


The Muskat problem

The question that we want to address is the evolution of an
interface between two different fluids in a porous medium.

Figure : Water and
air in a porous
medium.



Thus, we have

The Muskat problem

µu

κ
= −∇p − (0, ρ), Balance of momentum

∇ · u = 0, Incompressibility

∂tρ+∇ · (uρ) = 0, Mass conservation.

This system is equivalent to the standard (vertical) Hele-Shaw cell
problem with gravity.



Part 1: The homogeneous Muskat problem
We need the definition of κ to close the system. There are some
possible choices of κ(x). For instance

Case 1: Infinitely deep & homogeneous

κ(x) = 1
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We write
ρ− − ρ+ = 2π, µ+ = µ−.

Then, the equation in the infinitely deep case is

Case 1: Infinitely deep & homogeneous

∂t f = P.V.

∫

R

(∂x f (x)− ∂x f (x − η))η

η2 + (f (x)− f (x − η))2
dη.



The previous equation has been studied by many authors: D. Am-
brose, R. Caflisch, A. Castro, P. Constantin, A. Córdoba, D. Córdoba,
F. Deng, J. Escher, C. Fefferman, F. Gancedo, H. Kawarada, H.
Koshigoe, Z. Lei, F. Lin, M. López-Fernández, A. Matioc, B. Matioc,
T. Pernás-Castaño, L. Rodŕıguez-Piazza, R. Shvidkoy, R. Strain, V.
Vicol etc.



In the case where we have parallel impervious walls, the permeability
is

Case 2: Finitely deep

κ(x) = 1{−π/2≤y≤π/2}
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The equation in the confined case is

Case 2: Finitely deep (l = π/2) & homogeneous

∂t f (x) =
1

2
P.V.

∫

R

(∂x f (x)− ∂x f (x − η)) sinh (η)

cosh (η)− cos(f (x)− f (x − η))

+
(∂x f (x) + ∂x f (x − η) sinh (η)

cosh (η) + cos(f (x) + f (x − η))
dη.



The linearized equations are
Infinitely deep:

∂tg = −ρ− − ρ+

2π
P.V.

∫

R

g(x) − g(x − η)

η2
dη,

Finitely deep:

∂tg = −ρ− − ρ+

4l

π

2l
P.V.

∫

R

(g(x) − g(x − η)) cosh
(

π
2l η

)

sinh2
(

π
2l η

) dη

We observe that this equation is well-posed if ρ− > ρ+.



This motivates the following definition

Rayleigh-Taylor condition

RT (x , t) = −
[

∇p−(z(x , t))−∇p+(z(x , t))
]

· ∂⊥
x z(x , t).

From this point onwards, we assume that this condition holds.

In particular, in the case with the same viscosities, for a graph, this
condition is satisfied if the denser fluid is above the lighter one.



Local existence in Sobolev spaces (homogeneous case):

1. Infinitely deep case with arbitrary H3 initial data with the
same viscosities µ+ = µ− (D. Córdoba & F. Gancedo, Comm.

Math. Phys. 2007)

2. Infinitely deep case with arbitrary H3 initial data with
arbitrary viscosities µ+ 6= µ− (A. Córdoba, D. Córdoba & F.
Gancedo, Annals of Math. 2011)

3. Finitely deep case with arbitrary H3 initial data with the same
viscosities µ+ = µ− (D. Córdoba, RGB & R. Orive, Comm.

Math. Sciences 2014)



An interesting question is:
Can we prove local existence for initial data with unbounded
curvature?

1. Arbitrary domain with H2 initial data satisfying smallness
restriction in H1.5+ with arbitrary viscosities µ+ 6= µ−. In the
case with viscosities µ+ = 0, µ− > 0 the result holds true for
arbitrary H2 initial data. (A. Cheng, RGB & S. Shkoller, Adv.
in Math. 2016)

2. Infinitely deep case with arbitrary H2 initial data with the
same viscosities µ+ = µ− (P. Constantin, F. Gancedo, R.
Shvidkoy & V. Vicol, Arxiv preprint 2015)

These results close the problem at least in the cases with equal
viscosities or µ+ = 0.



The problem of existence with infinite curvature is related with clas-
sical problems as the Stokes waves



Let us state rigorously our results

Theorem: Local existence of H2 solutions (C. Cheng, RGB, S.
Shkoller)

Let’s consider µ1, µ2 > 0 (not necessarily equal!), s > 0 and
f0 ∈ H2 in the stable regime such that

‖f0‖H1.5+s ≤ C ,

for some universal constant C . Then there exists a unique solution

f (x , t) ∈ C ([0,T (f0)),H
2) ∩ L2([0,T (f0)),H

2.5).

Here any domain geometry is allowed



Figure : H1.5+s norm by M. Rothko. Figure : H2 norm by Peridis.



Let’s consider now µ+ = 0 6= µ− = 1.

Theorem: Local existence of H2 solutions (C. Cheng, RGB, S.
Shkoller)

Let’s consider µ+ = 0, µ− > 0, and f0 ∈ H2 in the stable regime.
Then there exists a unique solution

f (x , t) ∈ C ([0,T (f0)),H
2) ∩ L2([0,T (f0)),H

2.5).

Furthermore, this solution becomes C∞ instantly.

Again, here any domain geometry is allowed



Part 2: The inhomogeneous Muskat problem
What happens if the permeability takes more than 1 positive value?

Case 3: Finitely deep (l = π/2) & inhomogeneous
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We write

K =
κ1 − κ2

κ1 + κ2
, κ1 = 1 y ρ2 − ρ1 = 2π.

Case 3: Finitely deep (l = π/2) & inhomogeneous

∂t f (x) =
1

2
P.V.

∫

R

(∂x f (x)− ∂x f (β)) sinh(x − β)

cosh(x − β)− cos(f (x)− f (β))
dβ

+
1

2
P.V.

∫

R

(∂x f (x) + ∂x f (β)) sinh(x − β)

cosh(x − β) + cos(f (x) + f (β))
dβ

+
1

4π
P.V.

∫

R

̟2(β)(sinh(x − β) + ∂x f (x) sin(f (x) + h2))

cosh(x − β)− cos(f (x) + h2)
dβ

+
1

4π
P.V.

∫

R

̟2(β)(− sinh(x − β) + ∂x f (x) sin(f (x) − h2))

cosh(x − β) + cos(f (x)− h2)
dβ



̟2(x) = K
(

P.V.

∫

R

∂x f (β) sin(h2 + f (β))

cosh(x − β)− cos(h2 + f (β))
dβ

+ P.V.

∫

R

∂x f (β) sin(−h2 + f (β))

cosh(x − β) + cos(−h2 + f (β))
dβ

)

+
K2

√
2π

Gh2,K ∗
(

P.V.

∫

R

∂x f (β) sin(h2 + f (β))

cosh(x − β)− cos(h2 + f (β))
dβ

− P.V.

∫

R

∂x f (β) sin(−h2 + f (β))

cosh(x − β) + cos(−h2 + f (β))
dβ

)

.



Theorem: Well-posedness (L.Berselli, D.Córdoba & RGB)

If the Rayleigh-Taylor condition is satisfied, i.e. ρ2 − ρ1 > 0, and
the initial data −h2 < f0(x) = f (x , 0) ∈ H3

l (R), then there exists
an unique classical solution f ∈ C ([0,T ],Hk

l (R)) where
T = T (f0). Furthermore, the solution verifies

‖f (t)‖2L2(R) +
∫ t

0

‖v‖2
L2(R×(−h2,π/2))

κ1(ρ2 − ρ1)
ds

+

∫ t

0

‖v‖2
L2(R×(−π/2,−h2))

κ2(ρ2 − ρ1)
ds = ‖f0‖2L2(R).

Notice that there is not condition on the sign of K. To better
understand the role of K it is interesting to perform numerics. Let’s
see some videos.



However, what if the curve where the permeability changes is not
flat?

Theorem: Local existence of H3 solutions (T. Pernás-Castaño,
Arxiv Preprint, 2016)

Let’s consider µ1 > 0, µ2 > 0 (not necessarily equal), h ∈ H3 and
f0 ∈ H3 in the stable regime. Assume also that the domain is
unbounded. Then there exists a unique solution

f (x , t) ∈ C ([0,T (f0)),H
3).



However, what if the initial data has unbounded curvature?

Case 4: finitely deep & inhomogeneous

κ(x , y) = κ11{−1+h(x)<y} + κ21{−2<y<−1+h(x)}
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Theorem: Local existence of H2 solutions
(RGB & S. Shkoller, Preprint)

Let’s consider µ1 = 0, µ2 > 0, h ∈ H2.5 and
f0 ∈ H2 in the stable regime. Then there exists
a unique solution

f (x , t) ∈ C ([0,T (f0)),H
2)∩L2([0,T (f0)),H

2.5).



Finite time singularities The wave could turn over

Figure : Jean-Désiré-Gustave Courbet, The Wave, 1870



Or, with a clearer picture,
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Figure : Possible turning



Theorem: Turning waves (J. Gómez-Serrano & RGB)
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Figure : Yellow: not turning, red: turning.



Theorem: Turning waves (J. Gómez-Serrano & RGB)

There exists a C 1 curve (h2,K(h2)), located in
[0.648, 0.77] × (−1, 1), such that for every h2 for which the curve
is defined, for every K < K(h2) the curve does not turn and for
every K > K(h2) the curve turns.
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Figure : The curve. Inset: Close caption around zero, solid: initial
condition, dotted: normal component of the velocity for the infinitely
deep case, squared: normal component of the velocity for the finitely
deep case. The normal components have been scaled by a factor 1/100.


