Asymptotic power of goodness of fit tests based on Wasserstein distance

Hlne Boistard, joint work with Eustasio del Barrio Universidad de Valladolid

We present a preliminary study for the power of Wasserstein goodness of fit test. Under H_0, X_1, \ldots, X_n are i.i.d. with distribution function F, density function f and quantile function F^{-1} . The Wasserstein test is based on the statistic:

$$n\int_0^1 \left(F_n^{-1}(t) - F^{-1}(t)\right)^2 dt - a_n,$$

where F_n^{-1} is the empirical quantile function and a_n are some coefficients which depend on n and on F. Under tail conditions, this statistic converges to

$$\int_{0}^{1} \frac{B^{2}(t) - t(1-t)}{f^{2}(F^{-1}(t))} dt,$$
(1)

where B is a Brownian bridge (see, e.g., del Barrio et al. [1]). Let W be the Brownian motion such that B(t) = W(t) - tW(1). We prove that almost surely, (1) is equal to

$$\int \int \tilde{K}(s,t) dW(s) dW(t),$$

where \tilde{K} is a kernel associated to F. The multiple integral must be understood as in Nualart [2].

Similarly to this expression, we derive a new statistic based on the kernel K, which has interesting regularity properties. This statistic can be completely treated under some contiguous alternatives within the frame of Gaussian shifts (see, e.g., Janssen [3]).

References

- del Barrio, E., Cuesta-Albertos, J.A., Matrn, C. and Rodrguez-Rodrguez, J.M. (1999). Tests of goodness of fit based on the L₂-Wasserstein distance. *The Annals of Statistics*, 27(4): 1230–1239
- [2] Nualart, D. (1995). The Malliavin calculus and related topics. Probability and its Applications, Springer-Verlag.
- [3] Janssen, A. (2003). Which power of goodness of fit tests can really be expected: intermediate versus contiguous alternatives. *Statist. Decisions*, 21(4): 301–325.