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Rayleigh-Taylor instability

Rayleigh-Taylor instability: instability occuring when a layer of
heavy fluid is supported by a layer of a light one (Rayleigh [1878]
and Taylor [1950]).
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RT occurs under gravity and, equivalently, under an acceleration of
the fluid system in the direction toward the denser fluid. Whenever
the pressure is higher in the lighter fluid, the differential acceleration
causes the two fluids to mix.
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Kelvin-Helmholtz instability

Kelvin-Helmholtz instability: instability occuring when there is a
velocity difference across the interface between two fluids (Lord
Kelvin [1871] and von Helmholtz [1868])).
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Goal of the talk

In this talk, I will describe two different strategies for deriving
asymptotic models for RT interface growth and mixing.
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Euler equations [1757]

ρ︸︷︷︸
mass


∂tu + (u · ∇)u︸ ︷︷ ︸

acceleration


 = −∇p − gρetd︸ ︷︷ ︸

force

Newton’s Law

∇ · u = 0 incompressibility

∇× u = 0 irrotationality

∂tρ+ u · ∇ρ = 0 conservation of mass
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Γ(t)

p+, u+, ρ+

p−, u−, ρ−

The blue curve is an illustration of the interface Γ(t), separating
both fluids. The fluid on top of Γ(t) has density ρ+, pressure p+

and velocity u+, while the fluid on the bottom has density ρ−,
pressure p− and velocity u−.
The jump conditions are

[[p]] = 0 (absence of surface tension),

[[u · n]] = 0.
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Define the Atwood number

A =
ρ+ − ρ−

ρ+ + ρ−
.

Then, the linear equation when Γ(t) = (x , h(x , t)), |h| ≪ 1, is

htt = Ag(−∂2
x )

1/2h.

A < 0 (heavy fluid below)⇒ stable case it’s a linear wave
equation!

A > 0 (heavy fluid on top)⇒ unstable case

Rafael Granero-Belinchón RT and KH instabilities



Two-phase Euler (in absence of surface tension) is

ill-posed in Sobolev spaces,
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Two-phase Euler (in absence of surface tension) is

ill-posed in Sobolev spaces,

highly unstable,
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Two-phase Euler (in absence of surface tension) is

ill-posed in Sobolev spaces,

highly unstable,

computationally intractable.

So, two-phase Euler is much more challenging than one-phase Euler
and there is a great need for models that can answer the basic
questions about interfaces, mixing, etc
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Or, as M.C. Escher (in 1959 in a letter to his son George) put it

Those waves! Very soon I will try once more to draw
something similar to the waves. But how can one suggest
motion on a static plane? And how can you simplify some-
thing as complicated as a wave in the open sea, making it
understandable?
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According to Youngs (1984), the development of a RT driven mixing
zone can be described as a three step process:

Initially an exponential growth of infinitesimal perturbations
that correspond to linear stability analysis.
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According to Youngs (1984), the development of a RT driven mixing
zone can be described as a three step process:

Initially an exponential growth of infinitesimal perturbations
that correspond to linear stability analysis.

After a short amount of time of exponential-in-time growth,
the interface can be described by bubbles of the lighter fluid
and spikes of the heavier fluid. In this second regime,
exponential growth of the bubbles slows down and nonlinear
terms in the equations of motion can no longer be ignored.
This is called saturation/bubble competition.
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Eventually, due to the growth of the bubbles, they merge and
mix chaotically. This develops into a region of turbulent
self-similar mixing whose half-width can be described by the
following formula

half-width of the turbulent mixing region ≈ α

(
ρ+ − ρ−

ρ+ + ρ−

)
gt2.
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α is a dimensionless but non-universal parameter.
How many physical parameters does it take to describe α? At least 6,
3 describing fluid parameters and 3 describing the initial conditions
(Glimm et. al.).
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One of the fundamental questions regarding RT mixing is
How can we estimate α?
Difficulties:

Two-phase Euler is a highly unstable system ⇒ Direct
Numerical Simulations (DNS) extremely expensive.
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One of the fundamental questions regarding RT mixing is
How can we estimate α?
Difficulties:

Two-phase Euler is a highly unstable system ⇒ Direct
Numerical Simulations (DNS) extremely expensive.

Two-phase Euler is ill-posed ⇒ the analysis of the system is
extremely difficult.
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Current approaches:

Real experiments (Read & Youngs, Read, Smeeton & Youngs)

Figure: a) Rocket rig and b) Tilted rig experiments where the fluids are
NaI solution (ρ− = 1.89g/cm3) and Hexane (ρ+ = 0.66g/cm3)
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Current approaches:

ODE models (large systems of nonlinear ODEs for expansions (Tay-
lor, Fourier) of the interface and the velocity.):
B. Rollin and M. J. Andrews. On generating initial conditions for
turbulence models: the case of Rayleigh-Taylor instability turbulent
mixing. Journal of Turbulence,14(3):77–106, 2013

d2ĥk
dt2

= Ag |k |ĥk + A|k |
∑

p

(
1−

p · k

|p||k |

)
d2ĥp
dt2

ĥk−p

+ A|k |
∑

p

(
1

2
−

p · k

|p||k |
−

1

2

p · (k − p)

|p||k − p|

)
dĥp
dt

dĥk−p

dt
,
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Current approaches:

ODE models (large systems of nonlinear ODEs for expansions (Tay-
lor,Fourier) of the interface and the velocity.):
V.N. Goncharov. Analytical model of nonlinear, single-mode, classi-
cal Rayleigh-Taylor instability at arbitrary Atwood numbers. Physi-
cal Review Letters, 88(13), 2002
The interface and potentials are assumed to be

h(t, x) = h0(t) + h2(t)x
2, φ+(t, x , y) = a1(t) cos(kx)e

−k(y−h0),

φ−(t, x , y) = b1(t) cos(kx)e
k(y−h0) + b2(t)y .

Then,

dh2
dt

= −
dh0
dt

k

2
(k + 6h2)

d2h0
dt2

f1(k , h2) = −Agh2 −

(
dh0
dt

)2

f2(k , h2),
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Our main contributions are a couple of new mathematical models
for two-fluid interface motion, subjected to the Rayleigh-Taylor (RT)
instability in two-dimensional fluid flow.
The basis of our approach is very different to the prior ODE models
and leads to two different nonlinear and nonlocal PDE’s modeling
RT instability.
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The ideas are the following:

1 We write the 2D Euler system for (u, p, Γ) in the
Birkhoff-Rott integral-kernel formulation (BR). New
unknowns: the interface Γ and the tangential discontinuity
̟ = (u− − u+) · τ (τ(t) denotes the tangent vector to Γ(t)).
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The ideas are the following:

1 We write the 2D Euler system for (u, p, Γ) in the
Birkhoff-Rott integral-kernel formulation (BR). New
unknowns: the interface Γ and the tangential discontinuity
̟ = (u− − u+) · τ (τ(t) denotes the tangent vector to Γ(t)).

2 We reduce the problem to a system of 2 (Γ is a graph) or 3 (Γ
is not a graph) nonlinear and nonlocal PDE’s.

3 We either
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The ideas are the following:

1 We write the 2D Euler system for (u, p, Γ) in the
Birkhoff-Rott integral-kernel formulation (BR). New
unknowns: the interface Γ and the tangential discontinuity
̟ = (u− − u+) · τ (τ(t) denotes the tangent vector to Γ(t)).

2 We reduce the problem to a system of 2 (Γ is a graph) or 3 (Γ
is not a graph) nonlinear and nonlocal PDE’s.

3 We either

expand the integral kernel in the BR formulation assuming that
the slope of the interface is small (h-model)
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The ideas are the following:

1 We write the 2D Euler system for (u, p, Γ) in the
Birkhoff-Rott integral-kernel formulation (BR). New
unknowns: the interface Γ and the tangential discontinuity
̟ = (u− − u+) · τ (τ(t) denotes the tangent vector to Γ(t)).

2 We reduce the problem to a system of 2 (Γ is a graph) or 3 (Γ
is not a graph) nonlinear and nonlocal PDE’s.

3 We either

expand the integral kernel in the BR formulation assuming that
the slope of the interface is small (h-model)
restrict the nonlocality present in the the original BR kernel
(z-model)
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When the interface Γ(t) is given by a graph (x , h(x , t)), we use
an asymptotic expansion of the BR formulation and assume that
|∂xh| ≪ 1.
Example:

p.v .

π

∫
̟(y , t)

(x − y)

(x − y)2 + (h(x , t)− h(y , t))2
dy

≈
p.v .

π

∫
̟(y , t)

x − y

(
1−

(
h(x , t)− h(y , t)

x − y

)2
)
dy

≈ H̟

where H denotes the Hilbert transform Ĥg(k) = −i k
|k| ĝ(k).
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This leads to the h-model.

ht =
1

2
H̟

̟t = 2Ag∂xh−
A

2
Λ (̟H̟) ,

where Λ = H∂x = (−∂2
x )

1/2. Or, equivalently,

htt = Ag Λh− A∂x(Hhtht)
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When the interface Γ(t) is given as a smooth curve (z1(x , t), z2(x , t)),
we replace the BR kernel by a localized kernel.

p.v .

π

∫
̟(y)

(z(x , t)− z(y , t))⊥

|z(x , t)− z(y , t)|2
dy ≈

(∂xz(x , t))
⊥

|∂xz(x , t)|2
p.v .

π

∫
̟(y)

x − y
dy
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Then, the z−model reads

zt =
1

2
H̟

(∂x z)
⊥

|∂xz |2
,

̟t = −∂x

[
A

2

H (̟H̟)

|∂xz |2
− 2Agz2

]
.

Equivalently,

ztt = Λ

[
A

|∂xz |2
H
(
zt · (∂xz)

⊥H(zt · (∂xz)
⊥)
) ](∂xz)⊥

|∂xz |2

+ zt · (∂xz)
⊥

(
(∂xzt)

⊥

|∂xz |2
−

(∂xz)
⊥2(∂xz · ∂xzt)

|∂xz |4

)

+ AgΛz2
(∂xz)

⊥

|∂xz |2
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To estimate the error, define

m = min |∂xz |, M = max |∂xz |.

Then

|u(z(x), t)− umod (z(x), t)| ≤ 2
‖̟‖L2

π

(
1

m2
+ 2

)0.5 ‖∂2
x z‖

0.5
L∞

m0.5
,

where

umod =
1

2
H̟(x)

(∂x z(x))
⊥

|∂xz(x)|2
,

and u is the real Euler velocity.
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Comparison with classical RT experiments:

Growth of the mixing region: the Rocket rig and Tilted rig
experiments
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Comparison with classical RT experiments:

Growth of the mixing region: the Rocket rig and Tilted rig
experiments

Closed contours: Falling drops & Rising bubbles (z-model)
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Rocket and Tilted rig experiments:

Figure: a) Rocket rig and b) Tilted rig experiments
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Rocket rig experiment:

Initial data: Γ(0) = (x , h0(x)), h0 random small initial data

Time: the experiment runs for up to 70-73 ms

Gravity points upwards

Fluids: Heavy fluid (below) NaI solution (ρ− = 1.89g/cm3)
and Light fluid (on top) Hexane (ρ+ = 0.66g/cm3)

Size of the tank: 15 cm x 2.5 cm x 24 cm (so we have to
rescale gravity)
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Figure: Interface position z(α, tj ) for t0 = 0, t1 = 0.049, t2 = 0.099 and

t3 = 0.149.
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For the rocket rig:

DNS suggests α ∈ [0.04, 0.05]

the empirical value is α ≈ 0.063
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Figure: Comparison between maxx z2(x , t)−maxx z2(x , 0),

maxx h(x , t)−maxx h(x , 0) and the theoretical prediction with α = 0.06.

Rafael Granero-Belinchón RT and KH instabilities



Tilted rig experiment:
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Figure: Interface position for t0 = 0, t1 = 0.069, t2 = 0.139, t3 = 0.209 and

t4 = 0.286.
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Falling drops:
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Figure: a) Real water drops, b) Simulation using the z−model
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Rising plumes:

Figure: a) Plume as in Tripathi Sahu, Govindarajan (Nature,2014), b)
Plume simulation using the z−model
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Recovering the nonlinear saturation phenomenon:

The RT mixing zone has three different stages:

1 Initially, the growth of the mixing region is exponential in time
(linear theory)

2 Then, there is a period where nonlinear saturation occurs
(nonlinear effects). The growth slows down to merely linear in
time.

3 After that the turbulent mixing stage is attained and the
growth is quadratic in time.

Goncharov’s ODE model correctly captured the linear growth in the
tip of the bubble (i.e. assuming that gravity points downward and
denoting by v the normal velocity of the bubble, where Av > 0).
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Global well-posedness and asymptotic behavior for the h-model

Let ρ+, ρ− > 0, g 6= 0 be fixed constants such that Ag < 0, and
let (h0, h1) denote the initial position and velocity, respectively, for
the h-model. Setting h2 := htt(·, 0) = AgΛh0 − A∂x(Hh1h1) .
Suppose that (h0, h1) ∈ H2.5(T)× H2(T) is given such that

λ := min
x∈T

Ah1(x) > 0, and ‖h2‖
2
0.5 + ‖h1‖

2
1 <

(
−h̄1
5

)2

. (1)

Then there exists a unique classical solution of the h−model
satisfying

h ∈ C ([0,T ];H2.5), ht ∈ C ([0,T ];H2)∩L2(0,T ;H2.5) ∀ 0 ≤ T < ∞.

Furthermore, as t → ∞, the solution h(·, t) converges to the
homogeneous solution h∞ = h̄0 + h̄1t;

lim sup
t→∞

‖h(t)− h∞‖
Ḣ1 + ‖ht(t)− h∞t ‖

Ḣ1 = 0.
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Let us emphasize that the condition

‖h2‖
2
0.5 + ‖h1‖

2
1 <

(
−h̄1
5

)2

does not require small initial data; rather, we require the data to
be sufficiently close to an arbitrarily large homogeneous state. For
example, we can consider

h0 = A+ Beαi and h1 = −1000 +
eαi

6

for constants A and B . A simple computation using the explicit form
of h0 and h1 shows that the condition is satisfied when B ≤ 110
and any A.
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Kelvin-Helmholtz instability:
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Figure: a)Kelvin-Helmholtz instability in clouds as drawn by Van Gogh.
b) Simulation of the Kelvin-Helmholtz instability using the z−model
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Closely related models:

1 W. Craig and C. Sulem. Numerical simulation of gravity
waves. J. Comput. Phys., 108(1):73–83, 1993.

2 S. Liu and D.M. Ambrose. Sufficiently strong dispersion
removes ill-posedness in truncated series models of water
waves. Submitted, 2017

ht =
1

2
H̟−

1

2
∂x (H(hH̟) + h̟)

̟t = −2gΛp∂xh +
1

2
Λ (̟H̟) ,

This model is obtained for gravity waves (p = 0), capillary
waves (p = 2) or hydroelastic waves (p = 4) when the fluid
above is replaced by vacuum.
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