

New pressure-induced photoluminescence phenomena in Mn²⁺ and Cr³⁺ materials

Joint 21st AIRAPT and 45th EHPRG

Ignacio Hernández and Fernando Rodríguez

New pressure-induced photoluminescence phenomena in Mn²⁺ and Cr³⁺ materials

Joint 21st AIRAPT and 45th EHPRG

Ignacio Hernández and Fernando Rodríguez

- Motivation.Objectives
- Strategies. Experimental
- Results
 - Fluorites (MF₂: Mn²⁺, M=Ca, Sr, Ba)
 - Elpasolites (A₂BMF₆: Cr³⁺, A= Rb,K,Tl; B=Na,K; M=Ga, In, Cr)
 - MnF₂
- Conclusions

Motivation.

- Transition Metal lons: Cr³⁺, Ti³⁺, Mn²⁺,...

- Luminescent devices: lasers, scintillators, organic,...
- Usually impurities
- Pure materials are usually not luminescent at RT $\,$ $\,$ $\,$ $\,$ $\,$ $\,$
- Pure or concentrated would provide more emission \odot

- No general rule to predict *a priori* wheter a material will be luminescent or not \bigotimes

- No general rule to predict accurately the optical (in particular photoluminescence) spectrum

Objectives.

Twofold aim:

1- Study of the mechanisms governing photoluminescence (PL) in transition-metal ions.

- Non-radiative de-excitation in impurities
- Non-radiative de-excitation in concentrated materials
- Structure-spectra correlations
- 2- Induction of new PL phenomena.
 - * Photoluminescence at low temperature or room temperature.
 - * Spectrum transformations. Changes in electronic configuration.

Strategies.

Correlations between optical phenomena and structure

- Impurities: PL in Ca_{1-x}Sr_xF₂: Mn²⁺ and BaF₂: Mn²⁺
 - Temperature dependence
 - Pressure experiments
- Pure transition-metal ions: MnF₂
 - Single-crystal pressure experiments
 - Effect of grain size reduction (milling)
- ◆ Spectrum-structure corr.: A₂BMF₆: Cr³⁺ fluoroelpasolites
 - Structural and optical characterization (correlations)
 - Pressure experiments

Adaptation of spectroscopic techniques to high pressure.

Experimental.

Adaptation of spectroscopic techniques to high pressure.

- Time resolved
- Emission
- Excitation
- PL lifetime
- (Absorption)

New pressure-induced photoluminescence phenomena in Mn²⁺ and Cr³⁺ materials

Ca_{1-x}Sr_xF₂: Mn²⁺ and BaF₂: Mn²⁺ Fluorites

Non-radiative phenomena in impurity systems

Results

Crystal field states for transition-metal ions.

Ca_{1-x}Sr_xF₂: Mn²⁺ band structure.

 $Ca_{1-x}Sr_{x}F_{2}$: Mn^{2+}

Mn²⁺ (d⁵⁺)

Cubal (hexahedral) symmetry

unlike ABF₃: Mn²⁺ perovskites: octahedral <MnF₂ (q-oct)>

⁴T_{1g} ⁴E_g 4_D 4_{P} ${}^{4}A_{1g}, {}^{4}E_{g}$ 4G ${}^{4}T_{2g}$ E/B Ц √⁴T_{2g} Green I Red PL Punping ${}^{4}T_{1g}$ ⁶A_{1g} 6S 10Dq/B

 $10Dq(ML_8) < 10Dq(ML_6)$

 $[10 Dq(ML_8)\approx 1/2 \ 10 Dq(ML_6)]$

Higher gap \rightarrow smaller non-radiative transition probability.

$Ca_{1-x}Sr_{x}F_{2}$: Mn²⁺ PL variations along the series at RT.

PL at room temperature disappears along the series for x > 0.75

SrF₂: Mn²⁺ is not PL at RT

$Ca_{1-x}Sr_{x}F_{2}$: Mn²⁺ PL variations along the series at RT.

PL at room temperature disappears along the series for x > 0.75

SrF₂: Mn²⁺ is not PL at RT

Strong correlation between the PL Intensity and PL Lifetime Drop for x > 0.5

Multiphonon non-radiative processes

Ca_{1-x}Sr_xF₂: Mn²⁺ PL variations with temperature

PL disappears upon T \uparrow

Similar behaviour for all the crystals

 $T_{quenching} \downarrow$ with Strontium content \uparrow

Ca_{1-x}Sr_xF₂: Mn²⁺ PL variations with temperature

PL disappears upon T 1

Similar behaviour for all the crystals

 $T_{quenching} \downarrow$ with Strontium content \uparrow

Correlation between I and $\boldsymbol{\tau}$

Non-radiative de-excitation processes thermal activation

Dexter-Klick-Russell model. Spectroscopic study.

$Ca_{1-x}Sr_{x}F_{2}$: Mn²⁺

Dexter-Klick-Russell criterion for the absence of PL

$$\Lambda = \frac{1}{2} \frac{\mathsf{E}_{abs} - \mathsf{E}_{em}}{\mathsf{E}_{abs}} = \frac{1}{2} \frac{\Delta \mathsf{E}_{stokes}}{\mathsf{E}_{abs}}$$

Dexter-Klick-Russell model. Spectroscopic study.

Dexter-Klick-Russell criterion for the absence of PL

 $\Lambda = \frac{1}{2} \frac{\mathsf{E}_{abs} - \mathsf{E}_{em}}{\mathsf{E}_{abs}} = \frac{1}{2} \frac{\Delta \mathsf{E}_{stokes}}{\mathsf{E}_{abs}}$

Very low Λ with no physical meaning

No significant correlations ${\rm E_{em}, E_{abs}, \, \Delta E_{Stokes}}$ vs. x

Dexter-Klick-Russell model. Spectroscopic study.

Dexter-Klick-Russell criterion for the absence of PL

$$\Lambda = \frac{1}{2} \frac{\mathsf{E}_{abs} - \mathsf{E}_{em}}{\mathsf{E}_{abs}} = \frac{1}{2} \frac{\Delta \mathsf{E}_{stokes}}{\mathsf{E}_{abs}}$$

$$\tau_{nr}^{-1} = p \cdot e^{-\frac{E_a}{KT}}$$

Very low Λ with no physical meaning

No significant correlations ${\rm E_{em}, E_{abs}, \ \Delta E_{Stokes}}$ vs. x

Intensity quenching. Activation energy, E_a.

$$Ca_{1-x}Sr_xF_2$$
: Mn²⁺

$$\eta = \frac{T_{rad}^{-1}}{T_{rad}^{-1} - T_{nr}^{-1}} = \frac{1}{1 + A \cdot e^{-\frac{E_a}{KT}}}$$

$$\Rightarrow I_{PL}(T) = I_{PL}(0) \cdot \eta(T)$$

Intensity quenching. Activation energy, E_a.

$$Ca_{1-x}Sr_{x}F_{2}$$
: Mn²⁺

$$\eta = \frac{T_{rad}^{-1}}{T_{rad}^{-1} - T_{nr}^{-1}} = \frac{1}{1 + A \cdot e^{-\frac{E_a}{KT}}}$$

 $\Rightarrow I_{PL}(T) = I_{PL}(0) \cdot \eta(T)$

 $ln[I_{PL}(T)^{-1} - I_{PL}(0)^{-1}]$ vs. $1/T \rightarrow E_a$

Intensity quenching. Activation energy, E_a.

$$\eta = \frac{T_{rad}^{-1}}{T_{rad}^{-1} - T_{nr}^{-1}} = \frac{1}{1 + A \cdot e^{-\frac{E_a}{KT}}}$$

 $\Rightarrow I_{PL}(T) = I_{PL}(0) \cdot \eta(T)$

 $ln[I_{PL}(T)^{-1} - I_{PL}(0)^{-1}]$ vs. $1/T \rightarrow E_a$

х	Activation energy, E _a			_
0	12500 K	8680 cm⁻¹	1.08 eV	
0.25	7400 K	5140 cm ⁻¹	0.64 eV	(
0.5	4800 K	3330 cm ⁻¹	0.41 eV	
0.75	3500 K	2430 cm ⁻¹	0.30 eV	_

PL Lifetime: E_a and p.

$$\tau^{-1}(T) = \tau_0^{-1} + \tau_{ED}^{-1} \operatorname{Coth} \frac{\hbar \omega_u}{2k_B T} + p \cdot e^{-\frac{E_a}{k_B T}}$$

PL Lifetime: E_a and p.

$$\frac{\Delta w_{nr}(p,E_{a})}{w_{nr}} = \frac{\Delta p}{p} - \frac{\Delta E_{a}}{k_{B}T} = -28\Delta p - \frac{\Delta E_{a}}{k_{B}T}$$

$$\frac{\Delta w_{nr}(p,E_{a})}{w_{nr}} = \frac{\Delta p}{p} - \frac{\Delta E_{a}}{k_{B}T} = -28\Delta p - \frac{\Delta E_{a}}{k_{B}T}$$

$$\frac{\Delta w_{nr}(p,E_{a})}{w_{nr}} = \frac{\Delta p}{p} - \frac{\Delta E_{a}}{k_{B}T} = -28\Delta p - \frac{\Delta E_{a}}{k_{B}T}$$

$$\frac{\Delta w_{nr}(p,E_{a})}{w_{nr}} = \frac{\Delta p}{p} - \frac{\Delta E_{a}}{k_{B}T} = -28\Delta p - \frac{\Delta E_{a}}{k_{B}T}$$

Are NR processes due to the different composition? or are they a pure volume effect?

Ca_{0.5}Sr_{0.5}F₂: Mn²⁺. Pressure results.

Ca_{0.5}Sr_{0.5}F₂: Mn²⁺. Pressure results.

Abrupt redshift

Abrupt τ decrease

Hysteresis

Phase Transition effect: fluorite-to-cotunnite

Phase-transition sequence.

Cotunnite (α -PbCl₂)

~10 % Volume reduction

CaF₂ SrF₂ BaF₂

8.0 GPa ---**5.2 GPa**----**→**

1.7 Gpa

Cubal symmetry Eightfold coordination

Non-centrosymmetric Ninefold coordination O_h symmetry C_s symmetry

Ca_{0.25}Sr_{0.75}F₂: Mn²⁺. Pressure results.

Pressure-induced PL enhancement

 $\tau \sim$ 12 ms $\rightarrow \tau \sim$ 60 ms from P = 0 GPa to P \sim 4 GPa

Can we recover PL in non-PL systems?

SrF₂: Mn²⁺ and BaF₂: Mn²⁺ under pressure.

SrF₂: Mn²⁺

BaF₂: Mn²⁺

PL appearance in the fluorite phase & PL enhancement in the cotunnite phase

PL in the cotunnite phase!!!

General behaviour.

General behaviour.

General behaviour.

General behaviour.

General behaviour.

sults - Fluori

New pressure-induced photoluminescence phenomena in Mn²⁺ and Cr³⁺ materials

A₂BMF₆: Cr³⁺ Fluoroelpasolites

Optical spectra and structure correlations

Results

Electronic structure.

Spectroscopic results.

PL Intensity (arb. u.) PL Intensity (arb. u.)

Spectroscopic results.

States anti-resonance Close to ESCO

Spectroscopic results.

States anti-resonance Close to ESCO

∆10Dq/10Dq ~ 3%

From Rb_2KInF_6 : Cr^{3+} (*a* = 9.098 Å)

to K_2 NaGaF₆:Cr³⁺ (*a* = 8.255 Å).

Structural characterization: XRD.

Pure compounds of the series $\rightarrow R_{Cr-F}$

Structural characterization: XRD.

Powder XRD \Rightarrow low precission in x_F

Papers also report different x_F values.

Structural characterization: Raman.

Pure compounds of the series $\rightarrow R_{Cr-F}$

Local Grüneisen parameter:

$$\gamma_{a_{1g},\text{local}} = -\frac{\partial \ln \omega_{a_{1g}}}{\partial \ln V_{\text{CrF}_3^{3-}}} = -\frac{1}{3} \frac{\partial \ln \omega_{a_{1g}}}{\partial \ln R_{\text{Cr}-\text{F}}}$$

Woods et al. J.Phys. Chem. Sol. 54, 543 (1993)

$$\hbar\omega_{a_{1g}} = \hbar K R_{Cr-F}^{-3\gamma_{a_{1g},loca}}$$

		R _{Cr-F} (Å)	
	(cm ⁻¹)	XRD	
K ₂ NaCrF ₆	570±2	1.897 ± 0.001	
Rb ₂ KCrF ₆	545±2	1.89 ± 0.01	
Tl ₂ KCrF ₆	536±2	1.93 ± 0.01	

Structural characterization: Raman.

Reference

K₂NaCrF₆

Pure compounds of the series $\rightarrow R_{Cr-F}$

Local Grüneisen parameter:

$$\gamma_{a_{1g},\text{local}} = -\frac{\partial \ln \omega_{a_{1g}}}{\partial \ln V_{\text{CrF}_3^{3-}}} = -\frac{1}{3} \frac{\partial \ln \omega_{a_{1g}}}{\partial \ln R_{\text{Cr}-\text{F}}}$$

Woods et al. J.Phys. Chem. Sol. 54, 543 (1993)

$$\hbar\omega_{a_{1g}} = \hbar K R_{Cr-F}^{-3\gamma_{a_{1g},local}}$$

		R _{Cr-}	R _{Cr-F} (Å)	
	(cm ⁻¹)	a _{1g}	XRD	
K ₂ NaCrF ₆	570±2	1.897 ± 0.001	1.897 ± 0.001	
Rb ₂ KCrF ₆	545±2	1.911 ± 0.005	1.89 ± 0.01	
TI_2KCrF_6	536±2	1.920 ± 0.005	1.93 ± 0.01	

10Dq as a function of R_{Cr-F} .

10Dq vs. R_{Cr-F} for A_2BCrF_6 (Cr³⁺-pure compunds of the series)

10Dq as a function of R_{Cr-F}.

10Dq vs. R_{Cr-F} for A₂BCrF₆ (Cr³⁺-pure compunds of the series)

 $10Dq \propto R_{Cr\text{-}F} \text{ }^{\text{-}n}$

 $10Dq \propto R_{Cr-F}^{-3.3}$ instead of R_{Cr-F}^{-5} (calculated) for pure compunds

10Dq as a function of R_{Cr-F} .

10Dq vs. R_{Cr-F} for A₂BCrF₆ (Cr³⁺-pure compunds of the series)

 $10Dq \propto R_{Cr\text{-}F} \, ^{\text{-}n}$

10Dq $\propto R_{Cr-F}^{-3.3}$ instead of R_{Cr-F}^{-5} (calculated) for pure compunds

We are measuring the 1st band, but it is a spin-orbit mixture of states.

Only one of them varies as 10Dq

Structural correlations between *a*, R_{M-F} and ΔE_{Stokes} .

Structural correlations between *a*, R_{M-F} and ΔE_{Stokes} .

Highly scattered values

$$\mathsf{R}_{\mathsf{M}-\mathsf{F}} \downarrow \implies \Delta \mathsf{E}_{\mathsf{Stokes}} \uparrow$$
 (trend)

Structural correlations between *a*, R_{M-F} and ΔE_{Stokes} .

Rb₂KCrF₆

Emission + excitation

Pressure-induced transformations in the spectrum: Excited State Crossover.

Rb₂KCrF₆

Band-shape transformation. From broad band to narrow lines.

> Excited State Crossover

 $E_{ZPL}^{T} < E_{ZPL}^{E}$

 $E_{ZPL}^{T} < E_{ZPL}^{E}$

 $E_{ZPL}^{T} = E_{ZPL}^{E}$

ESCO occurs before the dominance of narrow lines

 $E_{ZPL}^{T} > E_{ZPL}^{E}$

ESCO occurs before the dominance of narrow lines

 $E_{ZPL}^{T} > E_{ZPL}^{E}$

Changes in PL Lifetime.

Changes in PL Lifetime.

Changes in PL Lifetime.

 $\Delta \mathsf{E} \uparrow \, \Rightarrow \, \tau^{\text{-1}} \downarrow$

New pressure-induced photoluminescence phenomena in Mn²⁺ and Cr³⁺ materials

MnF_2

PL in concentrated transition metal ion systems

Results

MnF₂ structure and energy states.

Tanabe-Sugano Diagram

Quasi-octahedral coordination

MnF₂ Luminescence at LT.

Excitation transfer to non-PL centers!

Excitons. PL traps in MnF₂.

Excitation migration and trapping

Spatial coordinate

 $w_{DA} \propto |\langle \text{ Donor,Acceptor}^* | H_{int} | \text{ Donor}^*,\text{Acceptor} \rangle|^2$

Excitons. PL traps in MnF₂.

Excitation migration and trapping

 $w_{DA} \propto |\langle \text{ Donor,Acceptor}^* | H_{int} | \text{ Donor}^*,\text{Acceptor} \rangle|^2$

Excitons. PL traps in MnF₂.

Rodríguez et al. J. Physique 46, 155 (1985)

Is it possible to impede transfer to non-radiative de-excitation centers?

1 – Reduce the non-PL impurities (purification)

2 – Avoid transfer (pressure-iduced transformations)

Towards impurity-lean particles: MnF₂ milling.

 \bigcirc

1 nm

Decrease in particle size

impurity-lean particles \Rightarrow

• • •

1 mm

 $P(n) = (1-c)^{N-n}c^n \frac{N!}{(N-n)n!}$

Milled MnF₂ XRD diagrams. Nanoparticles.

- Grain size reduction
- ~ 5 nanometers
- Strain broadening

- Milling favours formation of α -PbO₂ phase

F. Dachille and R.Roy, Nature, 186, 70 (1960)

Optical and IR absorption. Water.

Milled and single crystal absorption spectra are similar

 ${}^{4}A_{1g}$, ${}^{4}E_{g}$ slightly redshifted

Optical and IR absorption. Water.

Milled and single crystal absorption spectra are similar

 ${}^{4}A_{1g}$, ${}^{4}E_{g}$ slightly redshifted

Similar results for all milled samples.

New red component.

Intensity (arb. u.)

Similar results for all milled samples.

New red component.

Strongly Inhomogeneous

 $\boldsymbol{\tau}$ varies along the band

PL Intensity (arb. u.)

Similar results for all milled samples. New red component.

Strongly Inhomogeneous

 $\boldsymbol{\tau}$ varies along the band

Q-continuous trap distribution

Similar results for all milled samples.

New red component.

Strongly Inhomogeneous

 $\boldsymbol{\tau}$ varies along the band

Q-continuous trap distribution

PL does not remain for T > 200 K

Water may act as non-radiative de-excitation centers.

Similar results for all milled samples.

New red component.

Strongly Inhomogeneous

 $\boldsymbol{\tau}$ varies along the band

Q-continuous trap distribution

PL does not remain for T > 200 K

Water may act as non-radiative de-excitation centers.

 $\Delta T_q \sim 90 \text{ K}$

Towards stopping transfer: Phase transition sequence.

Towards stopping transfer: Phase transition sequence.

MnF₂ under Pressure: emission spectra.

MnF₂ under Pressure: emission spectra.

- Two well-resolved bands appear for P > 14.7 GPa Band S (~ 2.3 eV) Band D (~ 1.9 eV)

Exciton migration reduction correlates with cotunnite phase!!

MnF₂ under Pressure. Downstroke

- Luminescence does not remain upon pressure release due to the downstroke α -PbCl₂ to α -PbO₂ phase transition at ~ 13.5 GPa.

Time-resolved spectroscopy.

Time-resolved spectroscopy.

Photon counting **immediately** after laser pulse.

Time-resolved spectroscopy.

Delayed counting provides an increase in the relative intensity of the S-Band.

 $\tau_{\rm S} > \tau_{\rm D}$

Comparison with CaF_2 : Mn²⁺ at HP. Excitation.

Cotunnite Phase

Ninefold coordination

Comparison with CaF₂: Mn²⁺ at HP. Excitation.

Cotunnite Phase

Ninefold coordination

PL lifetime in CaF₂: Mn²⁺ (τ = 14 ms) is bigger than in MnF₂ (4 ms > τ > 2 ms)

Comparison with CaF₂: Mn²⁺ at HP. Excitation.

Time-resolved spectroscopy. Lifetime.

D-Band T = 300 K, P = 16 GPa

Excitation and I(t) suggest that D-luminescence comes from excitation-transferred centers !!

Excited-States dynamics: model.

 $\tau_D^{\text{short}} = 2.5 \ \mu \text{s}$

1.0

Time (µs)

1.5

2.0

0.50

0.0

S-centers (intrinsic/shallow traps), τ_{s} = 5 ms $\tau_0 \Rightarrow$ the Mn²⁺ lifetime without migration $\tau_0 = 13 \text{ ms}$ in CaF₂: Mn²⁺ in the cotunnite phase **D-centers** (deep traps), $\tau_D = \tau_D^{\text{short}} = 2.5 \,\mu\text{s}$ **RN-centers** (regular nearby $S \rightarrow D$) ^{DL} Intensity (arb.u.) Non-radiative centers, Killing PL $\beta = 5 \text{ ms}^{-1}$

Excited-States dynamics: model.

S-centers (intrinsic/shallow traps), $\tau_{s} = 5 \text{ ms}$ $\tau_{0} \Rightarrow$ the Mn²⁺ lifetime without migration $\tau_{0} = 13 \text{ ms}$ in CaF₂: Mn²⁺ in the cotunnite phase

D-centers (deep traps), $\tau_D = \tau_D^{\text{short}} = 2.5 \ \mu \text{s}$

RN-centers (regular nearby $S \rightarrow D$)

Non-radiative centers, Killing PL

Hernández et al, PRL 99, 027403 (2007)

$$\begin{split} &\frac{dN_{_{D}}}{dt} = \beta N_{_{RN}} - \tau_{_{D}}^{-1} N_{_{D}} \\ &\frac{dN_{_{RN}}}{dt} = -(\beta + \tau_{_{S}}^{-1}) N_{_{RN}} + f(t) \gamma N_{_{S}} \\ &\frac{dN_{_{S}}}{dt} = -\tau_{_{S}}^{-1} N_{_{S}} = -\left[\tau_{_{0}}^{-1} + \tau_{_{K}}^{-1} + \gamma\right] N_{_{S}} \end{split} \qquad \qquad \beta >> \gamma \end{split}$$

Excited-States dynamics: model.

S-centers (intrinsic/shallow traps), $\tau_s = 5$ ms $\tau_0 \Rightarrow$ the Mn²⁺ lifetime without migration $\tau_0 = 13 \text{ ms}$ in CaF₂: Mn²⁺ in the cotunnite phase **D-centers** (deep traps), $\tau_D = \tau_D^{\text{short}} = 2.5 \ \mu \text{s}$ **RN-centers** (regular nearby $S \rightarrow D$) Non-radiative centers, Killing PL $\begin{array}{c} & & \\ & &$ Hernández et al, PRL 99, 027403 (2007) $\frac{dN_{D}}{dt} = \beta N_{RN} - T_{D}^{-1}N_{D}$ $\frac{dN_{RN}}{dt} = -(\beta + \tau_{S}^{-1})N_{RN} + f(t)\gamma N_{S} \qquad \beta \gg \gamma$ $\frac{dN_{S}}{dt} = -\tau_{S}^{-1}N_{S} = -[\tau_{0}^{-1} + \tau_{K}^{-1} + \gamma]N_{S}$ β

Important exciton migration reduction!!!

Conclusions.

• Ca_{1-x}Sr_xF₂: Mn²⁺ and BaF₂: Mn²⁺ fluorites:

- · Non-radiative processes are volume dependent
- \cdot A unique expression dependent on T and V describes the series PL
- \cdot We have induced PL in non-PL materials of the series at HP

■ A₂BMF₆: Cr³⁺ fluoroelpasolites

- \cdot 10Dq varies as $R_{Cr-F}^{-3.3}$ instead of R_{Cr-F}^{-5}
- \cdot Stokes shift increases with the Cr local volume \int

Electronic states mixing

 \cdot Rb₂KCrF₆ experiences ESCO upon increasing P

♦ MnF₂

- \cdot Milled MnF₂ to nanometric scale increases the PL quenching temperature
- \cdot We have not obtained PL at RT at low pressure
- We have **induced** and **explained** a novel RT PL at HP in pure Mn²⁺ compound

Acknowledgements.

High Pressure and Spectroscopy - CITIMAC (University of Cantabria)

Prof. Fernando Rodriguez

Dr. Rafael Valiente

Colleagues and collaborators

ICMCB (University of Bordeaux, 1)

Prof. A. Tressaud

• IMPMC (U. Pierre et Marie Curie, Paris VI)

Dr. J.P. Chervin et al.

- Dpt. of Physics (Colorado State University)
 Prof. H.D. Hochheimer
- LPMCN, (U. Claude Bernard, Lyon 1)
 Prof. A. San Miguel *et al.*