond Stretching

Bond Bending

Bond Torsion

Morse Potential.

Van der Waals 

Hydrogen bridge 

Electrostatic 


